天然气地球科学 ›› 2011, Vol. 22 ›› Issue (2): 340–346.doi: 10.11764/j.issn.1672-1926.2011.02.340

• 天然气开发 • 上一篇    下一篇

缝洞型储层井壁裂缝宽度变化ANSYS模拟研究

李松, 康毅力, 李大奇, 游利军, 练章华   

  1. 西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
  • 收稿日期:2010-10-14 修回日期:2010-12-19 出版日期:2011-04-10 发布日期:2011-04-10
  • 通讯作者: 李松lisong03011640@163.com E-mail:lisong03011640@163.com
  • 作者简介:李松(1983-),男,河北安国人,硕士研究生,主要从事储层保护理论及技术研究.
  • 基金资助:

    国家“973”计划课题(编号:2010CB226705);国家科技重大专项(编号:2008ZX05049-003-03;2008ZX05005-006-08HZ)联合资助

ANSYS Simulation of Fracture Width Variation in Fracture cavity Reservoirs

LI Song, KANG Yi-Li, LI Da-Ai, YOU Li-Jun, LIAN Zhang-Hua   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and  Exploitation, Southwest Petroleum University, Chengdu  610500,China
  • Received:2010-10-14 Revised:2010-12-19 Online:2011-04-10 Published:2011-04-10

摘要:

以往研究单一或成组裂缝的数值模拟,多未考虑孔洞存在对裂缝宽度变化的影响。用断裂力学基本理论及有限元法建立了不同缝洞组合裂缝宽度变化的有限元模型,通过ANSYS有限元软件模拟研究了缝洞型储层中不同缝洞组合:缝—洞、缝—洞—缝、缝—洞—缝—洞3种模型。探讨了不同模型中裂缝宽度变化、裂缝长度、井筒正压差及溶洞发育情况的关系。模拟结果表明,井筒正压差越大,裂缝宽度增量越大;相同井筒正压差下,裂缝长度越大,其缝宽增量越大;溶洞越发育,缝宽增量也越大;随着溶洞直径的逐渐增大,缝宽增量也越大。计算机模拟裂缝宽度变化规律为选取合理粒径的堵漏材料、优化漏失控制技术提供了一定的理论依据。

关键词: 计算机模拟, 缝洞型储层, 孔洞, 裂缝动态宽度, 缝宽增量

Abstract:

Computer simulations of a single or set of fractures were conducted previously, and the effects of cavities on fracture width variation were hardly concerned. In this paper, we established a finite element model of fracture width variation for different fracture\|cavity groups according to the finite element method of fracture mechanics and computer simulation, and discussed 3 types of fracture-cavity groups models related with fractured/caved carbonate reservoirs in Tahe oilfield.The relationships among the fracture width, length, positive differential pressure and cavity development were probed. The simulation results showed that, the fracture width increment increased with the increasing of the positive differential pressure; under the same positive differential pressure, the fracture width increment increased with the growing of fracture length; and the occurrence of cavities intensified the fracture width variation.  The richer the cavities porosity was, the bigger the fracture width increment was; the growing of fracture width increment was coming with the increasing of cavity radius. The computer simulation of fracture width variation can provide a theoretical basis for choosing suitable lost circulation materials and improving lost control technologies.

Key words: Computer simulation, Fracture-cavity reservoir, Cavity, Fracture dynamic width, Fracture width increment.

中图分类号: 

  • TE258

[1]Kang Yili,Zhang Hao,Chen Yijian,et al.Comprehensive research of tight sandstones gas reservoirs stress sensitivity in Daniudi gas field[J].Natural Gas Geoscience,2006,17(3):335-338.[康毅力,张浩,陈一健,等.鄂尔多斯盆地大牛地气田致密砂岩气层应力敏感性综合研究[J].天然气地球科学,2006,17(3):335-338.]
[2]He Jian,Kang Yili,Liu Dawei,et al.The stress sensitivity research on porous and fractured porous carbonate reservoirs[J].Drilling & Production Technology,2005,28(2):84-86.[何健,康毅力,刘大伟,等.孔隙型与裂缝—孔隙型碳酸盐岩储层应力敏感性研究[J].钻采工艺,2005,28(2):84-86.]
[3]Zhang Hao,Kang Yili,Chen Yijian,et al.Influence of the rock components and fractures on tight sandstone stress sensitivity[J].Natural Gas Industry,2004,24 (7):55-57.[张浩,康毅力,陈一健,等.岩石组分和裂缝对致密砂岩应力敏感性影响[J].天然气工业,2004,24(7):55-57.]
[4]Du Xinlong,Kang Yili,You Lijun,et al.Controlling factors of stress sensitivity in low-permeability reservoirs[J].Natural Gas Geoscience,2010,21(2):295-299.[杜新龙,康毅力,游利军,等.低渗透储层应力敏感性控制因素研究[J].天然气地球科学,2010,21(2):295-299.]
[5]Lian Zhanghua,Kang Yili,Tang Bo,et al.Prediction of vertical fracture widths near borehole face of the wall[J].Natural Gas Industry,2003,23(3):44-46.[练章华,康毅力,唐波,等.井壁附近垂直裂缝宽度预测[J].天然气工业,2003,23(3):44-46.]
[6]Lian Zhanghua,Kang Yili,Xu Jin,et al.Stress analysis on fracture and near wellbore[J].Journal of Southwest Petroleum Institute,2001,23(3):37-39.[练章华,康毅力,徐进,等.裂缝面及井眼附近的应力分析[J].西南石油学院学报,2001,23(3):37-39.]
[7]Lian Zhanghua,Kang Yili,Xu Jin,et al.Predicting fracture width by finite element numerical simulation[J].Natural Gas Industry,2001,21(3):47-51.[练章华,康毅力,徐进,等.裂缝宽度预测的有限元数值模拟[J].天然气工业,2001,21(3):47-50.]
[8]Li Xianchen,Kang Yili,Zhang Hao,et al.Computer modeling of the changes in width of two vertical fractures in tight sand connected to borehole[J].Drilling Fluid and Cementing Fluid,2007,24(4):57-59.[李相臣,康毅力,张浩,等.致密砂岩与井筒连通2条垂直裂缝宽度变化的计算机模拟[J].钻井液与完井液,2007,24(4):55-59.]
[9]Zhang Hao,Kang Yili,Chen Yijian,et al.Deformation theory and stress sensitivity of tight sandstones reservoirs[J].Natural Gas Geoscience,2004,15(5):482-486.[张浩,康毅力,陈一健,等.致密砂岩油气储层岩石变形理论与应力敏感性[J].天然气地球科学,2004,15(5):482-486.]
[10]Tang Xialan,Zhang Hao,Li Xiuyu,et al.Computer simulation of fracture width variation in tight sandstones reservoir and its application[J].Drilling & Production Technology,2010,33(3):26-28.[汤夏岚,张浩,李显玉,等.致密储层钻井完井过程井筒裂缝宽度变化预测及其应用[J].钻采工艺,2010,33(3):26-28.]
[11]Yan Fengming,Kang Yili,Li Song,et al.Simulated experiment on stress sensitivity in fractured-vuggy reservoir[J].Natural Gas Geoscience,2010,21(3):489-493,507.[闫丰明,康毅力,李松,等.裂缝-孔洞型碳酸盐岩储层应力敏感性实验研究[J].天然气地球科学,2010,21(3):489-493,507.]
[12]Kang Yili,Yan Fengming,You Lijun,et al.Loss and control in vugular reservoir formations in block Tahe[J].Drilling Fluid & Cementing Fluid,2010,27(1):41-43.[康毅力,闫丰明,游利军,等.塔河油田缝洞型储层漏失特征及控制技术实践[J].钻井液与完井液,2010,27(1):41-43.]
[13]Hong Wang,Ronald Sweatman,Bob Engelman,et al.Best Practice in Understanding and Managing Lost Circulation Challenges[C].SPE 95895,Presented at the 2005 SPE Annual Technical Conference and Exhibition,Dallas,9-12 October,2005.
[14]Kang Yili,You Lijun.Practices of Formation Damage Control for Deep Fractured Tight Gas Reservoir in Western Sichuan Basin[C].SPE 131323,Presented at the CPS/SPE International Oil & Gas Conference and Exhibition in China held in Beijing,China,8-10 June 2010.
[15]Li Shiyu,He Taiming,Yin Xiangchu,et al.Introduction of Rock Fracture Mechanics[M].Hefei:University of Science and Technology of China Press,2010:43-50.[李世愚,和泰名,尹祥础,等.岩石断裂力学导论[M].合肥:中国科学技术大学出版社,2010:43-50.]
[16]Lian Zhanghua.Computer Aided Engineering[M].Beijing:Petroleum Industry Press,2004:177-182.[练章华.现代CAE技术与应用教程[M].北京:石油工业出版社,2004:177-182.]
[17]Simaihuf E M.Basic Theory and Techniques of Fractured Reservoir Exploration[M].Chen Dingbao,Zeng Zhiqiong,Wu Liyun Translated.Beijing:Petroleum Industry Press,1985:22-25.[E.M.斯麦霍夫著.裂缝性油气储集层勘探的基本理论与方法[M].陈定宝,曾志琼,吴丽芸,译.北京:石油工业出版社,1985:22-25.]
[18]Bai Songzhang.Development of Carbonate Buried Hill Reservoir[M].Beijing:Petroleum Industry Press,1996:54-62.[柏松章.碳酸盐岩潜山油田开发[M].北京:石油工业出版社,1996:54-62.]
[19]Li Shanjun,Wang Hanming,Xiao Chengwen,et al.Quantitative interpretation of fracture porosity in carbonates[J].Well Logging Technology,1997,21(3):205-214.[李善军,汪涵明,肖承文,等.碳酸盐岩地层中裂缝孔隙度的定量解释[J].测井技术,1997,21(3):205-214.]
[20]Rosalind Archer.Impact of Stress Sensitive Permeability on Production Data Analysis[C].SPE 114166,Presented at the 2008 SPE Unconventional Reservoirs Conference held in Keystone,Colorado,U.S.A.,10-12 February 2008.
[21]Wang Yezhong,Kang Yili,Zhang Hao,et al.Responses of carbonate stress sensitivity to loading time under effective pressure[J].Drilling & Production Technology,2007,30(3):105-107.[王业众,康毅力,张浩,等.碳酸盐岩应力敏感性对有效应力作用时间的响应[J].钻采工艺,2007,30(3):105-107.]

[1] 姜黎明,余春昊,齐宝权,朱涵斌,王勇军. 孔洞型碳酸盐岩储层饱和度建模新方法及应用[J]. 天然气地球科学, 2017, 28(8): 1250-1256.
[2] 吴伟涛,赵靖舟,孙六一,马占荣,肖晖,李磊. 鄂尔多斯盆地西部奥陶系克里摩里组天然气成藏特征[J]. 天然气地球科学, 2015, 26(10): 1862-1872.
[3] 张兆辉,高楚桥,高永德. 孔洞型储层有效性评价新方法[J]. 天然气地球科学, 2013, 24(3): 529-533.
[4] 于世娜,滕飞,武群虎,余卫卫. 胜利海上埕岛油田前中生界潜山构造演化及储层特征[J]. 天然气地球科学, 2013, 24(2): 345-351.
[5] 孙崇浩,于红枫,王怀盛,刘虎,张正红,韩杰,罗新生. 塔里木盆地塔中地区奥陶系鹰山组碳酸盐岩孔洞发育规律研究[J]. 天然气地球科学, 2012, 23(2): 230-236.
[6] 王洪求, 刘伟方, 郑多明, 敬兵, 董瑞霞, 张喜梅, 李胜军. 塔里木盆地奥陶系碳酸盐岩“非串珠状”缝洞型储层类型及成因[J]. 天然气地球科学, 2011, 22(6): 982-988.
[7] 闫丰明, 康毅力, 李松, 杜春朝, 李冬梅. 裂缝-孔洞型碳酸盐岩储层应力敏感性实验研究[J]. 天然气地球科学, 2010, 21(3): 489-493,507.
[8] 李振宏;郑聪斌;. 古岩溶演化过程及对油气储集空间的影响――以鄂尔多斯盆地奥陶系为例[J]. 天然气地球科学, 2004, 15(3): 247-252.
[9] 陈恭洋,张永贵. 千米桥潜山碳酸盐岩缝洞型储层随机建模[J]. 天然气地球科学, 2003, 14(5): 389-392.
[10] 85-102-04-01专题组; . 陕甘宁盆地中部奥陶系风化壳碳酸盐岩储层特征研究[J]. 天然气地球科学, 1994, 5(3): 19-20,22.
[11] 刘光鼎; 王谦身; 薛爱民; 郝天珧; . 盆地综合地球物理研究与古地温模拟[J]. 天然气地球科学, 1992, 3(2): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!