天然气地球科学 ›› 2009, Vol. 20 ›› Issue (2): 244–248.doi: 10.11764/j.issn.1672-1926.2009.02.244

• 天然气水合物 • 上一篇    下一篇

冰点以下甲烷水合物等压分解实验研究

王英梅 吴青柏 张鹏 展静 蒋观利   

  1. (中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000)
  • 收稿日期:2009-03-10 修回日期:2009-03-25 出版日期:2009-04-10 发布日期:2009-04-10
  • 通讯作者: 王英梅wymch@lzb.ac.cn E-mail:wymch@lzb.ac.cn.
  • 基金资助:

    中国科学院重要方向项目(编号: KZCX2-YW-330);国家自然科学基础人才培养基金冰川冻土学特殊学科点(编号:J0630966) 联合资助.

Experimental Study on the Isobaric Decomposition of Methane Hydrate

 WANG Ying-Mei, WU Qing-Bai, ZHANG Peng, ZHAN Jing, JIANG Guan-Li   

  1. (State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and  Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China)
  • Received:2009-03-10 Revised:2009-03-25 Online:2009-04-10 Published:2009-04-10

摘要:

开展了甲烷水合物在2.25MPa、2.08MPa和1.88 MPa 3种压力和不同温度条件下等压分解实验,研究温度驱动力对甲烷水合物分解过程及其自保护效应的影响。实验结果表明,在等压分解过程中,温度推动力ΔT对甲烷水合物的分解产生较大影响,当温度推动力ΔT>|T0| 时,分解速率与ΔT具有正相关关系;当ΔT≤|T0|时,甲烷水合物存在明显的自保护效应,分解速率与ΔT的关系不明显。

关键词: 甲烷水合物, 等压分解, 温度驱动力, 自保护效应

Abstract:

Experiments on methane hydrate isobaric decomposition were carried out with different temperatures under 2.25MPa, 2.08MPa and 1.88MPa. The effect of temperature driving force on the decomposition process and self\|preservation of the methane hydrate was discussed. During the isobaric decomposition of methane hydrate, the effect of temperature driving force on the decomposition rate can be classified into two parts. If the temperature driving force ΔT>|T0|, there's a positive correlation between decomposition rate and the ΔT.If the temperature driving force ΔT|T0|,decomposition rate has a weak correlation with the ΔT.And also, self\|preservation effect of methane hydrate is obvious. Further analysis shows that the curve of decomposition rate\|temperature is similar to “V” shape regularity obtained by Stern et al. under the normal atmospheric pressure.

Key words: Methane hydrate, Isobaric decomposition, Temperature driving force, Self-preservation effect.

中图分类号: 

  • TE122.1

[1] 陈宝宏,韩璐,李良君,等.天然气水合物相关技术最新研究进展[J].河南石油, 2004, 18(3): 63 -65.
 [2] 刘士鑫.气田生产中天然气水合物防治的实验研究及预测[D].成都:西南石油学院硕士学位论文, 2005.
 [3] 胡玉峰.天然气水合物及相关新技术研究进展[J].天然气工业, 2001, 21(5): 84 -86.
 [4] 孙长宇.甲烷水合物恒温恒压分解过程研究[J].地球化学, 2003,32(2):112 -116.
 [5] Kamath V A,Holder G D ,Angert P F.Three phase interfacial heat   transfer during the dissociation of pmpane hydrates [J]. Chem.Eng.Sci.,1984,39(10):1435 -1442.
 [6] Kim H C,Bishnoi P R,Heidemann R A, et al.Kinetics of methane hydrate decomposition [J].Chem.Eng.Sci., 1987,42 (7):1645 -1653.
 [7] Kazunari Ohgaki.Decomposition of CO2、CH4 and CO2 -CH4 Mixed Gas Hydrates[J].J. Chem. Eng. Japan, 1997, 30(2):310 -314.
 [8] Stern L A, Circone S, Kirby S H, et al. Anomalous preservation of pure methane hydrate at 1 atm[J]. Journal of Physical Chemistry B, 2001, 105:1756 -1762.
 [9]  Gudmundsson J S, Parlaktuna M, Levik O I,et al. Laboratory for Continuous Production of Natural Gas Hydrates[C]. Annals of the New York Academy of Sciences, 2000: 851 -912.
[10] 展静.冰颗粒粒径对冰点以下甲烷水合物自保护效应的影响 [J ].天然气地球科学,2008,19(4):577 -580.
[11] Peters D J. A Study of Hydrate Dissociation in Pipelines by the Method of Two -Sided Depressurization: Experiment and Model [D]. Master of Science Thesis, Colorado School of Mines,1999.
[12]  Durham W B, Heard H C,Kirby S H. Experimental deformation of polycrystalline H2O ice at high pressure and low temperature:preliminary results [J ]. J. Geophys. Res.,1983, 88:377 -392.
[13] Durham W B, Kirby S H, Stern L A. Flow of ices in the ammonia -water system [J ].Journal of Geophysical Research, 1993,98 (B10): 17667 - 17682.
[14] Stern L A, Kirby S H, Durham W B. Laboratory synthesis of pure methane hydrate suitable for measurement of physical properties and decomposition behavior [C ]//Max M D. Natural Gas Hydrate:Oceanic and Permafrost Environments.Dordrecht:Kluwer, 2000:232 -348.

[1] 艾志久,王杰. 天然气水合物分解的动力学模型研究[J]. 天然气地球科学, 2017, 28(3): 377-382.
[2] 蒋观利,吴青柏,杨玉忠,展静. 砂土中不同产状甲烷水合物形成和分解过程研究[J]. 天然气地球科学, 2013, 24(6): 1305-1310.
[3] 张鹏,吴青柏,蒋观利,董兰凤. 不同颗粒介质内甲烷水合物形成反应特征[J]. 天然气地球科学, 2013, 24(2): 265-272.
[4] 展静, 吴青柏, 杨玉忠. 冰点以下甲烷水合物分解实验对天然气储运的影响[J]. 天然气地球科学, 2012, 23(2): 348-352.
[5] 王英梅, 吴青柏, 蒲毅彬, 展静. 温度梯度对粗砂中甲烷水合物形成和分解过程的影响及电阻率响应[J]. 天然气地球科学, 2012, 23(1): 19-25.
[6] 蒋观利,吴青柏,展静. 降温速率和粒径对砂土中甲烷水合物形成过程影响研究[J]. 天然气地球科学, 2011, 22(5): 920-925.
[7] 张鹏, 吴青柏, 蒋观利. 降温速率对零度以上介质内甲烷水合物形成的影响[J]. 天然气地球科学, 2009, 20(6): 1000-1004.
[8] 张鹏, 吴青柏, 王英梅. 粉土内甲烷水合物形成与分解过程中的水分特征[J]. 天然气地球科学, 2009, 20(4): 616-619,626.
[9] 展静, 吴青柏, 蒋观利. 冰颗粒粒径对冰点以下甲烷水合物自保护效应的影响[J]. 天然气地球科学, 2008, 19(4): 577-580.
[10] 雷怀彦, 官宝聪, 龚承林, 刘建辉, 黄磊.
海底甲烷水合物溶解和分解辨析及其地质意义
[J]. 天然气地球科学, 2007, 18(4): 584-587.
[11] 李娜,奚西峰,何小霞, 樊英杰, 刘芙蓉. 甲烷水合物分解动力学模型[J]. 天然气地球科学, 2006, 17(6): 880-883.
[12] 吴青柏;,蒲毅彬,蒋观利,邢莉莉. 冻结粗砂土中甲烷水合物形成CT试验研究[J]. 天然气地球科学, 2006, 17(2): 239-244.
[13] 蒋观利,吴青柏,蒲毅彬,邢莉莉. 甲烷水合物形成过程的CT识别原理和成像特征[J]. 天然气地球科学, 2005, 16(6): 814-817.
[14] 郑军卫;. 美国国家甲烷水合物多年研发计划简介[J]. 天然气地球科学, 2001, 12(1-2): 42-45.
[15] 郑艳红;雷怀彦. 甲烷水合物地质特征[J]. 天然气地球科学, 2001, 12(1-2): 32-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!