天然气地球科学 ›› 2005, Vol. 16 ›› Issue (2): 224–228.doi: 10.11764/j.issn.1672-1926.2005.02.224

• 非烃天然气:氮气 • 上一篇    下一篇

塔里木盆地天然气中氮气成因与油气勘探风险分析

刘朝露; 夏斌;   

  1. (中国科学院广州地球化学研究所,广东 广州 510640)
  • 收稿日期:2004-11-19 修回日期:2005-01-16 出版日期:2005-04-20 发布日期:2005-04-20
  • 通讯作者: 刘朝露lzl68041@sina.com. E-mail:lzl68041@sina.com.
  • 作者简介:刘朝露(1968-),男,江西莲花人,博士研究生,主要从事天然气地球化学研究.

THE GENESIS OF MOLECULAR NITROGEN OF NATURALGASES AND ITS EXPLORATION RISK COE FFICEIENT IN TARIM BASIN

LIU Zhao-lu, XIA Bin   

  1. (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Gu angzhou  510640, China)
  • Received:2004-11-19 Revised:2005-01-16 Online:2005-04-20 Published:2005-04-20

摘要:

氮气( N2 )是天然气中最常见的非烃组分之一。天然气中的N2 依其成因与来源特征总体可分为大气来源、与生物作用有关的来源和与岩浆活动有关的地壳深部或地幔来源等。根据天然气中氮的赋存状态和一些地球化学特征,并结合塔里木盆地的火山活动史,对塔里木盆地天然气中氮气成因机理进一步综合分析后认为:在白垩系以上(浅部)的油气藏内,天然气中氮的平均含量低于5 % ,主要以大气来源为主,勘探风险较低;对于白垩系以下至志留系(中部)的油气藏来说,天然气含氮量平均为2 0 .3% ,来源较复杂,以混源(深部源和生物作用来源)为主,勘探风险居中;对于奥陶系以下(深部)的油气藏,天然气中氮含量离散度较大,最低为2 .8% ,最高达5 5 .3% ,低氮来源以生物作用为主,高氮来源以地壳深部火山活动或结晶基底来源为主,勘探风险相对较大。

关键词: 塔里木盆地, 天然气, N2, 成因, 勘探风险

Abstract:

Molecular nitrogen is one of most common non-hydrocar bon components in natural gas reservoirs. The origin of molecular nitrogen in na tural gas can be classified to be three types, according to its origin, that is,  atmospheric nitrogen resource, bio-genesis resource and deep crust and upper- mantle resource correspondingly. Based on the nitrogen preserve, distribution an d some geochemistry properties, and combined with the volcanic history of Tarim  basin, the genesis of molecular nitrogen in natural gas has been comprehensively  analyzed in the paper. The study shows:① the gas pool in the shallow part (suc h as Cretateous), the average relative abundance of nitrogen is lower 5 percent,  and its main origin is from atmospheric nitrogen, and its exploration risk coef ficient is relatively lower;② the middle part (such as Carboniferous, Permian),  its origin of nitrogen is relatively complex, which main resource is from the d eep mantle or bio-genesis. The average relative abundance of nitrogen is about  20 percent, and its exploration lies in between; ③ the deep part gas pool (such  as Ordivician), the average relative abundance of nitrogen is variable, thepoor
-nitrogen gas pool, its main resource is from bio-genesis, while the rich-nit rogen gas pool, its main resource is from the deep mantle and is related with th e metamorphic rock, its exploration risk coefficient is relatively higher.

Key words: Tarim basin, Natural Gas, Nitrogen, Genesis, Exploration risk coefficient.

中图分类号: 

  • TE122.1

[1] 戴金星.中国天然气地质学[M].北京,石油工业出版社,1992 ,19,27-29.
[2] 朱岳年.天然气中非烃组分地球化学研究进展[J].天然气地球科学,1994 ,(1):1-29.
[3] 杜建国.天然气中氮的研究现状[J].天然气地球科学,1992,3(2):17-2 3.
[4] Littke R, Kroos B. Generation of nitrogen and methane from sedime ntaryorganic matter : Implication on the dynamics of natural gas accumulation[J ]. Chem Geol,1995,126:291-318.
[5] Krooss B M. Generation of nitrogen and methane from sedimentary organic matter: Implication on the dynamics of nat-   ural gas a ccumulation[J]. Chemical Geollogy,1995,126:291-318.
[6]黄第藩.塔里木盆地东部天然气的成因及成熟度判识[J].中国科学 (D),1996,26(4):365-372.
[7] 朱岳年.天然气中分子氮成因及判识[J].石油大学学报(自然科学版),1 999,23(2):22-26.
[8] 张子枢.气藏中N2的地质地球化学[J].地质地球化学,1988,2:51-5 6.
[9]陈安定.地下富氮气体中氮主要来自地面大气水下渗[J].天然气地 球科学,9(5):30-33.
[10] Freund F. H2 and N2 gas from magmatic rocks-a solid state viewpoint[J].Oil and Gas Journal,1984,82(34):140-141.
[11] Hiyagan H, Kennedy B M. Noble gases in CH4-rich gas fields[J]. Geochimica et Cosmochimica Acta, 1992,5(56):1649-1661.
[12] 曾治平.中国沉积盆地非烃气N2成因类型分析[J].天然气地球科学,2002,13( 3-4):29-33.
[13] Littke R, Kroos B. Molecular nitrogen in natural gas accumu-   lat ions:Generation from sedimentary organic matter at high temperature[J]. AAPG B ulletin,1995,79(3):410-430.
[14] 张成君.中国东北地区中新生代花岗岩中氮含量及其同位素特征[J]. 地球化学, 2000,29(2):202-206.
[15] Lutz M J, Kaasschieter P H, van Wijhe D H. Geological fac-   tors  controlling Rotliegend gas accumulation in the mid Euro-   pean basin[J] . Proceeding 9th World Petroleum Congress,1975,2(3):93-103.
[16] Masters J  A. Elmworth ,case study of a deep basin gas field[J].AAPG  Memoir,1984,38:316.
[17] Rightmire C T, Eddy E G, Kirr J N. Coalbed methane reso-   urces o f the United States[J]. AAPG Studies in Geology,1984,17:378.
[18] 黄福堂.松辽盆地北部天然气的化学组成、成因类型及分布特征研究[J].天然气 工业,1996,16(4):3-9.
[19] 陈世加,付晓文,沈昭国,等. 塔里木盆地高氮天然气的成因及其与天然气聚集的 关系[J]. 沉积学报,2000,18(4):615-618.
[20] 陈传平,梅博文,朱翠山.塔里木天然气氮同位素组成与分布[J].地质地球化学 ,2001,29(4):46-49.
[21] 周兴熙.塔里木盆地油气藏,塔里木盆地油气勘探丛书[M].北京:石油工业出版社 ,1995.15-50.
[22] 李先奇,戴金星.塔里木盆地天然气稀有气体同位素特征及其时代累积效应分析[A ].戴金星,傅诚德,关德范.天然气地质研究新进展[C].北京:石油工业出版社,1997.10 7-113.
[23] 陈践发,徐永昌,黄第藩.塔里木盆地东部地区天然气地球化学特征及成因探讨(之 一)[J].沉积学报,2000,18(4):606-610.
[24] 杜建国,刘文汇,邵波,等.天然气中氮气的地球化学特征[J].沉积学报,1996 ,14(1):143-147.
[25] 徐永昌,沈平.非烃及稀有气体的地球化学[A]. 中国科学院兰州地质研究所生物 、地球化学研究室年报(1988-1989)[C]. 北京:科学出版社,1991.1-9.
[26] Marty B, Criaud A, Fouillac C. Low enthalpy geothermal fl-   uids  from the Paris sedimentary basin-1.characteristics and   origin of gases. geothermics,1988,17:619-633.
[27] 刘朝露,李剑,方家虎,等. 水溶气运移物理模拟实验技术[J]. 天然气地球科 学,2004,15(1):32-36.
[28] 秦胜飞,贾承造,李梅.和田河气田天然气东西部差异及原因[J].石油勘探与开 发,2002,29(5):16-18.
[29] 陈践发,朱岳年. 天然气中氮的来源及塔里木盆地东部天然气中氮的地球化学学 特征[J].天然气地球科学,2003,14(3):172-176.
[30] 蔡春芳.库车前陆盆地流体化学、成因与流动[J].地质地球化学,2000,28(1): 58-62.
[31] 赵孟军,张宝民,肖中尧.塔里木盆地奥陶系偏腐殖型烃源岩的发现[J].天然气 工业,1998,18(5):32-36.
[32] 朱岳年,史卜庆.天然气中氮气来源及其地球化学特征分析[J].地质地球化学,1 998,26(4):50-57.

 

[1] 张荣虎,王珂,王俊鹏,孙雄伟,李君,杨学君,周露. 塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J]. 天然气地球科学, 2018, 29(9): 1264-1273.
[2] 王清龙,林畅松,李浩,韩剑发,孙彦达,何海全. 塔里木盆地西北缘中下奥陶统碳酸盐岩沉积微相特征及演化[J]. 天然气地球科学, 2018, 29(9): 1274-1288.
[3] 周波,曹颖辉,齐井顺,黄世伟,刘策,贾进华,陈秀艳. 塔里木盆地古城地区下奥陶统储层发育机制[J]. 天然气地球科学, 2018, 29(6): 773-783.
[4] 朱光有,曹颖辉,闫磊,杨海军,孙崇浩,张志遥,李婷婷,陈永权. 塔里木盆地8 000m以深超深层海相油气勘探潜力与方向[J]. 天然气地球科学, 2018, 29(6): 755-772.
[5] 王珊,曹颖辉,杜德道,王石,李洪辉,董洪奎,严威,白莹. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29(6): 784-795.
[6] 曹颖辉,李洪辉,闫磊,王洪江,张君龙,杨敏,赵一民. 塔里木盆地满西地区寒武系台缘带分段演化特征及其对生储盖组合的影响[J]. 天然气地球科学, 2018, 29(6): 796-806.
[7] 闫磊,李洪辉,曹颖辉,杨敏,赵一民. 塔里木盆地满西地区寒武系台缘带演化及其分段特征[J]. 天然气地球科学, 2018, 29(6): 807-816.
[8] 杨敏,赵一民,闫磊,李洪辉,张欣欣,徐振平,罗浩渝. 塔里木盆地东秋里塔格构造带构造特征及其油气地质意义[J]. 天然气地球科学, 2018, 29(6): 826-833.
[9] 陈斐然,张义杰,朱光有,张宝收,卢玉红,张志遥. 塔里木盆地台盆区深层天然气地球化学特征及成藏演化[J]. 天然气地球科学, 2018, 29(6): 880-891.
[10] 邓焱,胡国艺,赵长毅. 四川盆地龙岗气田长兴组—飞仙关组天然气地球化学特征及成因[J]. 天然气地球科学, 2018, 29(6): 892-907.
[11] 苏佳纯,张金川,朱伟林. 非常规天然气经济评价对策思考[J]. 天然气地球科学, 2018, 29(5): 743-753.
[12] 杨丽杰,侯读杰,陈晓东,刁慧. 东海盆地西湖凹陷中部古近系地层水化学特征及地质意义[J]. 天然气地球科学, 2018, 29(4): 559-571,596.
[13] 王秀平,牟传龙,肖朝晖,郑斌嵩,陈尧,王启宇,刘惟庆. 湖北鹤峰地区二叠系大隆组黑色岩系特征及成因初探[J]. 天然气地球科学, 2018, 29(3): 382-396.
[14] 张云钊,曾联波,罗群,张晨,吴浩,吕文雅,代全齐,朱德宇. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝特征和成因机制[J]. 天然气地球科学, 2018, 29(2): 211-225.
[15] 高文杰,李贤庆,张光武,魏强,张吉振,祁帅,陈金明. 塔里木盆地库车坳陷克拉苏构造带深层致密砂岩气藏储层致密化与成藏关系[J]. 天然气地球科学, 2018, 29(2): 226-235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!