天然气地球科学

• 非常规天然气 • 上一篇    下一篇

气体滑脱及有效应力对煤岩气相渗透率的控制作用

李俊乾,刘大锰,姚艳斌,蔡益栋,王 磊   

  1. 国家煤层气工程中心煤储层实验室,中国地质大学能源学院,北京 100083
  • 收稿日期:2012-12-13 修回日期:2013-02-20 出版日期:2013-10-10 发布日期:2013-10-10
  • 通讯作者: 李俊乾lijunqian1987@126.com E-mail:lijunqian1987@126.com
  • 作者简介:李俊乾(1987-),男,河南商丘人,博士研究生,主要从事煤储层物性方面的研究. E-mail:lijunqian1987@126.com.
  • 基金资助:

    国家科技重大专项(编号:2011ZX05034-001;2011ZX05062-006);国家自然科学基金委员会,中国石油天然气集团公司石油化工联合基金(编号:U1262104);中央高校基本科研业务费(编号:2652013007);北京市优秀博士学位论文指导教师基金(编号:YB20101141501);中国石油创新基金(编号:2010D-5006-0101);新世纪优秀人才支持计划(编号:NCET-11-0721)联合资助.

Controls of Gas Slippage and Effective Stress on the Gas Permeability of Coal

LI Jun-qian,LIU Da-meng,YAO Yan-bin,CAI Yi-dong,WANG Lei   

  1. Coal Reservoir Laboratory of National Engineering Research Center of CBM Development and Utilization, School of Energy Resources, China University of Geosciences, Beijing 100083, China
  • Received:2012-12-13 Revised:2013-02-20 Online:2013-10-10 Published:2013-10-10

摘要:

动态的煤储层渗透率影响煤层气的开采,已引起广泛关注。针对6块采自沁水盆地南部煤矿的无烟煤样品,测试了4.3MPa围压条件下煤岩气相(氦气)渗透率变化特征,基于气体滑脱及有效应力效应分析进一步探讨了渗透率变化的控制机理。结果表明,气体压力降低过程中:①渗透率呈现“先降低后升高”的变化趋势,转折点进口气体压力约为1.9MPa(对应于平均气体压力1.0MPa);②平均气体压力小于1.0MPa时,氦气产生滑脱现象;③渗透率—有效应力之间呈近似负相关关系;④进口气体压力大于1.9MPa时,为有效应力负效应作用阶段,导致渗透率降低;进口气体压力降至1.9MPa以下时,有效应力与气体滑脱效应同时作用,此阶段气体滑脱正效应强于有效应力负效应,引起渗透率升高。

关键词: 无烟煤, 氦气, 渗透率, 气体滑脱, 有效应力

Abstract:

Dynamic coal reservoir permeability impacts the production of coalbed methane (CBM)and has been extensively studied.Gas (Helium)permeability change was measured under a 4.3MPa confining stress condition for 6 anthracite coal cores from the southern Qinshui Basin.Furthermore,controlling factors of the permeability change were investigated by comprehensively analyzing the effects of gas slippage and effective stress on the permeability.Results show that during gas pressure decline:①the permeability initially decreases but subsequently increases,during which the rebound begins at an inlet gas pressure of about 1.9MPa(corresponding to a mean gas pressure of 1.0MPa);②gas slippage phenomenon appears as the mean gas pressure falls bellow 1.0MPa;③the permeability is approximately negatively related to effective stress;④the permeability decreases due to the negative effect from effective stress as the inlet gas pressure is greater than 1.9MPa;while it increases when the pressure falls below 1.9MPa because the positive effect from gas slippage is stronger than the negative effect from effective stress.

Key words: Anthracite coals, Helium, Permeability, Gas slippage, Effective stress

中图分类号: 

  • TE132.2
 [1] Durucan S,Edwards J S.The effects of stress and fracturing on permeability of coal[J].Mining Science and Technology,1986,3(3):205-216.

 [2] Mckee C R,Bumb A C,Koenig R A.Stress-dependent permeability and porosity of coal and other geologic formations[J].SPE Formation Evaluation,1988,3(1):81-91.

 [3] Zhang Yapu,He Yingfu,Yang Zhengming,et al.Experimental research on stress sensitivity of coalbed reservoir[J].Natural Gas Geoscience,2010,21(3):518-521.[张亚蒲,何应付,杨正明,等.煤层气藏应力敏感性实验研究[J].天然气地球科学,2010,21(3):518-521.]

 [4]Yang Manping,Wang Gang,Xu Shengyang,et al.Steady flow productivity equation for stress sensitivity coal-bed methane gas well[J].Natural Gas Geoscience,2011,22(2):467-471.[杨满平,王刚,许胜洋,等.考虑应力敏感性的煤层气稳定流动气井产能方程[J].天然气地球科学,2011,22(2):467-471.][JP]

 [5] Harpalani S,Schraufnagel R A.Shrinkage of coal matrix with release of gas and its impact on permeability of coal[J].Fuel,1990,69(5):551-556.

 [6] Levine J R.Model Study of the Influence of Matrix Shrinkage on Absolute Permeability of Coalbed Reservoirs[C].London:Special Publication,1996:197-212.

 [7] Harpalani S,Chen G.Influence of gas production induced volumetric strain on permeability of coal[J].Geotechnical and Geological Engineering,1997,15(4):303-325.

 [8] Xiao Xiaochun,Pan Yishan.Experimental study on gas slippage effects in hypotonic coal reservoir[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(2):3409-3515.[肖晓春,潘一山.低渗煤储层气体滑脱效应试验研究[J].岩石力学与工程学报,2008,27(2):3409-3515.]

 [9] Fu Xuehai,Li Dahua,Qin Yong,et al.Experimental research of influence of coal matrix shrinkage on permeability[J].Journal of China University of Mining & Technology,2002,31(2):129-137.[付雪海,李大华,秦勇,等.煤基质收缩对渗透率影响的实验研究[J].中国矿业大学学报,2002,31(2):129-137.]

[10] Fu Xuehai,Qin Yong,Zhang Wanhong.Coupling correlation between high-rank coal matrix mechanic effect and coal reservoir permeability[J].Geological Journal of China Universities,2003,9(3):373-377.[付雪海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率耦合关系分析[J].高校地质学报,2003,9(3):373-377.]

[11] Shi J Q,Durucan S.A model for changes in coalbed permeability during primary and enhanced methane recovery[J].SPE Reservoir Evaluation & Engineering,2005,8(4):291-299.

[12] Liu S,Harpalani S,Pillalamarry M.Laboratory measurement and modeling of coal permeability with continued methane production:part 2-modeling results[J].Fuel,2012,94:117-124.[JP]

[13]Massarotto P,Golding S D,Rudolph V.Constant Volume CBM Reservoirs:An Important Principle[C].Texas:Society of Petroleum Engineers,2009.

[14] Liu H H,Rutqvist J.A new coal-permeability model:internal swelling stress and fracture-matrix interaction[J].Transport in Porous Media,2010,82(1):157-171.

[15] Randolph P L,Soeder D J,Chowdiah P.Porosity and Permeability of Tight Sands[C].Texas:Society of Petroleum Engineers,1984.[JP]

[16] Zhao Y S,Hu Y Q,Wei J P,et al.The experimental approach to effective stress law of coal mass by effect of methane[J].Transport in Porous Media,2003,53(3):235-244.

[17]Mitra A,Harpalani S,Liu S.Laboratory measurement and modeling of coal permeability with continued methane production:part 1-laboratory results[J].Fuel,2012,94:110-116.[18] Huo Lingjing,Yang Zhengming,Zhang Shuo.On the empirical relation of slippage factor[J].Journal of Wuhan Polytechnic University,2009,28(3):36-41.[霍凌婧,杨正明,张硕.滑脱因子的经验关系式研究[J].武汉工业学院学报,2009,28(3):36-41.]

 

 
[1] 任茜莹,代金友,穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[2] 程鸣,傅雪海,张苗,程维平,渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[3] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[4] 游利军,王哲,康毅力,张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[5] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[6] 张文,李玉宏,王利,赵峰华,韩伟,宋昌贵. 渭河盆地氦气成藏条件分析及资源量预测[J]. 天然气地球科学, 2018, 29(2): 236-244.
[7] 端祥刚,安为国,胡志明,高树生,叶礼友,常进. 四川盆地志留系龙马溪组页岩裂缝应力敏感实验[J]. 天然气地球科学, 2017, 28(9): 1416-1424.
[8] 李阳,李树同,牟炜卫,闫灿灿. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7): 1043-1053.
[9] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[10] 王妍妍,王卫红,胡小虎,刘华,郭艳东. 诱导渗透率场中压裂水平井压力动态分析模型[J]. 天然气地球科学, 2017, 28(5): 785-791.
[11] 李玉宏,张文,王利,赵峰华,韩伟,陈高潮. 亨利定律与壳源氦气弱源成藏——以渭河盆地为例[J]. 天然气地球科学, 2017, 28(4): 495-501.
[12] 崔亚星,熊伟,胡志明,左罗,高树生. 等温条件下页岩储层视渗透率随压力变化规律研究[J]. 天然气地球科学, 2017, 28(4): 514-520.
[13] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
[14] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349-355.
[15] 赵军,范家宝,代新雲,何胜林,张海荣. 复杂非均质储层渗透率模型的分类评价方法[J]. 天然气地球科学, 2017, 28(2): 183-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!