The multi-path gas generation model and its potential contribution to petroleum accumulation in deep formations

  • Shuichang ZHANG , 1, 2 ,
  • Kun HE 1, 2 ,
  • Xiaomei WANG 1, 2 ,
  • Guoyi HU 1, 2 ,
  • Bin ZHANG 1, 2 ,
  • Jingkui MI 1, 2 ,
  • Jin SU 1, 2
Expand
  • 1. Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China
  • 2. Key Laboratory of Petroleum Geochemistry,CNPC,Beijing 100083,China

Received date: 2021-07-05

  Revised date: 2021-08-14

  Online published: 2021-10-21

Supported by

The National Key Research & Development Program of China(2017YFC0603102)

the National Natural Science Foundation of China(41973068)

the Strategic Priority Research Program of the Chinese Academy of Sciences(Class A)(XDA14010101)

Highlights

Deep to ultra-deep formations are important breakthroughs in oil and gas exploration at present and in the future. Understanding of the generation pathway, mechanism and potential of natural gas at high thermal maturation stages is beneficial to develop natural gas generation theory and to guide petroleum exploration in deep formations. Combined with extensive pyrolysis experiments and kinetic calculations, the maturity and temperature stages (gas generation time-limit) as well as potential of gas generation from various sources and pathways were discussed, and a multi-path gas generation model was established. The gas generation from thermal degradation of type I/II kerogens (kerogen primary cracking) can extend to R O of 3.5% with the maximum yield of 120-140 m3/tTOC, the potential of kerogen cracking gas at R O>2.0% can reach 20-40 m3/tTOC. The kinetics for the cracking of whole oil components were also addressed. It is proposed that intensive cracking of liquid hydrocarbons at a heating rate of 2 ℃/Ma mainly occurs at 190-220 ℃ with the corresponding maturity of R O=2.0%-2.3%. The contributions of gas derived from thermal cracking of residual hydrocarbons in source rocks and hydrocarbons outside the source are ~80 m3/tTOC and 200 m3/tTOC, respectively. The onset temperature for ethane cracking is higher than 230 ℃. Thermochemical sulfate reduction (TSR) leads to a decrease of 20–40 ℃ in temperature for the occurrence of oil cracking, accelerating the efficient accumulation of natural gas with high content of hydrogen sulfide (H2S). Besides, gas generation via hydrogenation involving inorganic fluids and minerals promotes gas potential for about 20%-30%, and is one of the pathways for the generation of high-over mature gas in deep formations. The multi-path gas generation process constitutes an integrated evolution sequence of natural gas formation, revealing that there is large-scale gas exploration potential under the traditional “deadline” of oil and gas in deep to ultra-deep formations.

Cite this article

Shuichang ZHANG , Kun HE , Xiaomei WANG , Guoyi HU , Bin ZHANG , Jingkui MI , Jin SU . The multi-path gas generation model and its potential contribution to petroleum accumulation in deep formations[J]. Natural Gas Geoscience, 2021 , 32(10) : 1421 -1435 . DOI: 10.11764/j.issn.1672-1926.2021.08.013

0 引言

近年来的勘探实践证明,在全球范围内,盆地深层蕴藏着丰富的油气资源。随着中浅层油气资源勘探程度的提高,以及探测方法、钻井技术及开发技术的发展,油气勘探由中浅层向深层领域延伸成为必然趋势,是近年来国内外油气勘探的重要方向。按照我国勘探实践,一般把3 500 m(东部陆上盆地)或4 500 m(西部盆地)以下称作盆地深层,6 000 m以下称为超深层1-3。据估计,我国陆上深层石油资源占陆上石油资源总量的28%,陆上深层天然气资源将占陆上天然气资源总量的52%3。近年来,国内不断加大深层—超深层的油气勘探,在四川、塔里木、准噶尔等盆地相继取得重要突破4-9。新增油气储量中85%以上来自埋深超过4 500 m的深层,在6 000 m以下的超深层也发现了大量的油气资源。四川盆地元坝气田和安岳气田埋深分别达6 300~7 000 m和5 000~6 000 m46;塔里木盆地顺北油田埋深超过7 000 m,最新完钻的轮探1井在8 200 m之下的下寒武统获得重要发现7-8;准噶尔盆地近期发现的高产油气井高探1井埋深达5 678~5 777 m9。这些发现预示我国深层—超深层具有巨大的油气资源潜力。
中国主要含油气盆地多为叠合盆地,海相层系普遍埋深较大,经历复杂的构造演化历史和油气成藏史,使得深层—超深层油气勘探面临诸多挑战。埋深大、高温高压、多期构造叠加等,导致油气成因和分布规律认识不清,资源探明率较低2-3。传统的油气成因理论认为,液态烃稳定保存的温度范围为160~200 ℃10;而实际的勘探发现揭示,在温度超过200 ℃的油气藏中仍存在液态烃的富集11-12。同时,早期的观点认为,天然气的生成阶段为R O=0.5%~2.0%,对应的勘探“黄金带”主要在中浅层(图11013。深层—超深层天然气勘探不断有新发现,预示高成熟阶段(R O>2.0%)仍具有规模生气能力,天然气勘探“黄金带”可明显下延至更深地层514-16。传统理论认识与油气勘探发现的不一致,在很大程度上制约了深层—超深层油气资源的评价和预测。因此,在深层油气地质理论方面,亟待完善油气形成和保存机制的认识,明确高—过成熟阶段的生气母质来源和生气机制,回答深层天然气生成潜力和资源下限等关键科学问题。本文结合模拟实验和动力学研究,试图揭示海相I/II型有机质和液态烃裂解及有机—无机作用等的生气时限和贡献。
图1 传统油气生成演化模式和勘探黄金带

Fig.1 The traditional petroleum generation model and exploration gold-zone

1 干酪根和液态烃裂解生气作用

1.1 干酪根初次裂解生气时限和潜力

作为重要的生烃母质,I/II型干酪根的生烃潜力、特征和时限很大程度上决定了深层油气资源潜力和油气赋存形式。针对不同类型有机质生烃潜力和特征,地球化学家1017-22基于模拟实验开展了大量研究。ESPITALIÉ等17通过低成熟(T max=437 ℃)II型干酪根(I H=547 mg/gTOC)的升温热解实验,发现II型干酪根裂解的烃类气体(C1-5)和液态烃产率分别为60 mg/gTOC和490 mg/gTOC,占总生烃量的10.8%(质量分数,下同)和89.2%,其中轻质液态烃(C6-14)占12.5%。BEHAR等19基于不同类型干酪根开放体系的模拟实验,提出I、II和II—S型干酪根完全转化生成C1-5的产率为68~88 mg/gTOC。这些研究表明,I、II型干酪根初次裂解以生油为主,生油量占总生烃量的80%~90%,生气量占10%~20%182122。同时,通过动力学和干酪根结构分析,国内外学者对I/II型干酪根生烃时限也进行了探讨20-25。一般来说,干酪根生油的活化能主要分布在45~60 kcal/mol的范围,生气的活化能分布在50~70 kcal/mol范围,后者平均活化能要明显高于前者1721-22。I/II型干酪根生油对应的地质温度主体在50~160 ℃范围,成熟度范围主要为R O=0.5%~1.3%22。相对来说,轻质液态烃生成时限要晚于重质液态烃组分172025。此外,干酪根的生烃时限还受干酪根的性质和化学组成的影响,高含硫的II型有机质的生烃活化能要低于低硫有机质1923
不同研究关于干酪根初次裂解生气对应成熟度时限的认识还存在争议。早期的观点认为,干酪根裂解气与原油生成阶段基本一致10。而基于动力学推演的结果表明,I/II型干酪根生气结束的温度界限比生油要高30~60 ℃21-22。其中,II型干酪根初次裂解生气时限最高可延至210 ℃,要高于I型干酪根21。这预示,I/II型有机质在生油后期阶段(R O>1.3%)仍具有生气能力。本研究选取了5个低成熟烃源岩(表1),分离得到干酪根样品,通过黄金管热模拟装置分别开展了分步热解实验,探讨了I/II型干酪根初次裂解生气潜力和时限。从图2(a)的实验结果,可以发现5个干酪根样品初次裂解烃类气体产率最高可达120~140 mL/gTOC。Easy%R O=0.5%~2.0%阶段的生气量为90~110 mL/gTOC,Easy%R O=2.0%~3.5%阶段的生气潜力占总生气量的20%~30%,Easy%R O>3.5%时生气基本结束。不同成熟度I/II型干酪根的热解实验进一步证实,I/II型有机质或干酪根初次裂解的主生气期在R O=0.5%~2.0%,生气下限可延伸至R O=3.5%1626。核磁分析发现,在高—过成熟阶段I/II型干酪根结构中仍含有一定量的短支链脂肪结构26。因此,深层—超深层条件下,处于高—过成熟阶段的干酪根仍具有生气的潜力。
表1 烃源岩样品的地球化学特征

Table 1 The geochemical characteristics of source rocks

样品编号 层位 深度/m 岩性 TOC/% T max/℃ S 1/(mg/g) S 2/(mg/g) I H/(mg/gTOC R O/%
朝73-87 白垩系嫩江祖 834.6 泥岩 4.89 440 1.39 42.06 860.1 0.5
达11-3 白垩系嫩江祖 1 710 泥岩 3.71 444 0.91 30.74 828.6 0.5
KSL 二叠系大隆组 露头 泥岩 14.49 438 1.7 57.05 393.7 0.7
XML-1 元古界下马岭组 283.1 页岩 7.39 436 1.33 28.37 383.9 0.6
XML-2 元古界下马岭组 282.3 页岩 11.37 448 1.14 57.11 502.3 0.6
图2 低成熟I/II型干酪根初次裂解生气产率(a)和活化能分布(b)

达11-3、朝73-87和KSL采用的升温速率为2 ℃/h;XML-1和XML-2采用的升温速率为20 ℃/h,实验的温度范围为300~650 ℃,等效镜质体反射率(Easy%R O)是基于镜质体热演化的动力学参数27和模拟实验升温条件计算;活化能通过Weibull分布进行拟合,指前因子为1.0×1015/s

Fig.2 The gas yields (a) and activation energy distribution (b) for the primary cracking of low mature type I/II kerogens

基于本文热解实验的结果,通过动力学拟合,可计算得到低成熟干酪根样品初次裂解生气的动力学参数[图2(b)]。可以发现,I/II型干酪根初次裂解生气的活化能分布范围较宽(45~75 kcal/mol),平均活化能约为62~63 kcal/mol。

1.2 液态烃裂解动力学和生气贡献

沉积盆地的生烃母质除了固态的干酪根外,早期生成的液体烃在深埋过程中同样会发生裂解生气10。根据赋存位置的不同,可将液态烃分为源内残留液态烃和源外液态烃(包括源外分散液态烃和油藏中原油)2种主要类型24。源外液态烃的裂解作用是我国深层海相碳酸盐岩天然气的主要生成途径,比如安岳寒武系—震旦系发现的天然气藏等28-29。源内残留液态烃后期裂解也具有可观的生气潜力,对页岩气的聚集有重要贡献30-32
传统的生烃模式认为,液态烃的裂解主要发生在生油高峰到干气阶段,对应的成熟度大约为1.0%~2.0%(图1)。但深层高温油藏和液态烃的发现,指示原油的热稳定性和裂解生气温度范围要明显偏高111-12。国内外学者基于模拟实验,针对原油或液态烃裂解生气潜力和动力学开展了大量研究33-41。通常,轻质油或凝析油的热稳定性要高于重质原油和正常原油,蜡含量高的原油裂解的平均活化能要高于硫含量高的原油(图31533-34。原油裂解的平均活化能为约60 kcal/mol(指前因子A f=1.0×1014/s)37,裂解生气量为400~600 mg/g 1540-41。基于不同类型原油的裂解实验,发现轻质油或凝析油的热稳定性明显高于其他原油,重质组分和不稳定化合物含量较高的重质油热裂解的活化能相对较低1541
图3 不同原油或烃类裂解和干酪根初次裂解的活化能和温度

Fig.3 The activation energies and temperatures for the cracking of different oils or hydrocarbons and for the primary cracking of kerogen

实际上,原油的热稳定性和裂解生气潜力很大程度上受控于其性质或化学组成1635-36。根据热稳定性和裂解转化途径的差异,可将原油及裂解产物细分为如下不同组分:胶质及沥青质(NSOs化合物)、 C 14 +不稳定芳烃类( C 14 +ARO-1,含烷基脂肪链芳烃)、 C 14 +稳定芳烃类( C 14 +ARO-2,短支链或不含支链芳烃)、轻质芳烃(C6-14ARO)、重质饱和烃( C 14 +SAT)、轻质饱和烃(C6-14SAT)、气态烃(C1-5)及焦沥青(Coke)。动力学研究表明,轻质组分(C6-14饱和烃和芳烃)的裂解温度明显高于重烃( C 14 +饱和烃和芳烃)和重质组分(非烃沥青质)35-3641。对于原油而言,不同组成在裂解过程中还存在二次转化,根据6种不同组分的转化过程可将原油裂解进行如下细化:
N S O s     a 1 C 1 - 5   +   a 2 C 6 - 14 S A T   +   a 3 C 6 - 14 A R O   +   a 4 C 14 + S A T   +   a 5 C 14 + A R O - 1   +   a 6 C o k e
C 14 + S A T     a 7 C 1 - 5   +   a 8 C 6 - 14 S A T   +   a 9 C 14 + A R O - 2
C 14 + A R O - 1     a 10 C 1 - 5   +   a 11 C 14 + A R O - 2
C 14 + A R O - 2     C o k e
C 6 - 14 S A T     a 12 C 1 - 5   +   a 13 C o k e
C 6 - 14 A R O     a 14 C 1 - 5   +   a 15 C o k e
基于不同组分裂解反应的转化系数(ai)和动力学参数40进行地质推演,可建立原油全组分裂解生气模式(图4)。在2 ℃/Ma的升温速率条件下,原油大量裂解的温度为190~210 ℃,最大裂解生气量可达600 m3/t。非烃沥青质裂解的温度要明显低于饱和烃和芳烃类,轻质芳烃和饱和烃的热稳定性明显高于其他液态组分。乙烷裂解的温度要高于230 ℃,甲烷开始裂解的温度要高于320 ℃,对应的成熟度R O>5.0%。
图4 原油全组分裂解生气演化模式

初始原油组成:饱和烃50%;芳烃30%;非烃沥青质20%;地质升温速率:2 ℃/Ma

Fig.4 The gas generation model for the cracking of whole oil components

1.3 干酪根和液态烃裂解对深层天然气的贡献

不同热演化阶段的生气途径很大程度上决定了天然气的组成和同位素演化特征2942。以页岩气为例,碳同位素随湿度的演化可划分为3个主要阶段:即正常区(Pre-rollover)、反转区(Rollover)和后反转区(Post-rollover)43图5(a)]。①正常区:天然气湿度大于8%,乙烷碳同位素组成随湿度降低逐渐变重,主要对应干酪根裂解生气阶段;②反转区:湿度在1%~8%之间,乙烷碳同位素组成随湿度降低出现异常变轻,反映液态烃裂解生气贡献逐渐增加;③后反转区:湿度小于1%,乙烷碳同位素组成随湿度降低重新呈现变重的趋势,表明重烃气发生裂解。四川盆地及周缘志留系—寒武系页岩气显示为高—过成熟演化特征,主要分布在反转和后反转区。同时,在反转区和后反转区,页岩气碳同位素普遍具有完全倒转或部分倒转的特征(δ13C113C213C3或δ13C113C313C2)[图5(b)],反映出干酪根和液态烃裂解气的混合作用44
图5 四川盆地常规气和页岩气δ13C2随湿度(a)和δ13C1(b)的演化

Fig.5 The evolutions of δ13C2 with wetness (a) and with δ13C1 (b) for the conventional gas and shale gas in the Sichuan Basin

海相盆地常规天然气也具有类似的演化特征29。其中,塔里木盆地塔中地区凝析气主要分布在正常区,反映较低成熟度油型气的特征,四川盆地三叠系—石炭系常规气主要分布在反转区及其附近,安岳气田震旦系—寒武系常规气分布在后反转区[图5(a)]。基于天然气成因判识图版,国内学者对四川盆地海相地层天然气成因进行了详细探讨282945-47,提出四川盆地下古生界—元古界海相碳酸盐岩储层天然气和页岩气均为I/II型有机质热成因类型,主要来自于I/II型干酪根和原油裂解气的贡献2947,这与该盆地主要的寒武系和志留系2套烃源岩的类型一致4。生气演化历史的研究揭示,寒武系和志留系2套烃源岩经历了强烈的热演化过程,干酪根和后期生成的原油均发生了大规模的裂解生气作用44。基于包裹体的油气成藏分析证实,页岩气和常规气存在多期油气充注和成藏过程28。这说明干酪根裂解气和原油裂解气对页岩气和常规气都很可能存在贡献。结合碳同位素分馏动力学和数值计算,可建立干酪根和原油裂解气的定量判识图版29
将四川盆地志留系—寒武系页岩气[图6(a)]和石炭系—三叠系常规气[图6(b)]投影到该图版,结果发现,碳同位素的反转和倒转主要归因于2类热成因天然气的混合作用。同时发现,液态烃在高—过成熟阶段的裂解是四川盆地常规气和页岩气聚集的主要途径,生气贡献普遍达60%以上。而晚期出现的后反转或同位素变正序的现象则可能是由于高温埋深阶段乙烷发生了热裂解或乙烷发生了TSR降解作用2948-49
图6 干酪根和液态烃裂解气的混合成因定量判识图版(据ZHANG等29修改)

(a)志留系—寒武系页岩气 (b)四川盆地三叠系—石炭系常规气

Fig.6 The mixing models for the quantitative determination of kerogen and oil cracking gas (modified after ZHANG et al.29

因此,深层高—过成熟阶段存在多种生气途径,包括干酪根初次裂解、液态烃二次裂解甚至是重烃气的晚期裂解等。

2 深层有机—无机复合作用机制

深埋地下烃源岩或有机质的热演化过程发生在极其复杂的地质环境中。除了热应力作用以外,深层无机介质(如水、围岩矿物、幔源无机流体等)同样会影响甚至参与油气的生成和演化50-52。无机流体参与下的有机—无机作用也已经成为深层—超深层油气勘探关注的一个热点和难点,被认为是未来油气成因理论研究的前缘科学问题353。含油气盆地影响天然气生成的有机—无机作用主要包括3类:硫酸盐热化学还原作用(TSR)、深层无机流体的加氢生气作用和深部无机费托合成。

2.1 TSR反应机理和动力学

TSR是发生在碳酸盐岩油气藏中的一种重要的有机—无机作用,是导致高含硫化氢(H2S)天然气聚集的主要途径54。国内外学者基于地质观察、模拟实验和理论计算,对TSR作用的地质和地球化学特征、反应机制、动力学和反应温度等开展了卓有成效的研究54-67。岩石学和地球化学观察发现,发生TSR作用的油气藏通常存在单质硫和黄铁矿等特殊矿物,天然气普遍具有较高的干燥系数和H2S含量,原油、固体沥青和H2S的硫同位素(δ34S)组成相对较重54-58。TSR作用发生的温度门限大约在120~140 ℃,要明显低于液态烃的热裂解5660,TSR可能是加速四川盆地普光等气田高含H2S天然气高效富集的重要机制63
TSR反应可分为2个阶段,即启动阶段和H2S自催化阶段59-61。其中,启动阶段是硫酸盐直接氧化烃类的过程,也是控制TSR反应速率和启动温度的关键过程。原位拉曼光谱分析揭示,在高温实验条件和实际地质条件下,启动TSR反应的氧化剂分别为HSO4 -和硫酸盐接触离子对(CIP)63-64。量子化学计算结果表明,乙烷与硫酸镁接触离子对([MgSO4CIP)和HSO4 -反应的能垒或活化能分别为54.9 kcal/mol和54.2 kcal/mol62。基于模拟实验,学者计算得到了原油发生TSR反应的动力学参数6066。这些研究证实,原油发生TSR作用的平均活化能为55~58 kcal/mol,要明显低于原油热裂解[图7(a)]。基于动力学参数,可推演得到原油TSR反应和热裂解的转化曲线[图7(b)]。可以发现,TSR作用导致原油降解温度比热裂解低20~40 ℃,可加速原油裂解气的生成。值得注意的是,烃类TSR反应的速率受控于地层温度条件和溶解硫酸盐浓度,早期生成的H2S也能通过自催化作用一定程度上加速后期的TSR作用5964
图7 原油热裂解和TSR作用的活化能分布(a)和转化曲线(b)

转化曲线的动力学推演选取的地质升温速率为1~3 ℃/Ma

Fig.7 The activation energy distributions (a) and conversion curves (b) for oil thermal cracking and TSR

此外,理论计算和模拟实验的结果表明,甲烷发生TSR反应的地质温度约为200 ℃,明显低于甲烷的热裂解温度66。四川盆地普光气田天然气普遍具有较高的干燥系数(>97%),同时二叠系—三叠系通常经历了较高的地温(>200 ℃),这很可能是该地区天然气中甲烷发生了一定程度的TSR作用的重要原因4867-68

2.2 水—岩—有机质加氢生气贡献

众所周知,有机质的生气潜力和结束时限受控于氢含量10,作为含油气盆地重要的无机流体,地层水、深部热液及富氢流体(H2)能与有机质反应并为油气的生成提供无机氢源50。高温下水或H2的加氢作用能提高有机质的生烃潜力,并影响产物的成分与同位素组成5069-70。深层页岩气和常规气中常见的同位素异常,比如甲烷氢同位素的反转现象,被归因于水—有机质生气反应或烃类气体水热反应2971。根据深层无机流体类型的差异,可将无机流体参与下的有机质加氢生气作用分为2类,即水—有机质(或烃类)和H2—有机质的加氢生气作用。

2.2.1 水—有机质直接加氢生气

岩石中的水(包括孔隙水、矿物结构水和深部来源热水流体等)不仅能作为排烃介质,还会直接参与有机质的热成熟作用505272。模拟实验发现,高温条件下水与有机质发生反应能改变油气生成途径,提高部分产物(比如烃类和CO2等)的产率5073。同时,重水(D2O)存在下的有水热解实验常能观察到水中D向有机质或烃类的传递或交换效应697073。这些研究证实,高温下水能为油气的生成提供无机氢(H)和氧(O)。关于水—有机质直接反应机制的认识,包括自由基和正离子反应机制2种不同的认识505273-74。LEWAN等50认为水—有机质反应是以自由基机制进行,即有机大分子裂解生成的烃类或有机大分子自由基通过捕获水来源的氢,从而发生加氢裂解生成小分子烃类以及CO2和H2。还有观点认为,水的加氢作用主要是通过水离解的H+与中间产物烯烃以正离子途径发生加成反应的形式进行7375。LEIF等75基于330 ℃和350 ℃下Messel页岩的有水模拟实验,提出烯烃是有水热解的重要中间产物,水高温离解形成H+与烯烃的反应是异构产物形成和水—烃反应的主要机制。另外的观点认为,水能与中间产物烯烃直接发生水合反应生成醇类,后者进一步被氧化或分解生成酮类(或醛类)、羧酸以及CO25275
考虑到水作为无机氢源,有学者预测,深层天然气生成潜力要明显高于传统有机质或烃类裂解生气作用,天然气生成结束界限可延续至深部碳源完全消耗为止52。然而,值得注意的是,有机质的单独有水热解并不总能观察到烃类产率的显著增加507476。低成熟烃源岩在300~350 ℃条件下的有水热解实验发现,水能促进沥青大分子的加氢裂解,一定程度提高液态油的产率50。CAI等74通过下马岭干酪根样品在金管体系的有水热解实验,观察到有水体系液态油和最终裂解生气产率比无水体系高20%~30%。HE等70基于单体烃在330~420 ℃的有水和无水热解,对比发现水与烃类的加氢反应能提高烃类裂解生气潜力14%~22%。
此外,水的加氢生气作用或水与烃类之间的氢同位素交换会很大程度上影响烃类产物的氢同位素组成6973-79。GAO等76开展了不同成熟度干酪根样品在370 ℃下的有水和无水热解实验,发现有水热解体系生成的甲烷氢同位素组成明显偏轻。而低温(60~100 ℃)条件下不同类型(I型—III型)低成熟有机质(R O=0.39%~0.62%)的热解实验,却发现水的加入对反应生成甲烷的氢同位素无明显影响79。进一步的研究揭示,有水热解体系中甲烷的氢同位素组成受控于水的氢同位素和水—烃反应程度,后者又很大程度上受反应体系的温度和水含量等影响2970。ZHANG等29通过热力学计算,得到了H2O—CH4不同温度下氢同位素交换的平衡常数,并建立了不同地质条件下水加氢生成甲烷的氢同位素分馏模型。通过对安岳气田震旦系灯影组和寒武系龙王庙组天然气的地球化学分析,他们提出水的加氢生气导致了震旦系天然气的氢同位素反转。结合同位素分馏动力学研究,建立了水加氢生气贡献的定量判识图版(图8)。可以发现,水的加氢生气作用对高成熟常规气和页岩气的生成均具有重要贡献,其中安岳气田灯影组天然气中水—烃加氢作用的贡献可达20%~30%77。这一发现证实,水可以作为深层有机质或烃类裂解生气的潜在无机氢源。
图8 水的加氢生气贡献定量判识图版(据HE等77

Fig.8 The models for the quantitative determination of the contribution of hydrogenation by water for gas generation (referred to HE et al. 77

2.2.2 H2的间接加氢生气

高温下通过水—岩氧化还原反应生成以及深部来源的H2流体也可作为有机质生气的潜在无机氢源5180-82。烃源岩多发育在还原或硫化环境,在形成过程往往伴随大量还原性金属矿物(比如磁黄铁矿、黄铁矿、磁铁矿和菱铁矿等)的沉积。有研究发现,高温条件下还原性含铁矿物能与水发生氧化还原反应生成H2[如反应式(7)—(10)所示],从而实现与有机质或烃类的二次加氢生气8384
1.5   F e S + H 2 O = 0.75   F e S 2 + 0.25   F e 3 O 4 + H 2
2   F e 3 O 4 + H 2 O = 3   F e 2 O 3 + H 2
F e S 2 + 2 F e S + 4 H 2 O = F e 3 O 4 + 4 H 2 S
F e S 2 + F e 3 O 4 + 2 H 2 O = 2 F e 2 O 3 + 2 H 2 S
水—含铁矿物—烃类体系的模拟实验揭示,水热反应形成的氧化还原缓冲体系改变了有机分子热解反应的途径及产物的组成83。低成熟I型烃源岩与气态H2共存条件下的高温(450 ℃)热模拟实验观察到,甲烷产率较单独热解增加了29.4%51。而不同类型干酪根和H2共存的热模拟实验,进一步发现不同类型有机质H2的加氢生烃效应存在明显差异51。我们开展了含铁矿物—水—干酪根共存体系的热模拟实验(300~420 ℃),发现水—磁黄铁矿反应生成H2的间接加氢对有机质生气贡献明显高于水的直接加氢,且前者对产气量增加的贡献在很大程度上受控于有机质的热成熟度85。随着初始干酪根的成熟度由0.6%增加至1.75%,水—磁黄铁矿体系气态烃产率相对单独有水体系的增加量从1倍增加至4倍7485。这些研究结果表明,H2—有机质的加氢产气效应受多种因素的影响,包括有机质类型和成熟度、实验温度以及H2浓度等。实验结果如何推演至地质条件,准确评价含油气盆地深层无机流体加氢生气的贡献,仍然是有机—无机生烃研究的关键难题。

2.3 深部无机合成作用

世界上发现的大部分天然气都是生物或有机来源的,然而,在一些特殊地质环境(如海洋中脊,泥浆火山和毗邻深海断裂带)发现了无机成因甲烷80。迄今为止发现的无机烃类气体有2个主要特征:①甲烷碳同位素组成较有机来源的偏重;②碳同位素倒转86-87。普遍的观点认为,无机成因烃类气体主要是通过近似费托合成反应形成8088。深部幔源来源或洋中脊水热反应生成的H2可还原CO2或固体碳,从而生成小分子有机酸和甲烷等烃类818288。超基性岩体中,橄榄石的水热反应或蛇纹石化作用被认为是深部H2形成的重要途径[如反应式(11)]80-82
O l i v i n e + 1.34   H 2 O = 0.25   S e r p e n t i n e + 0.26   B r u c i t e + 0.08   M a g n e t i t e + 0.08   H 2
热力学计算表明,地温小于400 ℃时,橄榄石在水热条件下变得不稳定,会发生明显蛇纹石化作用生成H2 82。同时,有学者基于大量实际样品的分析,提出温度小于340 ℃时,有利于超基性岩体中水溶的CO2与H2发生氧化还原反应生成甲烷8288。300 ℃条件下CO2与橄榄石共存的水热实验,证实CO2可快速被蛇纹石化产生的H2还原生成甲酸类,但是,即使足够长时间也仅观察到少量的溶解态CO2转化为烃类气体88。不同无机碳源与H2共存下的金管模拟实验进一步揭示,在400 ℃条件下无机费托合成可生成同位素倒转的天然气,但固态和液态的无机碳源(石墨和碳酸钠溶液)生成烃类的转化率要明显低于气态碳源(图989。MCCOLLOM81通过200~320 ℃条件下模拟实验,观察到了类似的结果,即溶解的无机碳直接与H2发生费托合成仅能生成有限量的甲烷。
图9 不同碳源和H2在400 ℃条件下费托合成烃类气体的转化率

Fig.9 The conversion for hydrocarbon gas generation from Fischer-Tropsch synthesis involving H2 and various carbon sources

同时,他提出,当H2浓度足够高时,气相的费托合成反应可能生成一定产率的无机甲烷气。因此,深部费托合成生气作用对天然气同位素特征有明显影响,但生气量很大程度上受限于温度、矿物和流体介质条件等。

3 深层多途径复合生气模式的理论内涵及成藏贡献

基于上述认识,结合动力学地质推演,建立了深层多途径复合生气模式(图10),其理论内涵包括:
图10 沉积盆地深层多途径复合生气演化模式

地质升温速率:2 ℃/Ma;有机质最大生油量假定为500 mg/gTOC;蓝色部分代表源内残留液态烃,残留烃量=总生油量-排烃量-源内液态烃裂解量;灰色部分代表源外液态烃;累计排油效率是根据文献91的排烃模型计算,最大累计排油效率设定为70%。

Fig.10 The multi-path gas generation model in deep formations of sedimentary basins

(1)有机质或干酪根初次裂解生气潜力可达约140 m3/tTOC,生气下限可由传统认识的R O=2.0%下延至R O=3.5%,高—过成熟阶段(R O>2.0%)的生气量可占总生气量的20%~30%。在成熟演化阶段(R O=0.5%~1.3%),干酪根通过结构中长脂肪链的C—C键断裂生成液态烃和原油伴生气;在高成熟阶段(R O=1.3%~2.0%),主要为短脂肪链的裂解生成干气;进入过成熟阶段(R O>2.5%),芳香结构缩聚过程中的脱甲基作用是晚期甲烷气生成的主要途径162690
(2)全组分裂解动力学研究,揭示液态烃保存的温度上限可由传统认识的190 ℃上延至220 ℃。在2 ℃/Ma地质升温速率条件下,原油裂解主要的温度范围为190~220 ℃,对应的成熟度范围为R O=2.0%~2.3%。原油裂解动力学过程很大程度上受控于其组成特征,轻质组分的热稳定性明显高于重质组分。源内残留烃和源外液态烃裂解生气的贡献约为80 m3/tTOC和200 m3/tTOC,分别是高—过成熟页岩气和深层常规气重要的生气途径。
(3)深层无机流体参与的有机—无机作用贯穿整个油气生成演化过程。TSR作用明显降低油气藏中原油或烃类的热稳定性,在2 ℃/Ma地质升温速率条件下,原油和甲烷TSR的温度门限分别约为140 ℃和200 ℃。地质条件下,启动TSR反应的氧化剂为硫酸盐接触离子对,TSR反应速率很大程度上受控于地层水中溶解离子类型、浓度以及原油的含硫量等。水的加氢作用能提高有机质或烃类裂解生气潜力大约20%~30%,是深层—超深层高—过成熟阶段潜在的无机氢源。
多途径复合生气途径在我国海相沉积盆地深层多有体现。塔里木盆地和四川盆地同属海相克拉通盆地,但由于经历的构造演化和热历史存在明显差异,导致深层存在2类明显差异的油气赋存状态和成藏过程92-93。塔里木盆地相对较低的地温梯度,使得深层早期生成和聚集的原油未经历较高的温度演化史,因此主要以油藏和凝析油气藏的形式赋存。以近期发现的轮探1井为例,在超过8 000 m的下寒武统吾松格尔组仍发现了工业油流,原油密度为0.819 2 g/cm3,显示为轻质原油8。顺北地区在7 200~7 863 m的超深层奥陶系也发现了挥发油藏和轻质油藏9。热史和测温的结果显示,这些油藏的经历的埋藏普遍不超过170 ℃,明显低于液态烃或原油大量裂解的温度门限(图5)。基于金刚烷的定量分析,证实塔里木盆地深层—超深层油藏未经历过强烈的热裂解作用。此外,相对较弱的TSR等次生作用,也是导致该盆地深层富含油藏和凝析油气藏的重要原因92。相对来说,四川盆地深层海相地层普遍经历了强烈的热演化作用和TSR等次生作用,主要为高成熟的干气藏和高含H2S的酸性天然气藏,包括川西南威远气田、川中安岳气田、川东北普光气田等428294667。以安岳气田为例,预测的寒武系和震旦系2套含气层面积超过7 000 km2[4,探明地质储量超过0.8×1012 m3[44。天然气成因和成藏分析揭示,该地区天然气主要为液态烃裂解气,三叠纪—侏罗纪寒武系烃源岩开始大量生油,并运聚在有利聚集部位形成古油藏,侏罗纪—白垩纪古油藏发生强烈裂解生气作用,形成原地聚集的天然气藏2844。同时,在白垩纪晚期,震旦系埋藏温度超过230 ℃,早期生成并保存下来的乙烷发生了一定程度的裂解并生成甲烷29。结合烃源岩生排烃史和运聚成藏分析,预测川中地区寒武系烃源岩累计生油量可达0.95×1012 t,其中,源外分散型和聚集型液态烃(古油藏中原油)分别可达1.2×1011 t和5×1010 t44。源内残留烃、源外分散液态烃和古油藏中原油裂解生气量分别为152×1012 m3、71×1012 m3和34×1012 m3,按照相应1%、3%和5%的聚集效率,计算得到的3种液态烃裂解气资源量约为1.52×1012 m3、2.13×1012 m3和1.70×1012 m3

4 结论

深层—超深层存在多种生气途径,包括有机质或干酪根初次裂解、液态烃的二次裂解、重烃气(C2-5)晚期裂解、TSR作用、水—有机质—矿物加氢、深部无机费托合成等。它们构成了天然气形成的完整演化序列,表明在传统油气“死亡线”之下,深层—超深层仍具有规模天然气勘探潜力。
干酪根初次裂解生气量为约140 m3/tTOC,生气成熟度界限为R O=0.5%~3.5%,高—过成熟阶段(R O>2.0%)的生气贡献可占总生气量的15%。液态烃热稳定性受控于其组成特征,大量裂解的温度范围为190~220 ℃,对应的成熟度为R O=2.0%~2.3%,源内残留和源外液态烃的生气贡献分别可达约80 m3/tTOC和200 m3/tTOC。相对来说,轻质液态烃和重烃气的热稳定性明显高于重质液态烃,可作为深层—超深层重要的生气途径之一。无机流体和矿物参与的有机—无机作用对深层—超深层油气的生成和保存具有重要影响。其中,TSR作用能显著降低烃类的热稳定性,加速原油热降解生气,是导致深层高含H2S天然气藏(比如普光气田等)形成的重要机制。水—岩—有机质的加氢生气作用是深层不可忽视的一种生气途径,对高演化阶段页岩气(比如四川盆地高成熟页岩气)和常规气(安岳气田震旦系天然气)的聚集均具有潜在贡献。
目前关于无机流体参与下的有机—无机生气机制和贡献仍认识不清,很大程度上限制了沉积盆地深层乃至地球深部天然气的成因鉴别和资源评价。聚焦地幔到岩石圈中的碳、氢循环过程,以深部碳源和无机氢源间相互作用为研究对象,结合高温高压物理模拟实验手段和流体成因分析新技术,探讨深部流体、放射性物质和金属元素参与的复合生烃机理,是未来深层—超深层天然气成因理论研究的重要方向。
1
孙龙德,邹才能,朱如凯,等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发,2013,40(6): 641-649.

SUN L D, ZOU C N, ZHU R K, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development,2013,40(6):641-649.

2
贾承造,庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报,2015,36(12):1457-1469.

JIA C Z,PANG X Q.Research processes and main develop-ment directions of deep hydrocarbon geological theories[J].Acta Petrolei Sinica,2015,36(12):1457-1469.

3
中国石油学会. 深层油气地质学科发展报告[M]. 北京: 中国科学技术出版社, 2016: 5-6.

Chinese Petroleum Society. Report on Advances in Deep Petroleum Geology Discipline[M]. Beijing: Science and Technology of China Press, 2016: 5-6.

4
邹才能,杜金虎,徐春春,等.四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发,2014,41(3):278-293.

ZOU C N, DU J H, XU C C, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field,Sichuan Basin,SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.

5
赵文智,胡素云,刘伟,等. 论叠合含油气盆地多勘探“黄金带”及其意义[J]. 石油勘探与开发,2015, 42(1): 1-12.

ZHAO W Z, HU S Y, LIU W, et al. The multi-staged “golden zones” of hydrocarbon exploration in superimposed petroliferous basins of onshore China and its significance[J]. Petroleum Exploration and Development, 2015, 42(1): 1-12.

6
郭旭升,胡东风,李宇平,等. 四川盆地元坝气田发现与理论技术[J]. 石油勘探与开发,2018,45(1): 14-26.

GUO X S, HU D F, LI Y P, et al. Discovery and theoretical and technical innovations of Yuanba Gas Field in Sichuan Basin, SW China[J]. Petroleum Exploration and Development. 2018, 45(1): 14-26.

7
杨海军,陈永权,田军,等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探,2020, 25(2): 62-72.

YANG H J, CHEN Y Q, TIAN J, et al. Great discovery and its significance of ultra-deep oil and gas exploration in Well Luntan-1 of the Tarim Basin[J].China Petroleum Exploration, 2020, 25(2): 62-72.

8
马安来,金之钧,李慧莉,等. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学,2020,45(5): 1737-1753.

MA A L,JIN Z J,LI H L, et al. Secondary alteration and preservation of ultra-deep Ordovician oil reservoirs of north Shuntuoguole area of Tarim Basin, NW China[J]. Earth Science, 2020, 45(5): 1737-1753.

9
杜金虎,支东明,李建忠,等. 准噶尔盆地南缘高探1 井重大发现及下组合勘探前景展望[J]. 石油勘探与开发,2019, 46(2): 205-215.

DU J H, ZHI D M, LI J Z, et al. Major breakthrough of Well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin,NW China[J].Petroleum Ex-ploration and Development, 2019, 46(2): 205-215.

10
TISSOT B P, WELTE D H. Petroleum Formation and Occurrence[M]. Berlin: Springer Verlag, 1978:330-381.

11
PRICE L C, SCHOELL M. Constraints on the origins of hydrocarbon gas from compositions of gases at their site of origin[J]. Nature, 1995, 378: 368-371.

12
赵贤正,金凤鸣,王权,等. 渤海湾盆地牛东1超深潜山高温油气藏的发现及其意义[J]. 石油学报,2011, 32(6): 915-927.

ZHAO X Z, JIN F M, WANG Q, et al. Niudong 1 ultra-deep and ultra-high temperature subtle buried hill field in Bohai Bay Basin:Discovery and significance[J].Acta Petrolei Sinica, 2011, 32(6): 915-927.

13
BULLER A T, BJORKUM P A, NADEAU P, et al. Distribution of hydrocarbons in sedimentary basins[J]. Research & Technology Memoir, 2005(7): 1-15.

14
戴金星,秦胜飞,胡国艺,等. 新中国天然气勘探开发70年来的重大进展[J]. 石油勘探与开发,2019, 46(6): 1037-1046.

DAI J X, QIN S F, HU G Y, et al. Major progress in the natural gas exploration and development in the past seven decades in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1037-1046.

15
张水昌,胡国艺,米敬奎,等. 三种成因天然气生成时限与生成量及其对深部油气资源预测的影响[J]. 石油学报,2013, 34(S1): 41-50.

ZHANG S C, HU G Y, MI J K, et al. Time-limit and yield of natural gas generation from different origins and their effects on forecast of deep oil and gas resources[J]. Acta Petrolei Sinica, 2013, 34(S1): 41-50.

16
张水昌,胡国艺,柳少波,等. 中国天然气形成与分布[M]. 北京:石油工业出版社,2019.

ZHANG S C, HU G Y, LIU S B, et al. Chinese Natural Gas Formation and Distribution[M]. Beijing: Petroleum industry press, 2019.

17
ESPITALIÉ J, UNGERER P, IRWIN I, et al. Primary cracking of kerogens-Experimenting and modeling C1, C2-C5, C6-C15 and C15+ classes of hydrocarbons formed[J].Organic Geochemistry, 1988, 13(4-6): 893-899.

18
BURNHAM A K, BRAUN R L. Development of a detailed model of petroleum formation, destruction, and expulsion from lacustrine and marine source rocks[J]. Organic Geochemistry, 1990, 16(1/3): 27-39.

19
BEHAR F, VANDENBROUCKE M, TANG Y, et al. Thermal cracking of kerogen in open and closed systems: Determination of kinetic parameters and stoichiometric coefficients for oil and gas generation[J].Organic Geochemistry, 1997, 26(5-6): 321-339.

20
BEHAR F, LORANT F, LEWAN M. Role of NSO compounds during primary cracking of a type II kerogen and a type III lignite[J]. Organic Geochemistry,2008,39(1):1-22.

21
DIECKMANN V, SCHENK H J, HORSFIELD B, et al. Kinetics of petroleum generation and cracking by programmed-temperature closed-system pyrolysis of Toarcian shales[J]. Fuel, 1998, 77(1): 23-31.

22
ANDREW S. PEPPER, CORVI P J. Simple kinetic models of petroleum formation. Part I: Oil and gas generation from kerogen[J]. Marine and Petroleum Geology,1995,12(3):291-319.

23
HIILL R J, JARVIE D M, ZUMBERGE J M, et al. Oil and gas geochemistry and petroleum systems of the Fort Worth Basin[J]. AAPG Bulletin, 2007, 91(4): 445-473.

24
赵文智,王兆云,张水昌,等. 有机质“接力成气”模式的提出及其在勘探中的意义[J]. 石油勘探与开发,2005, 32(2): 1-7.

ZHAO W Z, WANG Z Y, ZHANG S C, et al. Successive generation of natural gas from organic materials and its significance in future exploration[J]. Petroleum Exploration and Development, 2005, 32(2): 1-7.

25
何坤, 张水昌, 王晓梅,等. 松辽盆地白垩系湖相Ⅰ型有机质生烃动力学[J]. 石油与天然气地质, 2014, 35(1): 42-49.

HE K, ZHANG S C, WANG X M, et al. Hydrocarbon generation kinetics of type-I organic matters in the Cretaceous lacustrine sequences,Songliao Basin[J]. Oil & Gas Geology,2014, 35(1):42-49.

26
MI J K, ZHANG S C, SU J, et al. The upper thermal maturity limit of primary gas generated from marine organic matters[J]. Marine and Petroleum Geology, 2018, 89: 120-129.

27
SWEENEY J J, BURNHAM A K. Evaluation of a simple model of vitrinite reflectance based on chemical-kinetics[J]. AAPG Bulletin, 1990, 74: 1559-1570.

28
魏国齐, 谢增业, 宋家荣, 等. 四川盆地川中古隆起震旦系—寒武系天然气特征及成因[J]. 石油勘探与开发,2015,42(6): 702-711.

WEI G Q, XIE Z Y, SONG J R, et al. Features and origin of natural gas in the Sinian-Cambrian of central Sichuan paleo-uplift, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(6): 702-711.

29
ZHANG S C, HE K, HU G Y, et al. Unique chemical and isotopic characteristics and origins of natural gases in the Paleozoic marine formations in the Sichuan Basin, SW China: Isotope fractionation of deep and high mature carbonate reservoir gases[J]. Marine and Petroleum Geology, 2018, 89: 68-82.

30
KOTARBA M J, CLAYTON J L, RICE D D, et al. Assessment of hydrocarbon source rock potential of polish bituminous coals and carbonaceous shales[J].Chemical Geology,2002,184(1): 11-35.

31
何坤,张水昌,王晓梅,等. 源内残留沥青原位裂解生气对有机质生烃的影响[J]. 石油学报,2013, 34(S1): 57-64.

HE K, ZHANG S C, WANG X M, et al. Effect of gas generation from in-situ cracking of residual bitumen in source on hydrocarbon generation from organic matters[J].Acta Petrolei Sinica, 2013, 34(S1): 57-64.

32
JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499.

33
HORSFIELD B, SCHENK H J, MILLS N, et al. An investigation of the in-reservoir conversion of oil to gas: Compositional and kinetic findings from closed-system programmed-temperature pyrolysis[J].Organic Geochemistry,1992,19:191-204.

34
SCHENK H J, PRIMIO R D, HORSFIELD B. The conversion of oil into gas in petroleum reservoirs: Part 1. Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis[J]. Organic Geochemistry, 1997, 26: 467-481.

35
TSUZUKI N, TAKEDA N, SUZUKI M, et al. The kinetic modeling of oil cracking by hydrothermal pyrolysis experiments[J]. International Journal of Coal Geology,1999,39:277-250.

36
VANDENBROUCKE M, BEHAR F, RUDKIEWICZ J L. Kinetic modeling of petroleum formation and cracking: Implications from the high pressure/high temperature Elgin Field (UK, North Sea)[J]. Organic Geochemistry, 1999, 30:1105-1125.

37
WAPLES D W. The kinetics of in-reservoir oil destruction and gas formation: Constraints from experimental and empirical data,and from thermodynamics[J].Organic Geochemistry,2000, 31:553-575.

38
HILL R J, TANG Y, KAPLAN I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34:1651-1672.

39
TIAN H, XIAO X M, WILKINS R W T, et al. New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: Implications for the in-situ accumulation of gas cracked from oils[J].AAPG Bulletin, 2008,92(2):181-200.

40
何坤,张水昌,米敬奎.原油裂解的动力学和控制因素研究[J]. 天然气地球科学,2011,22(2):1-8.

HE K, ZHANG S C, MI J K. Research on the kinetics and controlling factors for oil cracking[J].Natural Gas Geoscience, 2011, 22(2): 1-8.

41
ZHAO W Z, ZHANG S C, ZHANG B, et al. New insight into the kinetics of deep liquid hydrocarbon cracking and its significance[J]. Geofluids,2017. Doi:https://doi.org/10.1155/2017/6340986.

42
TANG Y C, PERRY J K, JENDEN P D, et al. Mathematical modeling of stable carbon isotope ratios in natural gases[J]. Geochimica et Cosmochimica Acta, 2000, 64: 2673-2687.

43
TILLEY B, MUEHLENBACHS K. Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems[J].Chemical Geology,2013,339: 194-204.

44
ZHAO W Z, ZHANG S C, HE K, et al. Origin of conventional and shale gas in Sinian-Lower Paleozoic strata in the Sichuan Basin: Relayed gas generation from liquid hydrocarbon cracking[J]. AAPG Bulletin, 2019, 103(6): 1265-1296.

45
DAI J X, ZOU C N, LIAO S M, et al. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin[J]. Organic Geochemistry, 2014, 74: 3-12.

46
戴金星,倪云燕,秦胜飞,等. 四川盆地超深层天然气地球化学特征[J]. 石油勘探与开发,2018, 45(4): 588-597.

DAI J X, NI Y Y, QIN S F, et al. Geochemical characteristics of ultra-deep natural gas in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(4): 588-597.

47
冯子齐,刘丹,黄士鹏,等. 四川盆地长宁地区志留系页岩气碳同位素组成[J]. 石油勘探与开发,2016,43(5): 705-713.

FENG Z Q, LIU D, HUANG S P, et al. Carbon isotopic composition of shale gas in the Silurian Longmaxi Formation of the Changning area, Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(5): 705-713.

48
CAI C F, XIE Z Y, WORDEN R H, et al. Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation east Sichuan Basin, China: Towards prediction of fatal H2S concentrations[J]. Marine and Petroleum Geology, 2004, 21(10): 1265-1279.

49
LIU Q Y, ZHU D Y, JIN Z J, et al. Coupled alteration of hydrothermal fluids and thermal sulfate reduction (TSR) in ancient dolomite reservoirs-An example from Sinian Dengying Formation in Sichuan Basin, southern China[J]. Precambrian Research, 2016, 285: 39-57.

50
LEWAN M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta,1997,61:3691-3723.

51
金之钧,张刘平,杨雷,等. 沉积盆地深部流体的地球化学特征及油气成藏效应初探[J].地球科学,2002,27(6):659-665.

JIN Z J, ZHANG L P, YANG L, et al. Preliminary study on the geochemical characteristics of fluids in deep sedimentary basins and hydrocarbon accumulation effect[J]. Earth Science, 2002, 27(6): 659-665.

52
SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J].Nature,2003,426:327-333.

53
刘全有,朱东亚,孟庆强,等. 深部流体及有机—无机相互作用下油气形成的基本内涵[J]. 中国科学:地球科学,2019,49(3): 499-520.

LIU Q Y, ZHU D Y, MENG Q Q, et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Science China Earth Sciences, 2019,49(3): 499-520.

54
ORR W L. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation-study of Big Horn Basin Paleozoic oils[J]. AAPG Bulletin, 1974, 58(11): 2295-2318.

55
KIYOSU Y, KROUSE H R. Carbon isotope effect during abiogenic oxidation of methane[J].Earth and Planetary Science Letters, 1989, 95(3-4): 302-306.

56
WORDEN R H, SMALLEY P C, OXTOBY N H. Gas souring by thermochemical sulfate reduction at 140 °C[J]. AAPG Bulletin, 1995, 79(6): 854-863.

57
MACHEL H G. Bacterial and thermochemical sulfate reduction in diagenetic settings old and new insights[J]. Sedimentary Geology, 2001, 140(1-2): 143-175.

58
CAI C F, ZHANG C M, HE H, et al. Carbon isotope fractionation during methane-dominated TSR in east Sichuan Basin gas fields, China: A review[J]. Marine and Petroleum Geology, 2013, 48: 100-110.

59
ZHANG T W, AMRANI A, ELLIS G S, et al. Experimental investigation on thermochemical sulfate reduction by H2S initiation[J].Geochimica et Cosmochimica Acta,2008,72: 3518-3530.

60
ZHANG T W, ELLIS G S, MA Q S, et al. Kinetics of uncatalyzed thermochemical sulfate reduction by sulfur-free paraffin[J]. Geochimica et Cosmochimica Acta, 2012, 96: 1-17.

61
AMRANI A, ZHANG T W, MA Q S, et al. The role of labile sulfur compounds in thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2008, 72: 2960-2972.

62
MA Q S, ELLIS G S, AMRANI A, et al. Theoretical study on the reactivity of sulfate species with hydrocarbons[J]. Geochimica et Cosmochimica Acta, 2008, 72: 4565-4576.

63
张水昌,朱光有,何坤.硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J]. 岩石学报,2011,27(3):809-826.

ZHANG S C, ZHU G Y, HE K. The effect and mechanism of sulphate thermochemical reduction on the formation of gas from crude oil pyrolysis and transformation of carbonate reservoirs[J]. Acta Petrologica Sinica, 2011, 27(3): 809-826.

64
HE K, ZHANG S C, MI J K, et al. The speciation of aqueous sulfate and its implication on the initiation mechanisms of TSR at different temperatures[J].Applied Geochemistry,2014, 43: 121-131.

65
LIU Q Y, WORDEN R H, JIN Z J, et al. TSR versus non-TSR processes and their impact on gas geochemistry and carbon stable isotopes in Carboniferous, Permian and Lower Triassic marine carbonate gas reservoirs in the eastern Sichuan Basin[J].Geochimica et Cosmochimica Acta,2013,100:96-115.

66
HE K, ZHANG S C, MI J K, et al. Experimental and theoretical studies on kinetics for thermochemical sulfate reduction of oil, C2-5 and methane[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 59-72.

67
HAO F,ZHANG X F,WANG C W,et al. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin,China[J]. Earth-Science Reviews,2015,141:154-177.

68
HE K, ZHANG S C, WANG X M, et al. Hydrothermal experiments involving methane and sulfate: Insights into carbon isotope fractionation of methane during thermochemical sulfate reduction[J]. Organic Geochemistry,2020. Doi:https://doi.org/10.1016/j.orggeochem.2020.104101.

69
HOERING T C. Thermal reactions of kerogen with added water, heavy water and pure organic substances[J]. Organic Geochemistry, 1984, 5(4): 267-278.

70
HE K,ZHANG S C,MI J K,et al. Pyrolysis involving n-hexadecane, water and minerals: Insight into the mechanisms and isotope fractionation for water-hydrocarbon reaction[J]. Journal of Analytical and Applied Pyrolysis,2018,130:198-208.

71
BURRUSS R C, LAUGHREY C D. Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons[J]. Organic Geochemistry,2010,41: 1285-1296.

72
LEWAN M D,ROY S.Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation[J]. Organic Geochemistry,2011,42(1):31-41.

73
SCHIMMELMANN A, BOUDOU J P, LEWAN M D, et al. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis[J].Organic Geochemistry, 2001, 32(8): 1009-1018.

74
CAI Y W, ZHNAG S C, HE K, et al. Effects of U-ore on the chemical and isotopic composition of products of hydrous pyrolysis of organic matters[J]. Petroleum Science, 2017, 14(2): 315-329.

75
LEIF R N, SIMONEIT B R T. The role of alkenes produced during hydrous pyrolysis of a shale[J]. Organic Geochemistry, 2000, 31(11): 1189-1208.

76
GAO L, SCHIMMELMANN A, TANG Y C, et al. Isotope rollover in shale gas observed in laboratory pyrolysis experiments: Insight to the role of water in thermogenesis of mature gas[J]. Organic Geochemistry, 2014, 68: 95-106.

77
HE K, ZHANG S C, MI J K, et al. Carbon and hydrogen isotope fractionation for methane from non-isothermal pyrolysis of oil in anhydrous and hydrothermal conditions[J]. Energy Exploration & Exploitation,2019,37(5):1558-1576.

78
REEVES E P, SEEWALD J S, SYLVA S P. Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions[J]. Geochimica et Cosmochimica Acta, 2012, 77: 582-599.

79
WEI L, SCHIMMELMANN A, MASTALERZ M, et al. Catalytic generation of methane at 60 to 100 °C and 0.1 to 300 MPa from source rocks containing kerogen Types I, II, and III[J]. Geochimica et Cosmochimica Acta, 2018, 23: 88-116.

80
ETIOPE G, WHITICAR M J. Abiotic methane in continental ultramafic rock systems: Towards a genetic model[J]. Applied Geochemistry, 2019, 102: 139-152.

81
MCCOLLOM T M. Abiotic methane formation during experimental serpentinization of olivine[J]. Proceedings of the National Academy of Science of the United States of America, 2016, 113(49): 13965-13970.

82
KLEIN F, GROZEVA N G, SEEWALD J S, et al. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions[J]. Proceedings of the National Academy of Science of the United States of America,2019,116(36):17666-17672.

83
SEEWALD J S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: Constraints from mineral buffered laboratory experiments[J]. Geochimica et Cosmochimica Acta,2001,65(10):1641-1664.

84
MILESI V, PRINZHOFER A, GUYOT F, et al. Contribution of siderite-water interaction for the unconventional generation of hydrocarbon gases in the Solimoes basin, north-west Brazil[J].Marine and Petroleum Geology,2016,71:168-182.

85
HE K, ZHANG S C, MI J K. Hydrous pyrolysis of kerogens with FeS: Insights into the carbon and hydrogen isotope fractionation of hydrocarbon gases in deep formation[C].Goldschmidt,2018 Conference, Boston,2018.

86
JENDEN P D, DRAZAN D J, KAPLAN I R. Mixing of thermogenic natural gases in northern Appalachian Basin[J]. AAPG Bulletin, 1993, 77(6): 980-998.

87
戴金星, 米敬奎, 李志生,等. 无机成因和有机成因烷烃气的鉴别[J]. 中国科学:地球科学, 2008, 38(11): 1329-1341.

DAI J X, MI J K, LI Z S, et al. Identification of inorganic and organic alkane gases[J].Chinese Science:Earth Science,2008, 38(11): 1329-1341.

88
MCCOLLOM T M, SEEALD J S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine[J].Geochimica et Cosmochimica Acta, 2001, 659(21): 3769-3778.

89
ZHANG S C, MI J K, HE K. Synthesis of hydrocarbon gases from four different carbon sources and hydrogen gas using a gold-tube system by Fischer-Tropsch method[J]. Chemical Geology, 2013, 349-350: 27-35.

90
ERDMANN M, HORSFIELD B. Enhanced late gas generation potential of petroleum source rocks via recombination reactions: Evidence from the Norwegian North Sea[J]. Geochimica et Cosmochimica Acta, 2006, 70(15): 3943-3956.

91
BRAUN R L, BURNHAM A K. Mathematical model of oil generation, degradation, and expulsion[J]. Energy & Fuels, 1990, 4(2): 132-146.

92
ZHANG S C, SU J, HUANG H P, et al. Genetic origin of sour gas condensates in the Paleozoic dolomite reservoirs of the Tazhong Uplift, Tarim Basin[J]. Marine and Petroleum Geology,2015,68:107-119.

93
邱楠生,刘雯,徐秋晨,等. 深层—古老海相层系温压场与油气成藏[J]. 地球科学,2018, 43(10): 3511-3525.

QIU N S, LIU W, XU Q C, et al. Temperature-pressure field and hydrocarbon accumulation in deep-ancient marine strata[J]. Earth Science, 2018, 43(10): 3511-3525.

Outlines

/