天然气地球科学

• 非常规天然气 • 上一篇    下一篇

页岩气藏纳米孔隙气体渗流特征分析

李智锋,李治平,苗丽丽,付应坤,王 杨,谢 姗   

  1. 1.中国华电工程(集团)有限公司,北京 100035;
    2.中国地质大学(北京)能源学院,北京 100083;
    3.中国石化胜利油田分公司技术检测中心,山东 东营 257000;
    4.中国石油长庆油田采气二厂,陕西 榆林 719000
  • 收稿日期:2012-11-12 修回日期:2013-03-21 出版日期:2013-10-10 发布日期:2013-10-10
  • 通讯作者: 李智锋kyzlee@126.com. E-mail:kyzlee@126.com.
  • 作者简介:李智锋(1985-),男,陕西富平人,工程师,博士,主要从事LNG贸易、页岩气开采方面的研究. E-mail:kyzlee@126.com.
  • 基金资助:

    非常规天然气能源地质评价与开发工程北京市重点实验室2012年度阶梯计划项目(编号:Z121109002812011)资助.

Gas Flow Characteristics in Nanoscale Pores of Shale Gas

LI Zhi-feng,LI Zhi-ping,MIAO Li-li,FU Ying-kun,WANG Yang,XIE Shan   

  1. 1.China Huadian Engineering Co.Ltd.,Beijing 100035,China;
    2.China University of Geosciences(Beijing),Beijing 100083,China;
    3.Technological Examination Center,Shengli Oilfield Branch Company,SINOPEC,Dongying 257000,China;
    4.No.2 Gas Production Plant,Changqing Oilfield Company,PetroChina,Yulin 719000,China
  • Received:2012-11-12 Revised:2013-03-21 Online:2013-10-10 Published:2013-10-10

摘要:

页岩气藏储层孔隙非常细小,国内外页岩孔隙半径主要集中在几个纳米到20个纳米之间,国内部分页岩孔隙半径小于10个纳米。页岩气藏生产受到纳米孔隙中的游离气和吸附于干酪根中吸附气两大主体气源影响,这2种气源气在生产中表现出4种机理。研究了纳米孔隙中气体分子克努森扩散、气体滑脱、达西渗流及吸附于干酪根中气体扩散4种机理下页岩气体渗透率及孔隙压力的变化情况,并以此建立圆柱管内平面单向稳定渗流数学模型。模型模拟结果表明页岩的表观渗透率远远大于达西渗透率,孔隙半径越小,则两者比值越大,当孔隙半径从20个纳米减小到几个纳米,两者比值将会从十增大到几十;孔隙压力越小,则两者比值越大,而当压力小于5MPa时,表观渗透率与达西渗透率之比明显增加1~2个数量级。随着压力降低,克努森扩散作用不断增强,相应的压力损耗不断增加,使得纳米管柱内平面单向从供给边缘到排液道的稳定渗流压力分布已不再是线性分布。干酪根中气体由于扩散速度慢、扩散量小而对压力影响不明显。

关键词: 页岩气, 纳米孔隙, 克努森扩散, 干酪根, 数学模型

Abstract:

hale gas reservoir pore is very small.Pore radius of domestic and foreign shale mainly concentrates from several nm to twenty nm,and a part of domestic shale pore radius is less than 10nm.There are two main gas sources which are free gas in nano-pore and dissolved gas in kerogen,yielding four mechanisms during production.By researching the four mechanisms which are Knudsen diffusion,gas slippage,Darcy Law and dissolved gas diffusion in kerogen,a cylindrical tube and unidirectional steady seepage flow mathematical model is built to study shale gas permeability and pore pressure.The results show that apparent permeability is much larger than Darcy permeability.The smaller pore diameter is,the larger ratio of the two permeability will be.The ratio will increase by 1 to 2 orders of magnitude while the pore diameter varies from twenty nm to several nm.The smaller the pressure is,the larger the ratio will be.The apparent permeability is also one to two orders greater than Darcy permeability while the pressure lies below 5 MPa.The transient pressure is nonlinear distribution from supply edge to the discharge in nano-pore mainly because Knudsen diffusion in nano-pore gets stronger and depletes more pressure under lower pressure.Diffusion in kerogen has a weak effect on pressure depletion because of such low diffusion flux.

Key words: Shale gas reservoir, Nano-pore, Diffusion, Kerogen, Mathematical model

中图分类号: 

  • TE132.2

[1]Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng.Reservoiring mechanism of shale gas and its distribution[J].Natural Gas Industry,2004,24(7):15-21.[张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-21.]

 [2]Wang Xiang,Liu Yuhua,Zhang Min,et al.Conditions of formation and accumulation for Shale Gas[J].Natural Gas Geoscience,2010,21(2):350-356.[王祥,刘玉华,张敏,等.页岩气形成条件及成藏影响因素研究[J].天然气地球科学,2010,21(2):350-356.]

 [3]Carl S,Elizabeth D,Joel W,et al.3D Visualization and Classification of Pore Structure and Pore Filling in Gas Shales[C].SPE 134582,2010:19-22.

 [4]Howard J J.Porosimetry measurement of shale fabric and its relationship to illite/smectite diagenesis[J].Clays and Clay Minerals,1991,39(4):355-361.

 [5]Sondergeld C H,Ambrose R J,Rai C S.Micro-structural Studies of Gas Shales[C].SPE 131771,2010:23-25.

 [6]Vivek S A(sony)Settari.A Pore Scale Gas Flow Model for Shale Gas Reservoir[C].SPE 155756,2012:5-7.

 [7]Wang Shejiao,Wang Lansheng,Huang Jinliang,et al.Accumulation conditions of shale gas reservoirs in Silurian of the Upper Yangtze Region[J].[HJ]Natural Gas Industry,2009,29(5):45-50.[王社教,王兰生,黄金亮,等.上扬子区志留系页岩气成藏条件[J].天然气工业,2009,29(5):45-50.]

 [8]Pu Boling,Jiang Youlu,Wang Yi,et al.Reservoir-forming  conditions and favorable exploration zones of shale gas in lower Silurian Longmaxi Formation of Sichuan Basin[J].Acta Petrol  Sinica,2010,31(2):225-231.[蒲泊伶,蒋有录,王毅,等.四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析[J].石油学报,2010,31(2):225-231.]

 [9]Chen Xiaoming,Li Jianzhong,Zheng Min,et al.Kerogen solution theory and its exploratory application in shale gas assessment[J].Natural Gas Geoscience,2012,23(1):14-18.[陈晓明,李建忠,郑民,等.干酪根溶解理论及其在页岩气评价中的应用探索[J].天然气地球科学,2012,23(1):14-18.]

[10]Javadpour F,Fisher D,Unsworth M.Nanoscale gas flow in shale gas sediments[J].Journal of Canadan Petroleum Technology,2007,46(10): 55-61.

[11]Li Zhiping,Li Zhifeng.Shale gas slippage dynamic characteristics in nano-scale pores[J].Natural Gas Industry,2012,32(4):50-53.[李治平,李智锋.页岩气纳米级孔隙渗流动态特征[J].天然气工业,2012.32(4):50-53.]

[12]Javadpour F.Nanopores and apparent permeability of gas flow in mud rocks (shales and siltstone)[J].Journal of Canadan Petroleum Technology,2009,48(8):15-21.

[13]Subrata R,Reni R.Modeling gas flow through microchannels and nanopores[J].Journal of Applied Physics,2003,93(8):4870-4879.

[1] 王强, 张大勇, 王杰, 陶成, 腾格尔, 刘文汇. 烃类与非烃综合判识干酪根与原油裂解气[J]. 天然气地球科学, 2018, 29(9): 1231-1239.
[2] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[3] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[4] 王朋飞,姜振学,吕鹏,金璨,李鑫,黄璞. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学, 2018, 29(7): 997-1008.
[5] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[6] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[7] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[8] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[9] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[10] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[11] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[12] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[13] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[14] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[15] 鲍祥生,谈迎,吴小奇,郑红军. 利用纵横波速度法预测泥页岩脆性矿物指数[J]. 天然气地球科学, 2018, 29(2): 245-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚卫江, 党玉芳, 张顺存, 支东明, 邢成智, 史基安. 准噶尔盆地西北缘红车断裂带石炭系成藏控制因素浅析[J]. 天然气地球科学, 2010, 21(6): 917 -923 .
[2] 李琴,陈程,荀小全. 低渗致密气藏压裂水平井产能预测新方法[J]. 天然气地球科学, 2013, 24(3): 633 -638 .
[3] 王海强,李勇,刘照伟. 碳酸盐岩凝析气藏动态综合描述新方法[J]. 天然气地球科学, 2013, 24(5): 1032 -1036 .
[4] 李松,康毅力,李大奇,佘继平,王业众. 堵漏封堵层对裂缝稳定性影响模拟研究[J]. 天然气地球科学, 2015, 26(10): 1963 -1971 .
[5] 张小东,张硕,杨艳磊,张鹏,魏高洋. 基于分形理论的煤储层水力压裂裂缝数值模拟[J]. 天然气地球科学, 2015, 26(10): 1992 -1998 .
[6] 朱光有,陈斐然,陈志勇,张颖,邢翔,陶小晚,马德波. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8 -21 .
[7] 裴立新,刚文哲,朱传真,刘亚洲,何文军,向宝力,董岩. 准噶尔盆地烷烃气碳同位素组成及来源[J]. 天然气地球科学, 2018, 29(7): 1020 -1030 .
[8] . 论文摘要撰写规范[J]. 天然气地球科学, 2018, 29(8): 1215 -1216 .