天然气地球科学 ›› 2012, Vol. 23 ›› Issue (3): 535–540.doi: 10.11764/j.issn.1672-1926.2012.03.535

• 天然气地球化学 • 上一篇    下一篇

样品粒度对黏土矿物甲烷吸附容量测定的影响

 吉利明, 罗鹏   

  1. 1.中国科学院地质与地球物理研究所油气资源研究重点实验室,甘肃 兰州 730000;
    2.中国科学院研究生院,北京 100049
  • 收稿日期:2012-02-20 修回日期:2012-04-03 出版日期:2012-06-10 发布日期:2012-06-10
  • 通讯作者: 吉利明jilimin@lzb.ac.cn. E-mail:jilimin@lzb.ac.cn.
  • 作者简介:吉利明 (1963-),男,陕西咸阳人,研究员,博士,主要从事油气地质与地球化学研究. E-mail:jilimin@lzb.ac.cn.
  • 基金资助:

    国家科技重大专项(编号:2011ZX05008-002-22);国家重点基础研究“973”计划项目(编号:2012CB214704-02)联合资助.

Effect of Sample Size on Volumetric Determination of Methane Adsorption in Clay Minerals

 JI  Li-Ming, LUO  Peng   

  1. 1.Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics,Chinese Academy of Sciences,
    Lanzhou 730000,China; 2. Graduate School of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2012-02-20 Revised:2012-04-03 Online:2012-06-10 Published:2012-06-10

摘要:

等温吸附实验显示,同一黏土样品的甲烷吸附量随粒度减小有增加趋势,粒度减小不仅使颗粒内部的孔隙更多地暴露,而且使样品活化程度增高,增加了孔隙连通性、孔隙体积和表面积,从而使吸附量不断增加。孔隙测量表明,绿泥石黏土孔隙率低且以大孔为主,当粒度小于270目时,绿泥石样品的内表面积明显增加,其甲烷吸附量明显的升高。而蒙脱石黏土孔隙率高,以纳米级微孔隙为主,小于270目时可能部分孔隙被破坏,孔隙体积、表面积及甲烷吸附量出现轻微的减小。尽管粒度变化对不同大小孔隙的分布均有一定的影响,但样品表面积和气体吸附量主要受小于20nm,特别是小于10nm微孔隙变化的影响。为提高不同试样气体吸附量测定的准确性和可比性,150~250目粒度范围可作为气体吸附实验研究样品的标准粒度。

关键词: 黏土矿物, 样品粒度, 微孔隙, 表面积, 甲烷吸附  

Abstract:

The isothermal adsorption experiments show that the methane adsorption capacity in the same clay samples has an increasing trend with particle size decreases. The decreases of particle size not only causes the pores within particles be exposed,but also enhances the degree of sample activation. Thus,the adsorption capacity is increasing due to improvement of pore connectivity,pore volume,and surface area. The porosity measurements indicate that the chlorite clay has the low porosity and larger pores. When the particle size is less than 270 meshes,the internal surface area of chlorite clay increase and the methane adsorption capacity is increased significantly. Montmorillonite clay has the high porosity and nanopores. Some pores may be destroyed when the particle size is less than 270 meshes,and the slight decrease of pore volume,surface area and methane adsorption capacity occurs. Although the grain size distribution has a certain impact on different size pores,the sample surface area and gas adsorption capacity is mainly affected by the microspores with less than 20nm,especially less than 10nm micropores. In order to improve the accuracy and comparability of gas adsorption capacity of various samples,we propose the 150 to 250 mesh particle size as the standard size of samples for gas adsorption experiments.

Key words: Clay mineral, Sample size, Micropore, Surface area, Methane adsorption.

中图分类号: 

  • TE135

[1]Curtis J B.Fractured shale gas systems[J].The American Association of Petroleum Geologiests Bulletin,2002,86:1921-1938.
[2]Ross D J K.Shale gas potential of the lower Jurassic Gordondale Member,northeastern British Columbia,Canada[J].Bulletin of Canadian Petroleum
Geology,2007,55(1):51-75.
[3]Montgomery S L,Jarvie D M,Bowker K A,et al.Mississippian Barnett shale,Fort Worth basin,north-central Texas:
Gas-shale play with multi-trillion cubic foot potential[J].American Association of Petroleum Geologiests Bulletin,2005,89(2):155-175.
[4]Aringhieri R.Nanoporosity characteristics of some natural clay minerals and soils[J].Clays and Clay Minerals,2004,52(6):700-704.
[5]Wang C C,Juang L C,Lee C K,et al.Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of
montmorillonite[J].Journal of Colloid Interface Science,2004,280:27-35.
[6]Cheng A L,Huang W L.Selective adsorption of hydrocarbon gases on clays and organic matter[J].Organic Geochemistry,2004,35(4):413-423.
[7]Ross D J K,Bustin R M.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and
Petroleum Geology,2009,26:916-927.
[8]Ji Liming,Qiu Junli,Xia Yanqing,et al.SEM micro-pore characteristics and methane adsorption properties of common clay minerals[J].Acta
Petrolei Sinica,2012,33(2):1-8.[吉利明,邱军利,夏燕青,等.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性研究[J].石油学报,2012,33(2):1-8.]
[9]Milewska-Duda J,Ceglarska-Stefańska G,Duda J.A comparison of theoretical and empirical expansion of coals in the high pressure sorption of
methane[J].Fuel,1994,73(6):975-979.
[10]Crosdale P J,Beamish B B,Valix M.Coalbed methane sorption related to coal composition[J].International Journal of Coal Geology,1998,35:147-158.
[11]Busch A,Gensterblum Y,Krooss B M.Methane and CO2sorption and desorption measurements on dry Argonne premium coals:pure components and
mixtures[J].International Journal of Coal Geology,2003,55:205-224.
[12]Busch A,Gensterblum Y,Krooss B M,et al.Investigation of high-pressure selective adsorption/desorption behaviour of CO2and CH4 on coals:An experimental study[J].International Journal of Coal Geology,2006,66:53-68.
[13]Li Dawei,Wang Deming,Gu Junjie,et al.Experiment research on coal physical oxygen sorption law with temperature and particle size variation[J].Coal
Science and Technology,2008,36(2):42-44.[李大伟,王德明,顾俊杰,等.煤物理吸氧量随温度及粒径变化规律的实验研究[J].煤炭科学技术,2008,36(2):42-44.]
[14]Zhang Tianjun,Xu Hongjie,Li Shugang,et al.The effect of particle size on adsorption of methane on coal[J].Journal of Hunan University of Science &
Technology:Natural Science Edition,2009,24(1):9-12.[张天军,许鸿杰,李树刚,等.粒径大小对煤吸附甲烷的影响[J].湖南科技大学学报:自然科学版,2009,24(1):9-12.]
[15]Oades J M.Associations of Colloidal Materials in Soils.Transactions of the XIII Congress of the International Soil Science Society
[R].Germany:Hamburg,1986:660-674.
[16]Aylmore L A G,Quirk J P.The micropore size distribution of clay mineral systems[J].Journal of Soil Science,1967,18:1-17.
[17]Bustin R M,Bustin A M M,Cui X,et al.Impact of Shale Properties on Pore Structure and Storage Characteristics[C].SPE 119892,2008.
[18]Li Yanli.Calculation method of shale gas reserves[J].Natural Gas Geoscience,2009,20(3):466-470.[李艳丽.页岩气储量计算方法探讨[J].天然气地球科
学,2009,20(3):466-470.]
[19]Guo Tonglou,Li Yuping,Wei Zhihong.Reservoir-forming conditions of shale gas in Ziliujing Formation of Yuanba area in Sichuan basin\
[J\].Natural Gas
Geoscience,2011,22(1):1-7.
[郭彤楼,李宇平,魏志红.四川盆地元坝地区自流井组页岩气成藏条件
[J].天然气地球科学,2011,22(1):1-7.]
[20]Wang Feiyu,He Zhiyong,Meng Xiaohui,et al.Occurrence of shale gas and predication of original gas in-place(OGIP)[J].Natural Gas Geoscience,2011,22
(3):501-510.[王飞宇,贺志勇,孟晓辉,等.页岩气赋存形式和初始原地气量(OGIP)预测技术[J].天然气地球科学,2011,22(3):501-510.]

[1] 李阳,李树同,牟炜卫,闫灿灿. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7): 1043-1053.
[2] 陈术源,秦勇. 河北省北部页岩样品纳米级孔隙结构及其影响因素[J]. 天然气地球科学, 2017, 28(6): 873-881.
[3] 康毅力,陈益滨,李相臣,游利军,陈明君. 页岩粒径对甲烷吸附性能影响[J]. 天然气地球科学, 2017, 28(2): 272-279.
[4] 曹涛涛,宋之光,罗厚勇,周圆圆,王思波. 下扬子地区二叠系海陆过渡相页岩孔隙体系特征[J]. 天然气地球科学, 2016, 27(7): 1332-1345.
[5] 李超正,柳广弟,曹喆,牛子铖,牛小兵,王朋,张梦媛,张凯迪. 鄂尔多斯盆地陇东地区长7段致密砂岩微孔隙特征[J]. 天然气地球科学, 2016, 27(7): 1235-1247.
[6] 耿一凯,金振奎,赵建华,温馨,陈俊年,杜伟. 川东地区龙马溪组页岩黏土矿物组成与成因[J]. 天然气地球科学, 2016, 27(10): 1933-1941.
[7] 倪金龙,张红,唐小玲,韩帅. 济阳坳陷惠民凹陷中央隆起带与邻区黏土矿物成岩演化及古地温变化[J]. 天然气地球科学, 2016, 27(10): 1778-1788.
[8] 张瑜,闫建萍,贾祥娟,李艳芳,邵德勇,于萍,张同伟. 四川盆地五峰组—龙马溪组富有机质泥岩孔径分布及其与页岩含气性关系[J]. 天然气地球科学, 2015, 26(9): 1755-1762.
[9] 夏嘉,王思波,曹涛涛,杨金朝,宋之光. 黔北地区下寒武统页岩孔隙结构特征及其含气性能[J]. 天然气地球科学, 2015, 26(9): 1744-1754.
[10] 左罗,王玉普,郭为,熊伟,高树生,胡志明,沈瑞. 简化局部密度理论预测页岩等温吸附曲线[J]. 天然气地球科学, 2015, 26(3): 592-598.
[11] 曹涛涛,宋之光,王思波,夏嘉. 下扬子地台二叠系页岩储集物性特征及控制因素[J]. 天然气地球科学, 2015, 26(2): 341-351.
[12] 赵玉集,郭为,熊伟,左罗,高树生,刘洪林,苗雪. 页岩等温吸附/解吸影响因素研究[J]. 天然气地球科学, 2014, 25(6): 940-946.
[13] 毕赫,姜振学,李鹏,程礼军,曾春林,许野,张莺莺. 渝东南地区龙马溪组页岩吸附特征及其影响因素[J]. 天然气地球科学, 2014, 25(2): 302-310.
[14] 吉利明,马向贤,夏燕青,邱军利. 黏土矿物甲烷吸附性能与微孔隙体积关系[J]. 天然气地球科学, 2014, 25(2): 141-152.
[15] 王秀平,牟传龙,葛祥英,陈小炜,周恳恳,王启宇,梁薇,陈超. 四川盆地南部及其周缘龙马溪组黏土矿物研究[J]. 天然气地球科学, 2014, 25(11): 1781-1794.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!