天然气地球科学 ›› 2003, Vol. 14 ›› Issue (1): 30–34.doi: 10.11764/j.issn.1672-1926.2003.01.30

• 综述与评述 • 上一篇    下一篇

天然气成因理论探索――拓宽领域、寻找新资源

王先彬, 妥进才, 李振西, 张铭杰, 闫宏, 周晓峰   

  1. (中国科学院兰州地质研究所,甘肃 兰州 730000)
  • 收稿日期:2003-02-11 修回日期:2003-02-17 出版日期:2003-02-20 发布日期:2003-02-20
  • 通讯作者: 王先彬
  • 作者简介:王先彬(1941-),男,四川洪雅人,研究员,博导,主要从事天然气地质地球化学和非生物成因天然气研究
  • 基金资助:

    中国科学院重大项目(编号:KZ951-B1-414)、国家“九五”攻关项目(99-110-01-02)和国家自然科学基金项目(编号:40073022)的资助

THE EXPLORATION OF THE GENETIC THEORY ON NATURAL GASES: BROADENING EXPLORATIVE AREAS AND SEARCHING FOR NEW RESOURCES

WANG Xian-bin, TUO Jin-cai, LI Zhen-xi, ZHANG Ming-jie, YAN Hong, ZHOU Xiao-feng   

  1. (Lanzhou Institute of Geology, Chinese Academy of Sciences, Lanzhou 730000, China)
  • Received:2003-02-11 Revised:2003-02-17 Online:2003-02-20 Published:2003-02-20

摘要:

介绍了传统的油气成因理论及其勘探“经济死亡线”的概念 ,认为对深层油气的研究应着眼于突破“干酪根晚期热降解生烃”理论、在现行勘探深度以下寻找油气资源。介绍了深层油气的形成机制及其主要影响因素 ,认为在盆地的超深层位有着丰富的天然气资源。论述了非生物成因天然气成因理论 ,认为非生物成因天然气的研究目的是寻找地球深部非生物 (无机 )过程形成的天然气资源 ,并介绍了已取得的研究成果 ,指出 :中国松辽盆地非生物成因天然气藏的发现和确证为该领域的研究提供了一个典型实例。在上述论述的基础上提出了地球内部有机质演化的动力学―热力学模型。

关键词: 天然气, 热成因, 经济死亡线, 深层天然气, 非生物成因天然气

Abstract:

The present paper briefly introduces the traditional theory on hydrocarbon geneses and the concept of "commercial deadline of exploration", outlining that the study on deep oil and gas is to break through "the theory on the hydrocarbon generation from late kerogen" and to search for deep oil and gas resources beneath the current explorative depth. Moreover, the theory on deep oil and gas as well as its key effective factors is also discussed in detail. The study on the abiogenic gas concerns searching for natural gas resources generated from abiogenic (inorganic) processes in the deep earth, the paper discusses in detail the theory on the abiogenic gas, introduces achievements obtained in this research field and reports the discovery of abiogenic gas reservoirs from the Songliao Basin and their evidence, providing a typical research example in this research field. In addition, on the basis of the above researches, a kinetic-thermodynamic model on the organic matter evolution in the interior earth.

Key words: Natural gas, Thermogenesis, Commercial deadline, Deep natural gas, Abiogenic natural gas.

中图分类号: 

  • E122.1

[1] Hunt J M. Petroleum geochemistry and Geology [M]. San Francisco:W H Freeman,1979.
 [2]Pusey W C. How to evaluate potential gas and oil source rocks[J]. World Oil, 1973,176: 71-75.
 [3]Houseknecht D W, Spott C. Empirical observations regarding methane deadlines in deep basin and thrust belts[A]. In: Howell D G, ed. US Geological Surveg Professional Paper 1570,The Future of Energy Gases[R].1993.217-231.
 [4]Tissot B P, Welte D H. Petroleum Formation and Occurrence [M]. Berlin, Heidelberg, New York:Springer-Verlag, 1984.
 [5]Price L C, Cayton J L, Rumen L L. Organic geochemistry of the 9.6 km Berstha Rdogers No.1 Well. Oklahome[J]. Organic Geochemistry, 1981,3:59-77.
 [6]Price L C. Organic geochemistry of core samples from an ultra-deep hot well(300℃,7 km)[J].Chemical Geology, 1982,37:215-228.
 [7]Price L C. Thermal stability of hydrocarbons in nature: Limits, evidence, characteristics, and possible controls[J]. Geochimica et Cosmochimica Acta, 1993, 57:3261-3280.
 [8]Takach N E. Stability of natural gas in the deep sub-surface:Thermodynamic calculation of equilibrium composition[J]. AAPG Bulletin, 1987, 71(3):322-333.
 [9]Barker C, Tadach N E. Prediction of natural gas calculation in ultra-deep sandstone reservoir[J]. AAPG Bulletin, 1992,76(12):1859-1873.
[10]Burruss R C. Stability and flux of methane in the deep crust: A review[A]. In: Howell D G. US Geological Surley Professional Paper 1570, The Future of Energy Gases[R]. 1993.21-30.
[11]王先彬,李春园,陈践发,等,论非生物成因天然气[J].科学通报,1997,42(12):1233-1241.
[12]Saxena S K and Fei Y. High pressure and high temperature fluid fugacities[J]. GCA, 1987,51(4):783-793.
[13]Saxena S K, Fei Y. Fluid mixture in the C-H-O system at high pressure and high temperature[J]. GCA, 1988, 52(2):502-512.
[14]Bai Z H, Wang X B. Thermodynamic study on the compositions of fluid phases in the C-H-O system under hightemperature and pressure[J]. Chinese Journal of Geochemostry, 1998, 17(2):103-113.
[15]郭占谦,王先彬.松辽盆地非生物成因气的探讨[J].中国科学,1994,24(3):303-309.
[16]郭占谦,王先彬,刘文龙.松辽盆地非生物成因气的成藏特征[J].中国科学(D辑),1997,27(2):143-148.
[17]Wang X B. Mantle-drived methane homologue, Carbon dioxide and helium in natural gases from Songliao Basin, China[J]. Mineralogical Magazine, 1998,62A:1665-1666.
[18]李春园,王先彬,夏新宇.甲烷及其同系物δ13C值反序排列的数值模拟与非生物成因天然气藏探讨[J].沉积学报,1999,17(2):303-311.
[19]Guo Z Q, Wang X B. The characteristics of forming reserves for abiogenic gas in the Songliao Basin[J].Science in China(Serial D), 1997, 40(6):621-626.
[20]王先彬.非生物成因天然气理论的宇宙化学依据[J].天然气地球科学,1990,1(1):4-8.

[1] 陈斐然,张义杰,朱光有,张宝收,卢玉红,张志遥. 塔里木盆地台盆区深层天然气地球化学特征及成藏演化[J]. 天然气地球科学, 2018, 29(6): 880-891.
[2] 邓焱,胡国艺,赵长毅. 四川盆地龙岗气田长兴组—飞仙关组天然气地球化学特征及成因[J]. 天然气地球科学, 2018, 29(6): 892-907.
[3] 苏佳纯,张金川,朱伟林. 非常规天然气经济评价对策思考[J]. 天然气地球科学, 2018, 29(5): 743-753.
[4] 杨丽杰,侯读杰,陈晓东,刁慧. 东海盆地西湖凹陷中部古近系地层水化学特征及地质意义[J]. 天然气地球科学, 2018, 29(4): 559-571,596.
[5] 于京都, 郑民, 李建忠, 吴晓智, 郭秋麟. 我国深层天然气资源潜力、勘探前景与有利方向[J]. 天然气地球科学, 2018, 29(10): 1398-1408.
[6] 朱华, 杨光, 苑保国, 应丹琳, 戴鑫, 周红飞, 徐世琦, 谈健康. 四川盆地常规天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1475-1485.
[7] 黄少英, 杨文静, 卢玉红, 张科, 赵青, 凡闪. 塔里木盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1497-1505.
[8] 郑民, 李建忠, 吴晓智, 王社教, 郭秋麟, 于京都, 郑曼, 陈宁生, 易庆. 我国常规与非常规天然气资源潜力、重点领域与勘探方向[J]. 天然气地球科学, 2018, 29(10): 1383-1397.
[9] 肖敦清, 姜文亚, 蒲秀刚, 王娜, 岳云福, 孙超囡, 代昆, 滑双君. 渤海湾盆地歧口凹陷中深层天然气成藏条件与资源潜力[J]. 天然气地球科学, 2018, 29(10): 1409-1421.
[10] 钟雪梅, 王建, 李向阳, 王权, 董雄英, 马学峰, 张国伟. 渤海湾盆地冀中坳陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1433-1442.
[11] 白雪峰, 梁江平, 张文婧, 付丽, 彭建亮, 薛涛, 杨立伟, 刘继莹. 松辽盆地北部深层天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1443-1454.
[12] 姚泾利, 胡新友, 范立勇, 刘新社, 季海锟, . 鄂尔多斯盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1465-1474.
[13] 张品, 苟红光, 龙飞, 佘家朝, 王志勇, 金颖. 吐哈盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1531-1541.
[14] 王彬, 张强, 吕福亮, 杨涛涛, 杨志力, 孙国忠, 吴敬武, . 南海海域新生界沉积盆地天然气成藏条件及资源前景[J]. 天然气地球科学, 2018, 29(10): 1542-1552.
[15] 周杰,朱继田,杨金海,江汝锋,张焱,甘军,孙志鹏. 琼东南盆地深水区宝南断阶带断裂特征及天然气地质意义[J]. 天然气地球科学, 2018, 29(1): 87-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!