天然气地球科学 ›› 2008, Vol. 19 ›› Issue (3): 414–418.doi: 10.11764/j.issn.1672-1926.2008.03.414

• 气田开发 • 上一篇    下一篇

高含硫碳酸盐岩酸压气井硫沉积规律研究

曾平;岑芳   

  1. (中国石化石油勘探开发研究院,北京〓100083)
  • 收稿日期:2007-11-01 修回日期:2008-04-02 出版日期:2008-06-10 发布日期:2008-06-10

Elemental Sulfur Deposited in Acid fractured Carbonate Sour Gas Wells 

ZENG Ping;CEN Fang   

  1. (Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China)
  • Received:2007-11-01 Revised:2008-04-02 Online:2008-06-10 Published:2008-06-10

摘要:

硫沉积是高含硫气藏开发过程中的常见现象,不仅给生产设备带来严重的安全隐患,也容易造成地层堵塞,是影响该类气藏安全高效开发的重要因素之一,但目前国内外对地层中硫沉积条件的研究都是基于简单的静态环境,预测结果往往与实际存在较大差异。在综合考虑基岩和裂缝渗流空间特征以及气流水动力对析出的硫颗粒运移影响的基础上,建立了描述碳酸盐岩酸压气井生产过程中硫沉积预测模型。结果表明:流体水动力是建立硫沉积预测模型必须考虑的因素之一;硫在基岩中的沉积主要发生在距井底和靠近裂缝面相对较小的区域,且沿井底向裂缝纵深方向和垂直于裂缝向外延伸的方向上,硫沉积量和沉积速率均呈递减下降的趋势;硫在裂缝中的沉积距井底距离越近,硫沉积量越大且沉积速率相对较快;无论是基岩或裂缝中的硫沉积,随着生产时间的延长,其沉积速率呈加速变化趋势。

关键词: 碳酸盐岩, 高含硫, 硫沉积, 酸压, 基岩, 裂缝, 堵塞

Abstract:

It’s a common phenomenon that elemental sulfur deposits in formations, which not only brings serious damages to production equipment, but also easily plugs permeability channels. This is one of key factors that affect the safe and effective development of sour gas reservoirs. Because of modeling on just static environments and neglecting the behavior of gas current hydrodynamic force to elemental sulfur particles, the results predicted by many models had great errors compared to the actual data. This paper presents a new theory model which considers the effects of gas current hydrodynamic force on elemental sulfur particles transporting. Research shows that: (1) gas velocity is a factor that must be considered while modeling; (2) elemental sulfur occurred mainly in a relatively small region close to the well bottom and the fractures; (3) the quantity and settling rate of elemental sulfur deposition decrease progressively along the well bottom to the fractures; (4) regardless of elemental sulfur deposited in the matrix or the fractures, the setting rate increases with production time.

 

Key words: Carbonate rock, Sour gas, Sulfur deposition, Acid fracturing, Base rock, Fracture, Plugging.

中图分类号: 

  • TE344

 1Civan F.A Generalized Model for Formation Damage by Rock-Fluid Interactions and Particulate ProcessR.Paper SPE 21183,Oct 14-19,1990.

 2Civan F.Modeling and Simulation of  Formation Damage by Organic DepositionC//Proceedings of the First International Symposium on Colloid Chemistry in Oil Production:Asphaltenes and Wax Deposition.ISCOP'95,Rio de Janeiro,Brazil,Nov,1995:399-412.

 3Gruesbeck C,Collins R E.Particle transport through perforationsJ.SPE J,1982,(4):857-865.

 4Ohen H A,Civan F.Predicting Fines Generation,Migration and Deposition Near Injection and Production WellsC//Proceedings of the First Regional Meeting,American Filtration Society,Houston,Texas,Oct,1989:161-164.

 5Civan F.A Multi-Purpose Formation Damage ModelR.paper SPE 31101.

 6Rege S D,Fogler H S.Network Modeling and Experimental Investigation of Flow,Dissolution,Precipitation and Fines Migration in Porous MediaD.PhD Dissertation,Univ of Michigan,Ann Arbor,1998.

 7Rege S D,Fogler H S.Competition among flow,dissolution and precipitation in porous MediaJ.AICHEJ,1989,35:1177-1185.

 8Kuo C H.On the production of hydrogen sulfide-sulfur mixtures from deep formationsJ.JPT,1972(3):1141.

 9Bruce E.The Effect of Sulfur Deposition on Gas Well Inflow PerformanceR.Paper SPE 36707.

10Hyne J B,Derdall G.Sulfur Deposition in Reservoirs and Production Equipment: Sources and SolutionsC//Paper presented at the Annual Gas Condtioning Conference.Norman,Oklahoma:University of Oklahoma,March 3-5,1980.

11Hyne J B. Controlling sulfur deposition in sour gas wells[J].World Oil,1983,35.

12Bruce E.The Effect of Sulfur Deposition on Gas Well Inflow PerformanceR.Paper SPE 36707.

13Abou-Kassem J H.Experimental and numerical modeling of sulfur plugging in carbonate reservoirs[J].SPE J,2000,26:91-103.

14Al-Awadhy F,Kocabas I,Abou-Kassem J H.Experimental and Numerical Modeling of Sulfur Plugging in Carbonate Oil ReservoirsR.Paper SPE 49498.

15Frauk Civan.Modeling Well Performance Under Nonequilibrium Deposition ConditionsR.Paper SPE 67234,2001.

16Shedid A.Shedid.Formation Damage Due to Simultaneous Sulfur and Asphahene DepositionR.Paper SPE 86533.presented at the SPE International Symposium and Exhibition on Formation Damage Control held in Lafayette,Louisiana,USA,2004.

17]曾平,赵金洲,周洪彬.高含硫气藏元素硫沉积对储集层的伤害[J.石油勘探与开发,2005,26(6):113-115.

18]杨学锋,胡勇.高速非达西流动时元素硫沉积模型研究[J.天然气地球科学,2007,18(5):764-766.

19]曾平.高含硫碳酸盐岩气藏低伤害酸压技术及压后硫沉积规律研究[D.西南石油大学,博士学位论文,2006.

[1] 王清龙,林畅松,李浩,韩剑发,孙彦达,何海全. 塔里木盆地西北缘中下奥陶统碳酸盐岩沉积微相特征及演化[J]. 天然气地球科学, 2018, 29(9): 1274-1288.
[2] 徐加祥,丁云宏,杨立峰,王臻,刘哲,高睿. 基于扩展有限元的水力压裂缝间干扰及裂缝形态分析[J]. 天然气地球科学, 2018, 29(9): 1356-1363.
[3] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[4] 李红哲,马峰,谢梅,杨巍,张成娟,王朴,赵健. 柴达木盆地阿尔金东段基岩气藏盖层特征及控藏机制#br# [J]. 天然气地球科学, 2018, 29(8): 1102-1110.
[5] 吕正祥,王先东,吴家洋,卿元华. 渤海海域中部古近系湖相碳酸盐岩储层成岩演化特征[J]. 天然气地球科学, 2018, 29(7): 921-931.
[6] 杨海军,张荣虎,杨宪彰,王珂,王俊鹏,唐雁刚,周露. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7): 942-950.
[7] 王珊,曹颖辉,杜德道,王石,李洪辉,董洪奎,严威,白莹. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29(6): 784-795.
[8] 朱维耀,马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[9] 翁定为,付海峰,包力庆,胥云, 梁天成,张金. 水平井平面射孔实验研究[J]. 天然气地球科学, 2018, 29(4): 572-578.
[10] 史文洋,姚约东,程时清,石志良,高敏. 裂缝性低渗透碳酸盐岩储层酸压改造油井动态压力特征[J]. 天然气地球科学, 2018, 29(4): 586-596.
[11] 张永庶,伍坤宇,姜营海,王鹏,蔡智洪,高发润,谭武林,高树芳,鲜本忠. 柴达木盆地英西深层碳酸盐岩油气藏地质特征[J]. 天然气地球科学, 2018, 29(3): 358-369.
[12] 孟凡坤,雷群,徐伟,何东博,闫海军,邓惠. 应力敏感碳酸盐岩复合气藏生产动态特征分析[J]. 天然气地球科学, 2018, 29(3): 429-436.
[13] 魏新善,魏柳斌,任军峰,蔡郑红,周黎霞. 鄂尔多斯盆地下古生界风化壳气藏差异性[J]. 天然气地球科学, 2018, 29(2): 178-188.
[14] 张云钊,曾联波,罗群,张晨,吴浩,吕文雅,代全齐,朱德宇. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝特征和成因机制[J]. 天然气地球科学, 2018, 29(2): 211-225.
[15] 巫修平,张群. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及控制机制[J]. 天然气地球科学, 2018, 29(2): 268-276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!