天然气地球科学 ›› 2010, Vol. 21 ›› Issue (3): 508–512.doi: 10.11764/j.issn.1672-1926.2010.03.508

• 煤层气 • 上一篇    下一篇

恩村井田煤体结构与煤层气垂直井产能关系

倪小明, 陈鹏, 李广生, 张宜生   

  1. 1.河南理工大学能源科学与工程学院,河南 焦作454000;
    2.河南理工大学资源环境学院,河南 焦作454000;
    3.河南中裕煤层气开发利用有限公司,河南 郑州 450016
  • 收稿日期:2009-09-21 修回日期:2010-01-07 出版日期:2010-06-10 发布日期:2010-06-10
  • 通讯作者: 倪小明nxm1979@126.com. E-mail:nxm1979@126.com.
  • 作者简介:倪小明(1979-),男,山西临汾人,博士后,主要从事煤及煤层气工程方面的研究工作
  • 基金资助:

    国家自然科学基金(编号:40902044);河南理工大学博士基金项目(编号:B2009-51);河南省科技基础与前沿项目(编号:092300410213)联合资助.

Relations Between Productivity of CBM Vertical Wells and Coal Structure in Encun Mine Field

NI Xiao-Ming, CHEN Peng, LI Guang-Sheng, ZHANG Yi-Sheng   

  1. 1.Institute of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000,China;
    2.Institute of Resoureces & Environment, Henan Polytechnic University, Jiaozuo 454000, China;
    3.Henan Zhongyu Coalbed Methane Co.Ltd., Zhengzhou 450016,China
  • Received:2009-09-21 Revised:2010-01-07 Online:2010-06-10 Published:2010-06-10

摘要:

煤储层原始渗透率、压裂改造后渗透率及围岩的渗透率共同影响着煤层气垂直井排采过程中压力传播轨迹,并最终影响着煤层气垂直井的产能。以焦作矿区恩村井田勘探开发原始资料为基础,根据测井响应曲线,结合钻井取心,把煤体结构划分为原生结构煤(I类)、碎裂煤(Ⅱ类)和构造煤(Ⅲ类和Ⅳ类)3类4种。根据岩石弹性力学理论结合不同煤体结构天然裂隙发育状况,建立了天然裂缝方位与地应力方向关系模型,分析出不同煤体结构主裂缝方位的主控因素。根据裂缝延伸方位结合煤层气井排采过程压力传播轨迹,得出不同煤体结构与产能关系。排采试验表明:以目前的水力压裂工艺进行储层改造,碎裂煤对产能的贡献最大,原生结构煤次之,构造煤几乎不可被改造。

关键词: 煤体结构, 煤层气, 产能, 地应力, 水力压裂

Abstract:

The original permeability, fracturing and reconstructing permeability, surrounding permeability affect the pressure spread contrail in the production process of the CBM vertical wells, and then control the productivity of CBM vertical wells. Based on the raw data of exploration and development of CMB in the Encun mine field, we classified the coal structure into the primary structure coal (Ⅰ), fragmentation coal (Ⅱ) and tectonic coal (Ⅲ and Ⅳ), in combination of curve of logging response and drilling core. According to elasticity theory of rock and state of natural fracture in different coal structures, we set up a model about the azimuth of natural fracture and the direction of the stress, and discussed the main controlling factors about main fractures in different coal structures. Based on azimuth of extended fracture and pressure spread contrail in the production process of CBM vertical wells, we got the relations between the productivity of CBM vertical wells and different coal structures. The production tests showed that under current hydraulic fracturing crafts the fragmentation coal would be the best coal reservoir, then primary structure coal, and the tectonic coal was hardly modified to improve production capacity of CBM vertical wells.

Key words: Coal structure, Coalbed methane, Productivity, Ground stress, Hydraulic fracturing.

[1]Research Institute of Gas Geology.Institute of Jiaozuo Mining.Gas Geology Introduction[M].Beijing:Coal Industry Press,1990:100-246.[焦作矿业学院瓦斯地质研究室.瓦斯地质概论[M ].北京:煤炭工业出版社,1990:100- 246.]
[2]Fu Xuehai,Jiang Bo,Qin Yong,et al.Classification of coalbody strucure and prediction of coal reservoir permeability with log curve[J].Well Logging Technology,2003,27(2):140-143.[傅雪海,姜波,秦勇,等.用测井曲线划分煤体结构和预测煤储层渗透率[J].测井技术,2003,27(2):140-143.]
[3] Tang Youyi,Sun Siqing,Tian Gaoling.Study of computer identifying on tectonic soft coal with well log[J].Journal of China Coal Society,2005,30(3):293- 296.[HJ][汤友谊,孙四清,田高岭.测井曲线计算机识别构造软煤的研究[J].煤炭学报,2005,30(3):293- 296.]
[4]Chen Jingang,Zhang Jingfei.Systematic control effect of structures on permeability of high coal rank reservoirs[J].Natural Gas Geoscience,2007,18(1):134- 136.[陈金刚,张景飞.构造对高煤级煤储层渗透率的系统控制效应--以沁水盆地为例[J].天然气地球科学,2007,18(1):134- 136.]
[5] Ni Xiaoming,Wang Yanbin,Jie Mingxun,et al. Stress′s influence in different tectonic positions on fracturing interstitial morphology[J].Journal of China Coal Society,2008,33(5):505- 508.[倪小明,王延斌,接铭训,等.不同构造部位地应力对压裂裂缝形态控制研究[J].煤炭学报,2008,33(5):505- 508.]
[6]Wu Xiaoming.Calculation Principle and Application of Hydraulic Fracturing about Coal Bed Methane Wellls[M].Wuhan:China University of Geosiciences Press,1997:44- 47.[乌效鸣.煤层气井水力压裂计算原理及应用[M].武汉:中国地质大学出版社,1997:44- 47.]
[7] Zhan Meili,Cen Jian.Experimental and analytical study on hydraulic fracturing of cylinder sample[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(6):1173- 1181.[詹美礼,岑建.岩体水力劈裂机制圆筒模型试验及解析理论研究[J].岩石力学与工程学报,2007,26(6):1173- 1181.]
[8]Su Xianbo,Chen Jiangfeng,Sun Junmin,et al.Coal Bed Methane Geology and Exploration[M].Beijing:Science Press,2001:20-21.[苏现波,陈江峰,孙俊民,等 煤层气地质学与勘探开发[M].北京:科学出版社,2001:20-21.]
[9]Lou Yishan,Jin Yequan.Rock Mechanics and Petroleum Engineering[M].Beijing:Petroleum Industry Press,2006:134-136.[楼一珊,金业权.岩石力学与石油工程[M].北京:石油工业出版社,2006:134- 136.]

 

[1] 吴丛丛,杨兆彪,孙晗森,张争光,李庚,彭辉. 云南恩洪向斜西南区垂向流体能量特征及有序开发建议[J]. 天然气地球科学, 2018, 29(8): 1205-1214.
[2] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[3] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[4] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
[5] 单衍胜,毕彩芹,迟焕鹏,王福国,李惠. 六盘水地区杨梅树向斜煤层气地质特征与有利开发层段优选[J]. 天然气地球科学, 2018, 29(1): 122-129.
[6] 赵一民,陈强,常锁亮,田忠斌,桂文华. 基于边界要素二分的煤层气封存单元分类与评估[J]. 天然气地球科学, 2018, 29(1): 130-139.
[7] 李跃林,赵晓波,王雯娟,白坤森,熊钰. 近井带干化盐析和反凝析对高温气藏后期单井产能的影响——以中国南海崖城13-1高温凝析气藏为例[J]. 天然气地球科学, 2018, 29(1): 140-150.
[8] 杨浩珑,向祖平,袁迎中,李龙. 低渗气藏压裂气井稳态产能计算新方法[J]. 天然气地球科学, 2018, 29(1): 151-157.
[9] 张洲,王生维,周敏. 基于构造裂隙填图技术的煤储层裂隙发育特征预测与验证[J]. 天然气地球科学, 2017, 28(9): 1356-1362.
[10] 王玫珠,王勃,孙粉锦,赵洋,丛连铸,杨焦生,于荣泽,罗金洋,周红梅. 沁水盆地煤层气富集高产区定量评价[J]. 天然气地球科学, 2017, 28(7): 1108-1114.
[11] 郭广山,柳迎红,张苗,吕玉民. 沁水盆地柿庄南区块排采水特征及其对煤层气富集的控制作用[J]. 天然气地球科学, 2017, 28(7): 1115-1125.
[12] 马东民,李沛,张辉,李卫波,杨甫. 长焰煤中镜煤与暗煤吸附/解吸特征对比[J]. 天然气地球科学, 2017, 28(6): 852-862.
[13] 朱学申,梁建设,柳迎红,王存武,廖夏,郭广山,吕玉民. 煤层气井产水影响因素及类型研究——以沁冰盆地柿庄南区块为例[J]. 天然气地球科学, 2017, 28(5): 755-760.
[14] 杨旭,孟英峰,李皋,曾辉. 考虑水锁损害的致密砂岩气藏产能分析[J]. 天然气地球科学, 2017, 28(5): 812-818.
[15] 倪小明, 李志恒,王延斌,吴建光. 沁水盆地中部断层发育区煤层气开发有利块段优选[J]. 天然气地球科学, 2017, 28(4): 602-610.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!