天然气地球科学 ›› 2006, Vol. 17 ›› Issue (1): 31–35.doi: 10.11764/j.issn.1672-1926.2006.01.31

• 非生物(无机)气 • 上一篇    下一篇

地幔流体化学组成与成烃

张铭杰1,2,王先彬2,胡沛青1,张昱1,叶先仁2,李立武2   

  1. (1.兰州大学资源环境学院地质学系,甘肃 兰州 73 0000;2.中国科学院地质与地球物理研究所气体地球化学重点实验室,甘肃 兰州 730000)
  • 收稿日期:2005-12-08 修回日期:2005-12-30 出版日期:2006-02-20 发布日期:2006-02-20
  • 通讯作者: 张铭杰zhang@lzu.edu.cn. E-mail:zhang@lzu.edu.cn.
  • 作者简介:张铭杰(1965-),男,甘肃漳县人,博士,教授,主要从事气 体地球化学研究.
  • 基金资助:

    国家自然科学基金项目(编号:40273009),教育部“新世纪优秀人才”基金研究成果.

THE CHEMICAL COMPOSITIONS OF VOLATILES IN UPPER MANTLE AND THEIR IMPLICATION FOR HYDROCARBON GENERATION

ZHANG Ming-jie1,2,WANG Xian-bin2,HU Pei-qing1, ZHANG Yu1,YE Xian-ren2,LI Li-wu2   

  1. (1. Department of Geology, Lanzhou University, Lanzhou 730000, China; 2.Key Lab  of Geochemistry,Institute of Geology and Geophysics, Chinese Acadmey of Scien ce, Lanzhou 730000, China)  
  • Received:2005-12-08 Revised:2005-12-30 Online:2006-02-20 Published:2006-02-20

摘要:

采用分步加热质谱法测定了中国东部和美国西部的二辉橄榄岩捕虏体的流体组成,探讨了上地幔流体化学组成特征及对成烃的作用。指出:超临界态的地幔流体具有很强的溶解和扩散能力,是地球内部能量与物质向外传输的重要载体,其化学组成随地幔演化过程的不同而具有明显的差异;可划分出上地幔原始流体和交代作用流体等,上地幔原始流体组成与地幔源区密切相关,似原始地幔源区以CO为主,其次为CO2、H2,亏损地幔源区以CO2为主,其次为CO、H2,富集地幔源区含有较高的H2;中国东部上地幔交代作用过程中存在以CO2为主的再循环地壳交代流体;地幔流体自身含有一定数量的CH4和C2H6等烷烃组分及重烃组分,包括一定数量的原始烷烃组分;地幔流体含有较高的H2和热量,可为有机质生烃作用提供充足的氢源、热源及运移源动力。

关键词: 成烃, 原始有机质, 化学组成, 地幔流体

Abstract:

Mantle fluids in supercritical state possess high dissolving and diffusing capac ity, which are the important transporting carrier of energy in earth interior, t heir chemical compositions vary in a large range with the evolution processes of  mantle, and can be distinguished as the primitive fluid in upper mantle, the fl uid of mantle metasomatism and etc. The chemical composition of primitive fluid  in upper mantle are related to the mantle reservoir, the primitive fluid in uppe r mantle with a primitive mantle-like reservoir is dominated by CO with seconda ry amounts of CO2 and H2; a depleted mantle reservoir shows a dominant CO2  with minor amounts of CO and H2 in primitive fluid in upper mantle, and an en riched mantle reservoir is enriched in H2. Meanwhile the fluids of mantle meta somatism were mixed by the recycled crustal fluid components beneath eastern Chi na. Mantle fluids have preserved a certain amount light hydrocarbon, such as CH4, C2H6 etc. and high weight hydrocarbon, including an amount of primordia l hydrocarbon, moreover, mantle fluid enriched in H-2 and heat can provide the  ample hydrogen and heat sources in hydrocarbon generation of kerogen and promote  source rocks to expel hydrocarbons and migration.

Key words: Hydrocarbon generation, Primordial organic matter, Chemical composition, Mantle fluid.

中图分类号: 

  • TE122.1

[1]GOLD T. The origin of methane in the Earth[M]//DAVID G H.  The future of energy gases. Washington: United States Government Printing Offic e, 1993:57-80. 
[2] POTTER J, KONNERUP-MADSEN J. A review of the occ-   urrence  and origin  of abiogenic hydrocarbons in igneous rocks[M]//POTTER J, MCCAFFREY K J W. Hyd rocarbons in Crystalline Rocks.London: Geological society, 2003:151-173.
[3] SUGISAKI R, MIMURA K. Mantle hydrocarbons: Abiotic or biotic?[J]. Geochimica et Cosmochimica Acta, 1994, 58(11): 2527-2542.
[4]STUDIER M H, HAYATSU R, ANDERS E. Origin of organic matter in  early solar system-I. Hydrocarbon[J]. Geochimica et Cosmochimica Acta, 1968, 32:151.
[5] HUBBARD W B, NELLIS W J, MITCHELL A C, et al. Interior structu re of Neptune: Comparison with Uranus[J]. Science, 1991, 253: 648-651.
[6] ANDERS E, HAYATSU R, STUDIER H. Organic comp-   ounds in mete orites[J]. Science, 1973,182:781-782.
[7] KRISHNAMURTHY R V, EPSTEIN S, CRONIN J R, et al. Isotopic and m olecular analyses of hydrocarbons and monocarboxylic acids from the Murchison me teorite[J]. Geochimica et Cosmochimica Acta, 1992, 56: 4045-4058.
[8] BADA J L, GLAVIN D P, MCDONALD G D, et al. A Search f or Endogenous amino acids in Martian Meteorite ALH-   84001[J]. Science,  1998, 279:362-365.
[9] PLOWS F L, ELSILA J E, ZARE R N, et al. Evidence that polycycli c aromatic hydrocarbons in two carbonaceous chondrites predate parent-body form ation[J]. Geochimica et Cosmochimica Acta, 2003, 67(7):1429-1436.
[10] CHYBA C F, THOMAS P J, BROOKSHW L, et al. Cometary deliver y of organic molecules to the early Earth[J]. Science, 1990, 249: 36 6-373.
[11] CAFFEE M W, HUDSON G B, VELSKO C, et al. Primordial noble  gases from Earth's mantle: identification of a primitive volatil e component[J]. Science,1999, 285: 2115-2118.
[12] LOLLAR B S, WESTGATE T D, WARD J A, et al. Abiogenic forma tion of alkanes in the Earth's crust as a minor source for global hydrocarbon re servoirs[J]. Nature, 2002,416:522-524.
[13] ANDERSEN T, NEUMANN E R. Fluid inclusions in mantle xenoliths [J]. Lithos, 2001, 55:301-320.
[14][KG*8/9]ROSENBAUM J M, ZINDLER A, RUBENSTONE J L. Mantle fluids: Evidence  from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 1996, 60:3229-3252 .
[15] 杜乐天,刘若新,邓晋福. 地幔流体与软流层(体)地球化学[M]. 北京: 地质出版社,1996:1-466.
[16] ZHANG M J, WANG X B, LIU G, et al. The compositions of upper mantle  fluids beneath Eastern China: implications for mantle evolution[J]. Acta Geol ogica Sinica, 2004, 78(1): 125-130.
[17] MILLER M F, PILLINGER C T. An appraisal of stepped heating release of fl uid inclusion CO-2 for isotopic analysis[J]. Geochimica et Cosmochimica Acta,  1997, 61(1):193-205.
[18] 夏林圻.我国六合、张家口碱性玄武岩内橄榄岩包体中的高密度二氧化碳流体包裹 体[J]. 矿物学报,1984,4(2):133-142.
[19]YANG X Y, ZHENG Y F. Study on chemical compositions of fluid inclusions  from peridotite and eclogites in Eastern China:the geodynamic implications[J].  Phys Chem Earth, 2001, 26:705-718.
[20] ZHANG M J, HU P Q, ZHENG P, et al. The occurrence modes of H-2 in  mantle-derived rocks[M]// MAO J, BIERLEIN F P. Mineral Deposit Research. New  York: Springer, 2005:73-76.
[21] ZHANG M J, HU P Q, WANG X B, et al. The fluid compositions of lherzo lite xenoliths in Eastern China and Western American[J]. Geochimica et Cosmoch imica Acta, 2005, 69A:146.
[22] 樊祺诚,杨瑞瑛. 地幔橄榄岩矿物中富稀土元素的CO-2流体包裹体及其地球化学意义[J]. 岩石学报,1993,9(4): 411-417.
[23] GAO S, RUDNICK R L, CARLSON R W, et al. Re-Osevidence for replacem ent of ancient mantle lithosphere beneath the North China craton[J]. Earth and  Planetary Science Letters, 2002, 198:307-322.
[24] 张铭杰,王先彬,刘刚,等.中国东部新生代碱性玄武岩及幔源捕虏体中的流体组 成[J]. 地质学报,1999,73(2):162-166.
[25] ZHOU X H, SUN M, ZHANG G H, et al. Continental crust and lithospheri c mantle interaction beneath North China: isotopic evidence from granulite xenol iths in Hannuoba, Sino-Korean craton[J]. Lithos, 2002, 62: 111-124.
[26] LANCET M S, ANDERS E. Carbon isotope Fractionation in the Fischer-Trops ch synthesis and in meteorites[J]. Science, 1970, 170: 980-982.
[27] HOLM N G, CHARLOU J L. Initial indications of abiotic formation of hydro carbons in the Rainbow ultramafc hydrothermal system, Mid-Atlantic Ridge[J].  Earth and Planetary Science Letters, 2001,191:1-8.
[28] EPSTEIN S, KRISHNAMURTHY R V, CRONIN J R, et al. Unusual stable isot ope ratios in amino acid and carboxylic acid extracts from the Murchison meteori te[J]. Nature, 1987, 326:477-479.
[29] 王先彬,妥进才,李振西,等.天然气成因理论探索——拓宽领域,寻找新资源[J ].天然气地球科学,2003,14(1):30-34.
[30] YUEN G, BLAIR N, DES MARAIS D J, et al. Carbon is-   otope com position of low molecular weight hydrocarbons and monocarboxylic acids from Murc hison meteorite[J]. Nature, 1984, 307:252-254.
[31] JIN Z J, ZHANG L P, YANG L, et al. A preliminary study of mantle-de rived fluids and their effects on oil-gas generation in sedimentary basins[J] . J Petroleum Sci, 2004, 41:45-55.[HJ]

[1] 曹春辉,张铭杰,汤庆艳,吕宗刚,汪扬,杜丽,李中平. 四川盆地志留系龙马溪组页岩气气体地球化学特征及意义[J]. 天然气地球科学, 2015, 26(8): 1604-1612.
[2] 戴金星,倪云燕,黄士鹏,廖凤蓉,于聪,龚德瑜,吴伟. 煤成气研究对中国天然气工业发展的重要意义[J]. 天然气地球科学, 2014, 25(1): 1-22.
[3] 刘文汇. 海相层系多种烃源及其示踪体系研究进展[J]. 天然气地球科学, 2009, 20(1): 1-7.
[4] 晋香兰;张泓. 鄂尔多斯盆地延安组煤层对常规天然气的贡献率研究[J]. 天然气地球科学, 2008, 19(05): 662-664.
[5] 卢红选,孟自芳,李 斌,李相博,郑 民 . 微量元素Mo对褐煤有机质热解成烃的影响[J]. 天然气地球科学, 2007, 18(1): 104-106.
[6] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25-30.
[7] 吕功煊;丑凌军;张兵;王先彬;. 深层及非生物成烃的催化机制[J]. 天然气地球科学, 2006, 17(1): 14-18.
[8] 魏舲钧;. 亚铁离子对碳酸盐岩有机质成烃演化的催化作用模拟实验研究[J]. 天然气地球科学, 2005, 16(3): 306-309.
[9] 王兰生,李宗银, 沈平, 陈盛吉,张鉴,谢邦华. 四川盆地东部大中型气藏成烃条件分析[J]. 天然气地球科学, 2004, 15(6): 567-571.
[10] 高岗,姜振学,赵吉吉,王兆峰. 加水模拟条件下升温速率对烃源岩成烃特征的影响[J]. 天然气地球科学, 2004, 15(5): 461-464.
[11] 祝厚勤,朱煜,尹玲. 周口盆地东部(阜阳地区)石炭―二叠系煤成烃勘探潜力研究[J]. 天然气地球科学, 2003, 14(5): 408-411.
[12] 李军;李凤霞;周立英;朱银霞;赵景茂;. 板桥凹陷带油环凝析气藏类型和成藏条件分析[J]. 天然气地球科学, 2003, 14(4): 271-274.
[13] 戴金星. 加强天然气地学研究勘探更多大气田[J]. 天然气地球科学, 2003, 14(1): 3-14.
[14] 倪建华;张坤;廖成君;黄龙威;卫拥军. 莺琼盆地高温超压成烃作用及成藏贡献[J]. 天然气地球科学, 2001, 12(3): 20-26.
[15] 刘文汇;黄第藩;熊传武;徐永昌;. 成烃理论的发展及国外未熟―低熟油气的分布与研究现状[J]. 天然气地球科学, 1999, 10(1-2): 1-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!