天然气地球科学

• 天然气开发 • 上一篇    下一篇

致密砂岩气藏水相圈闭损害自然解除行为研究

游利军,石玉江,张海涛,康毅力, 任渊   

  1. 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500;
    2.中国石油长庆油田公司勘探开发研究院, 陕西 西安 710018; 
    3.低渗透油气田勘探开发国家工程实验室, 陕西 西安 710018
  • 收稿日期:2013-03-27 修回日期:2013-07-31 出版日期:2013-12-10 发布日期:2013-12-10
  • 通讯作者: 游利军youlj0379@126.com E-mail:youlj0379@126.com
  • 作者简介:游利军(1976-),男,河南洛阳人,副教授,博士,主要从事储层保护理论与技术、非常规天然气、岩石物理教学与科研工作. E-mail:youlj0379@126.com.
  • 基金资助:

    国家“973”计划(编号:2010CB226705);国家科技重大专项(编号:2011ZX05018-005;2011ZX05044)联合资助.

Spontaneous Removal Behavior of Water Phase Trapping Damage in Tight Sandstone Gas Reservoirs

YOU Li-jun,SHI Yu-jiang,ZHANG Hai-tao,KANG Yi-li,REN Yuan   

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu 610500,China;
    2.Oil and Gas Technology Research Institute,PetroChina Changqing Oilfield Company,Xi′an 710018,China;
    3.State Key Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields,Xi′an 710018,China
  • Received:2013-03-27 Revised:2013-07-31 Online:2013-12-10 Published:2013-12-10

摘要:

致密砂岩气藏的高毛细管力及强水湿性使其易产生水相圈闭损害,影响气藏及时发现、准确评价及经济开发。目前消除水相圈闭的物理化学方法,由于可能诱发其他储层损害,应用尚受到限制。选取鄂尔多斯盆地渗透率小于0.1×10-3μm2、介于(0.1~0.3)×10-3μm2之间和大于0.3×10-3μm2的致密砂岩岩样,利用氮气在恒定高压差与递增压差驱替原地有效应力下饱和模拟地层水岩样的实验,揭示致密砂岩水相自然返排行为。结果表明:随着时间增加,含水饱和度逐渐下降,渗透率越高,含水饱和度降低幅度越大,残余水饱和度越低;渗透率介于(0.1~0.3)×10-3μm2之间的岩样,在前150h递增驱替比恒定高压差驱替含水饱和度降低慢,但水相返排率更高。分析表明,致密砂岩水相圈闭损害严重,孔隙结构、渗透率和压力梯度是影响水相返排的重要因素,孔喉非均质性强的储层宜采用递增压差驱替的方式;水相返排过程包括驱替和蒸发2个阶段,当气相在不同孔喉中形成渗流通道后,可适当提高压差加速水相蒸发。

关键词: 致密砂岩, 气藏, 含水饱和度, 水相清除, 压差, 蒸发

Abstract:

Water phase trapping of tight gas reservoir caused by its high capillary pressure prevents gas reservoirs from being detected,precisely evaluated and economically developed.The present physical and chemical methods for removal of water phase trapping is seldom applied because that they might cause other damages.The experiments of N2 displacement to stimulate formation water tight sandstone core samples with the permeability of less than 0.1×10-3μm,(0.1-0.3)×10-3μm,and more than 0.3×10-3μm2 are conducted under the conditions of in situ stress and constant flow pressure difference or increased pressure differences to recognize the water flowback behavior in tight sandstone.The results indict that water saturation of core samples decreases gradually,and the lower the permeability of cores is,the lower the decrease rate of water saturation will be,and that the decrease rate of water saturation of core with the permeability of (0.1-0.3)×10-3μm2 displaced by increasing pressure difference is lower than that displaced by constant pressure difference within 150 hours,but the water flowback rate of core displaced by increasing pressure difference is higher.The analysis of results show that water phase trapping is severe.Pore throat structure,permeability and pressure gradient are the most important factors.The process of water flowback from cores includes two effects,water displaced by gas and water evaporation due to gas flow.If the pressure difference of water flowback increases properly,it will accelerate water evaporation effect when gas can flow through different sizes of pore throats.

Key words: Tight sandstone, Gas reservoir, Water saturation, Water removal, Pressure difference, Evaporation

中图分类号: 

  • TE312
[1]Li Jianzhong,Guo Bingcheng,Zheng Min,et al.Main types,geological features and resource potential of tight sandstone gas in China[J].Natural Gas Geoscience,2012,23(4):607-615.[李建忠,郭彬程,郑民,等.中国致密砂岩气主要类型、地质特征与资源潜力[J].天然气地球科学,2012,23(4):607-615.]

[2]Dai Jinxing,Ni Yunyan,Wu Xiaoqi.Tight gas in China and its significance in exploration and exploitation[J].Petroleum Exploration and Development,2012,39(3):257-265.[戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,39(3):257-265.]

[3]Kang Yili,Luo Pingya.Current status and prospect of key techniques for exploration and production of tight sandstone gas reservoirs in China[J].Petroleum Exploration and Development,2007,34(2):239-245.[康毅力,罗平亚.中国致密砂岩气藏勘探开发关键工程技术现状与展望[J].石油勘探与开发,2007,34(2):239-245.]

[4]You Lijun,Kang Yili,Chen Yijian,et al.Stress sensitivity of fractured tight gas sands in consideration of fractures and water saturation[J].Journal of China University of Petroleum:Edition of Natural Science,2006,30(2):59-63.[游利军,康毅力,陈一健,等.考虑裂缝和含水饱和度的致密砂岩应力敏感性[J].中国石油大学学报:自然科学版,2006,30(2):59-63.

[5]Shu Yong,Yan Jienian.Amphoteric/sulfonation polymer drilling fluid with performances of fluid-block prevention and film forming in low-permeability condensate gas reservoir[J].Journal of China University of Petroleum:Edition of Natural Science,2009,33(1):57-63.[舒勇,鄢捷年.低渗凝析气藏防液锁成膜两性离子聚磺钻井液[J].中国石油大学学报:自然科学版,2009,33(1):57-63.]

[6]Zhang Fengdong,Kang Yili,You Lijun,et al.Aqueous trapping damage models for fracture-pore tight sandstone gas reservoirs[J].Natural Gas Geoscience,2009,20(5):812-815.[张凤东,康毅力,游利军,等.裂缝—孔隙型致密砂岩气藏水相圈闭损害模式[J].天然气地球科学,2009,20(5):812-815.]

[7]Bennion D B,Thomas F B,Ma T.Formation Damage Processes Reducing Productivity of Low Permeability Gas Reservoirs[C].SPE 60325,2000.

[8]Xie X,Liu Y,Sharma M.Wettability Alteration To Increase Deliverability of Gas Production Wells[C].SPE 117353,2008

[9]Bennion D B,Bietz R F,Thomas F B,et al.Reductions in the productivity of oil and low permeability gas reservoirs due to aqueous phase trapping[J].Journal of Canadian Petroleum Technology,1994,33(8):45-54.

[10]Cimolai M P,Bennion D B,Myers D L,Mitigating Horizontal Well Formation Damage in A Low-Permeability Conglomerate Gas Reservoir[C].SPE26166,1993.

[11]Delavarmoghaddam A,Mirhaj S A,Zitha P L J.Gas Condensate Productivity Improvement by Chemical Wettability Alteration[C].SPE 122225,2009.

[12]Li K,Firoozabadi A.Experimental study of wettability alteration to preferential gas-wetting in porous media and its effects[J].SPE Reservoir Evaluation & Engineering,2000,3(2):139-149.

[13]Tang G Q,Firoozabadi A.Wettability alteration to intermediate gas-wetting in porous media at elevated temperatures[J].Transport in Porous media,2003,52(2):185-211.

[14]Fahes M,Firoozabadi A.Wettability Alteration to Intermediate Gas/Condensate Reservoirs at High Temperatures[C].SPE 96184,2005.

[15]Liu Y,Zheng H,Huang G,et al.Improving Production in Gas/Condensate Reservoirs by Wettability Alteration to Gas Wetness[C].SPE 99739,2006.

[16]Zhang Yan,Xiang Xingjin,Yan Jienian,et al.A novel drilling fluid with less free water[J].Petroleum Exploration and Development,2011,38(4):490-494.[张岩,向兴金,鄢捷年,等.低自由水钻井液体系[J].石油勘探与开发,2011,38(4):490-494.]

[17]Zhang Ningsheng.Key production technologies of low-permeability gas reservoirs and their development trend[J].Natural Gas Industry,2006,26(12):38-41.[张宁生.低渗气藏开发的关键性技术与发展趋势[J].天然气工业,2006,26(12):38-41.]

[18]Jiang Guancheng,Hu Dongliang,Guan Xunzhong,et al.Study on system of broad-spectrum oil-film temporary plugging drilling and completion fluid[J].Journal of Basic Science and Engineering,2007,27(1):74-83.[蒋官澄,胡冬亮,关勋中,等.新型广谱“油膜”暂堵型钻井完井液体系研究与应用[J].应用基础与工程科学学报,2007,27(1):74-83.]

[19]Chen Dingshan,Zhao Fulin.Application of alcohol treatment in decreasing damage of tight gas formation[J],Journal of China University of Petroleum,1991,15(2):36-45.[陈定珊,赵福麟.醇处理在减少致密气层伤害中的应用[J].石油大学学报,1991,15(2):36-45.]

[20]He Chengzu,Hua Mingqi.The quantitative study on water blocking mechanism[J].Driuing Fluid and Completion Fluld,2000,17(3):1-4.[贺承祖,华明祺.水锁机理的定量研究[J].钻井液与完井液,2000,17(3):1-4.]

[21]Bao Hongping,Jia Yani,Yu Zhongping.Industrial classification and evaluation of the permian sandstone reservoir in Sulige Gasfield[J].Natural Gas Industry,2005,25(4):14-15.[包洪平,贾亚妮,于忠平.苏里格气田二叠系砂岩储层工业性分类评价[J].天然气工业,2005,25(4):14-15.]

[22]Katz D L,Lundy C L.Absence of connate water in Michigan reef gas reservoirs:An analysis[J].American Association of Petroleum Geologists Bulletin,1982,66(1):91-98.

[23]You Lijun,Kang Yili.Integrated Evaluation of Water Phase Trapping Damage Potential in Tight Gas Reservoirs[C].SPE 122034,2009.

[24]Newsham K E,Rushing J A,Lasswell P M.Use of Vapor Desorption Data to Characterize High Capillary Pressure in A Basin-Centered Gas Accumulation with Ultra-Low Connate Water Saturations[C].SPE84596,2003.

[25]Kang Yili,Luo Pingya,Xu Jin,et al.Employing both damage control and stimulation:A way to successful development for tight gas sandstone reservoirs[C].SPE 64707,2000,

[26]You Lijun,Kang Yili,Chen Yijian,et al.Application of temporary and shielding plugging technology to improve well logging responses for tight sandstone gas reservoir[J].Oil Drilling & Production Technology,2007,29(1):113-116.[游利军,康毅力,陈一健,等.应用屏蔽暂堵技术提高致密砂岩气层测井识别能力[J].石油钻采工艺,2007,29(1):113-116.]

[27]You Lijun,Li Lei,Kang Yili,et al.Gas supply capacity of tight sandstone in condisidering effective stress and water santuration[J].Natural Gas Geoscience,2012,23(4):764-769.[游利军,李雷,康毅力,等.考虑有效应力与含水饱和度的致密砂岩气层供气能力[J].天然气地球科学,2012,23(4):764-769.]

[28]Mahadevan J,Sharma M M.Water removal from porous media by gas injection:Experiments and simulation[J].Transp Porous Med,2007,66:287-309.

[29]Tannich J D.Liquid removal from hydraulically fractured gas wells[J].Journal of Petroleum Technology,1975,27(11):1309-1317.

 

 
[1] 朱立文,王震亮,张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085-1093.
[2] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析[J]. 天然气地球科学, 2018, 29(8): 1190-1197.
[3] 杨海军,张荣虎,杨宪彰,王珂,王俊鹏,唐雁刚,周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[4] 刘小兵,温志新,王兆明,贺正军,宋成鹏. 中东扎格罗斯盆地构造演化与油气分布[J]. 天然气地球科学, 2018, 29(7): 973-981.
[5] 朱宽亮,吴晓红,康毅力,游利军,田键,宋静晗. 致密火山岩气藏水相和油相圈闭损害实验评价——以南堡凹陷5号构造沙河街组为例[J]. 天然气地球科学, 2018, 29(7): 1042-1050.
[6] 吴明涛,王晓冬,姚天福. 致密气藏气井非稳态线性渗流特征分析新方法[J]. 天然气地球科学, 2018, 29(7): 1060-1066.
[7] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[8] 游利军,王哲,康毅力,张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[9] 吕志凯,贾爱林,唐海发,刘群明,王泽龙. 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
[10] 葛岩,朱光辉,万欢,潘新志,黄志龙. 鄂尔多斯盆地东缘紫金山侵入构造对上古生界致密砂岩气藏形成和分布的影响[J]. 天然气地球科学, 2018, 29(4): 491-499.
[11] 赵力彬,张同辉,杨学君,郭小波,饶华文. 塔里木盆地库车坳陷克深区块深层致密砂岩气藏气水分布特征与成因机理[J]. 天然气地球科学, 2018, 29(4): 500-509.
[12] 杨丽杰,侯读杰,陈晓东,刁慧. 东海盆地西湖凹陷中部古近系地层水化学特征及地质意义[J]. 天然气地球科学, 2018, 29(4): 559-571,596.
[13] 黄禹忠,刁素,栗铁峰,何红梅. 致密砂岩气藏压裂伤害及对策——以川西坳陷ZH构造JS12气藏为例[J]. 天然气地球科学, 2018, 29(4): 579-585.
[14] 何文军,杨海波,费李莹,王学勇,杨彤远,杨翼波,鲍海娟. 准噶尔盆地新光地区佳木河组致密砂岩气有利区资源潜力综合分析[J]. 天然气地球科学, 2018, 29(3): 370-381.
[15] 洪峰,姜林,卓勤功,鲁雪松,马行陟,郝加庆. 中国前陆盆地异常高压气藏类型[J]. 天然气地球科学, 2018, 29(3): 317-327.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!