Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (10): 1421-1435.doi: 10.11764/j.issn.1672-1926.2021.08.013

    Next Articles

The multi-path gas generation model and its potential contribution to petroleum accumulation in deep formations

Shuichang ZHANG1,2(),Kun HE1,2,Xiaomei WANG1,2,Guoyi HU1,2,Bin ZHANG1,2,Jingkui MI1,2,Jin SU1,2   

  1. 1.Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China
    2.Key Laboratory of Petroleum Geochemistry,CNPC,Beijing 100083,China
  • Received:2021-07-05 Revised:2021-08-14 Online:2021-10-10 Published:2021-10-21
  • Supported by:
    The National Key Research & Development Program of China(2017YFC0603102);the National Natural Science Foundation of China(41973068);the Strategic Priority Research Program of the Chinese Academy of Sciences(Class A)(XDA14010101)

Abstract:

Deep to ultra-deep formations are important breakthroughs in oil and gas exploration at present and in the future. Understanding of the generation pathway, mechanism and potential of natural gas at high thermal maturation stages is beneficial to develop natural gas generation theory and to guide petroleum exploration in deep formations. Combined with extensive pyrolysis experiments and kinetic calculations, the maturity and temperature stages (gas generation time-limit) as well as potential of gas generation from various sources and pathways were discussed, and a multi-path gas generation model was established. The gas generation from thermal degradation of type I/II kerogens (kerogen primary cracking) can extend to RO of 3.5% with the maximum yield of 120-140 m3/tTOC, the potential of kerogen cracking gas at RO>2.0% can reach 20-40 m3/tTOC. The kinetics for the cracking of whole oil components were also addressed. It is proposed that intensive cracking of liquid hydrocarbons at a heating rate of 2 ℃/Ma mainly occurs at 190-220 ℃ with the corresponding maturity of RO=2.0%-2.3%. The contributions of gas derived from thermal cracking of residual hydrocarbons in source rocks and hydrocarbons outside the source are ~80 m3/tTOC and 200 m3/tTOC, respectively. The onset temperature for ethane cracking is higher than 230 ℃. Thermochemical sulfate reduction (TSR) leads to a decrease of 20–40 ℃ in temperature for the occurrence of oil cracking, accelerating the efficient accumulation of natural gas with high content of hydrogen sulfide (H2S). Besides, gas generation via hydrogenation involving inorganic fluids and minerals promotes gas potential for about 20%-30%, and is one of the pathways for the generation of high-over mature gas in deep formations. The multi-path gas generation process constitutes an integrated evolution sequence of natural gas formation, revealing that there is large-scale gas exploration potential under the traditional “deadline” of oil and gas in deep to ultra-deep formations.

Key words: Deep formation, Gas generation time-limit, Kerogen cracking gas, Oil cracking gas, Organic-inorganic interactions

CLC Number: 

  • TE122.1

Fig.1

The traditional petroleum generation model and exploration gold-zone"

Table 1

The geochemical characteristics of source rocks"

样品编号层位深度/m岩性TOC/%Tmax/℃S1/(mg/g)S2/(mg/g)IH/(mg/gTOCRO/%
朝73-87白垩系嫩江祖834.6泥岩4.894401.3942.06860.10.5
达11-3白垩系嫩江祖1 710泥岩3.714440.9130.74828.60.5
KSL二叠系大隆组露头泥岩14.494381.757.05393.70.7
XML-1元古界下马岭组283.1页岩7.394361.3328.37383.90.6
XML-2元古界下马岭组282.3页岩11.374481.1457.11502.30.6

Fig.2

The gas yields (a) and activation energy distribution (b) for the primary cracking of low mature type I/II kerogens"

Fig.3

The activation energies and temperatures for the cracking of different oils or hydrocarbons and for the primary cracking of kerogen"

Fig.4

The gas generation model for the cracking of whole oil components"

Fig.5

The evolutions of δ13C2 with wetness (a) and with δ13C1 (b) for the conventional gas and shale gas in the Sichuan Basin"

Fig.6

The mixing models for the quantitative determination of kerogen and oil cracking gas (modified after ZHANG et al.[29])"

Fig.7

The activation energy distributions (a) and conversion curves (b) for oil thermal cracking and TSR"

Fig.8

The models for the quantitative determination of the contribution of hydrogenation by water for gas generation (referred to HE et al. [77])"

Fig.9

The conversion for hydrocarbon gas generation from Fischer-Tropsch synthesis involving H2 and various carbon sources"

Fig.10

The multi-path gas generation model in deep formations of sedimentary basins"

1 孙龙德,邹才能,朱如凯,等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发,2013,40(6): 641-649.
SUN L D, ZOU C N, ZHU R K, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development,2013,40(6):641-649.
2 贾承造,庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报,2015,36(12):1457-1469.
JIA C Z,PANG X Q.Research processes and main develop-ment directions of deep hydrocarbon geological theories[J].Acta Petrolei Sinica,2015,36(12):1457-1469.
3 中国石油学会. 深层油气地质学科发展报告[M]. 北京: 中国科学技术出版社, 2016: 5-6.
Chinese Petroleum Society. Report on Advances in Deep Petroleum Geology Discipline[M]. Beijing: Science and Technology of China Press, 2016: 5-6.
4 邹才能,杜金虎,徐春春,等.四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发,2014,41(3):278-293.
ZOU C N, DU J H, XU C C, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field,Sichuan Basin,SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.
5 赵文智,胡素云,刘伟,等. 论叠合含油气盆地多勘探“黄金带”及其意义[J]. 石油勘探与开发,2015, 42(1): 1-12.
ZHAO W Z, HU S Y, LIU W, et al. The multi-staged “golden zones” of hydrocarbon exploration in superimposed petroliferous basins of onshore China and its significance[J]. Petroleum Exploration and Development, 2015, 42(1): 1-12.
6 郭旭升,胡东风,李宇平,等. 四川盆地元坝气田发现与理论技术[J]. 石油勘探与开发,2018,45(1): 14-26.
GUO X S, HU D F, LI Y P, et al. Discovery and theoretical and technical innovations of Yuanba Gas Field in Sichuan Basin, SW China[J]. Petroleum Exploration and Development. 2018, 45(1): 14-26.
7 杨海军,陈永权,田军,等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探,2020, 25(2): 62-72.
YANG H J, CHEN Y Q, TIAN J, et al. Great discovery and its significance of ultra-deep oil and gas exploration in Well Luntan-1 of the Tarim Basin[J].China Petroleum Exploration, 2020, 25(2): 62-72.
8 马安来,金之钧,李慧莉,等. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学,2020,45(5): 1737-1753.
MA A L,JIN Z J,LI H L, et al. Secondary alteration and preservation of ultra-deep Ordovician oil reservoirs of north Shuntuoguole area of Tarim Basin, NW China[J]. Earth Science, 2020, 45(5): 1737-1753.
9 杜金虎,支东明,李建忠,等. 准噶尔盆地南缘高探1 井重大发现及下组合勘探前景展望[J]. 石油勘探与开发,2019, 46(2): 205-215.
DU J H, ZHI D M, LI J Z, et al. Major breakthrough of Well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin,NW China[J].Petroleum Ex-ploration and Development, 2019, 46(2): 205-215.
10 TISSOT B P, WELTE D H. Petroleum Formation and Occurrence[M]. Berlin: Springer Verlag, 1978:330-381.
11 PRICE L C, SCHOELL M. Constraints on the origins of hydrocarbon gas from compositions of gases at their site of origin[J]. Nature, 1995, 378: 368-371.
12 赵贤正,金凤鸣,王权,等. 渤海湾盆地牛东1超深潜山高温油气藏的发现及其意义[J]. 石油学报,2011, 32(6): 915-927.
ZHAO X Z, JIN F M, WANG Q, et al. Niudong 1 ultra-deep and ultra-high temperature subtle buried hill field in Bohai Bay Basin:Discovery and significance[J].Acta Petrolei Sinica, 2011, 32(6): 915-927.
13 BULLER A T, BJORKUM P A, NADEAU P, et al. Distribution of hydrocarbons in sedimentary basins[J]. Research & Technology Memoir, 2005(7): 1-15.
14 戴金星,秦胜飞,胡国艺,等. 新中国天然气勘探开发70年来的重大进展[J]. 石油勘探与开发,2019, 46(6): 1037-1046.
DAI J X, QIN S F, HU G Y, et al. Major progress in the natural gas exploration and development in the past seven decades in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1037-1046.
15 张水昌,胡国艺,米敬奎,等. 三种成因天然气生成时限与生成量及其对深部油气资源预测的影响[J]. 石油学报,2013, 34(S1): 41-50.
ZHANG S C, HU G Y, MI J K, et al. Time-limit and yield of natural gas generation from different origins and their effects on forecast of deep oil and gas resources[J]. Acta Petrolei Sinica, 2013, 34(S1): 41-50.
16 张水昌,胡国艺,柳少波,等. 中国天然气形成与分布[M]. 北京:石油工业出版社,2019.
ZHANG S C, HU G Y, LIU S B, et al. Chinese Natural Gas Formation and Distribution[M]. Beijing: Petroleum industry press, 2019.
17 ESPITALIÉ J, UNGERER P, IRWIN I, et al. Primary cracking of kerogens-Experimenting and modeling C1, C2-C5, C6-C15 and C15+ classes of hydrocarbons formed[J].Organic Geochemistry, 1988, 13(4-6): 893-899.
18 BURNHAM A K, BRAUN R L. Development of a detailed model of petroleum formation, destruction, and expulsion from lacustrine and marine source rocks[J]. Organic Geochemistry, 1990, 16(1/3): 27-39.
19 BEHAR F, VANDENBROUCKE M, TANG Y, et al. Thermal cracking of kerogen in open and closed systems: Determination of kinetic parameters and stoichiometric coefficients for oil and gas generation[J].Organic Geochemistry, 1997, 26(5-6): 321-339.
20 BEHAR F, LORANT F, LEWAN M. Role of NSO compounds during primary cracking of a type II kerogen and a type III lignite[J]. Organic Geochemistry,2008,39(1):1-22.
21 DIECKMANN V, SCHENK H J, HORSFIELD B, et al. Kinetics of petroleum generation and cracking by programmed-temperature closed-system pyrolysis of Toarcian shales[J]. Fuel, 1998, 77(1): 23-31.
22 ANDREW S. PEPPER, CORVI P J. Simple kinetic models of petroleum formation. Part I: Oil and gas generation from kerogen[J]. Marine and Petroleum Geology,1995,12(3):291-319.
23 HIILL R J, JARVIE D M, ZUMBERGE J M, et al. Oil and gas geochemistry and petroleum systems of the Fort Worth Basin[J]. AAPG Bulletin, 2007, 91(4): 445-473.
24 赵文智,王兆云,张水昌,等. 有机质“接力成气”模式的提出及其在勘探中的意义[J]. 石油勘探与开发,2005, 32(2): 1-7.
ZHAO W Z, WANG Z Y, ZHANG S C, et al. Successive generation of natural gas from organic materials and its significance in future exploration[J]. Petroleum Exploration and Development, 2005, 32(2): 1-7.
25 何坤, 张水昌, 王晓梅,等. 松辽盆地白垩系湖相Ⅰ型有机质生烃动力学[J]. 石油与天然气地质, 2014, 35(1): 42-49.
HE K, ZHANG S C, WANG X M, et al. Hydrocarbon generation kinetics of type-I organic matters in the Cretaceous lacustrine sequences,Songliao Basin[J]. Oil & Gas Geology,2014, 35(1):42-49.
26 MI J K, ZHANG S C, SU J, et al. The upper thermal maturity limit of primary gas generated from marine organic matters[J]. Marine and Petroleum Geology, 2018, 89: 120-129.
27 SWEENEY J J, BURNHAM A K. Evaluation of a simple model of vitrinite reflectance based on chemical-kinetics[J]. AAPG Bulletin, 1990, 74: 1559-1570.
28 魏国齐, 谢增业, 宋家荣, 等. 四川盆地川中古隆起震旦系—寒武系天然气特征及成因[J]. 石油勘探与开发,2015,42(6): 702-711.
WEI G Q, XIE Z Y, SONG J R, et al. Features and origin of natural gas in the Sinian-Cambrian of central Sichuan paleo-uplift, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(6): 702-711.
29 ZHANG S C, HE K, HU G Y, et al. Unique chemical and isotopic characteristics and origins of natural gases in the Paleozoic marine formations in the Sichuan Basin, SW China: Isotope fractionation of deep and high mature carbonate reservoir gases[J]. Marine and Petroleum Geology, 2018, 89: 68-82.
30 KOTARBA M J, CLAYTON J L, RICE D D, et al. Assessment of hydrocarbon source rock potential of polish bituminous coals and carbonaceous shales[J].Chemical Geology,2002,184(1): 11-35.
31 何坤,张水昌,王晓梅,等. 源内残留沥青原位裂解生气对有机质生烃的影响[J]. 石油学报,2013, 34(S1): 57-64.
HE K, ZHANG S C, WANG X M, et al. Effect of gas generation from in-situ cracking of residual bitumen in source on hydrocarbon generation from organic matters[J].Acta Petrolei Sinica, 2013, 34(S1): 57-64.
32 JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499.
33 HORSFIELD B, SCHENK H J, MILLS N, et al. An investigation of the in-reservoir conversion of oil to gas: Compositional and kinetic findings from closed-system programmed-temperature pyrolysis[J].Organic Geochemistry,1992,19:191-204.
34 SCHENK H J, PRIMIO R D, HORSFIELD B. The conversion of oil into gas in petroleum reservoirs: Part 1. Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis[J]. Organic Geochemistry, 1997, 26: 467-481.
35 TSUZUKI N, TAKEDA N, SUZUKI M, et al. The kinetic modeling of oil cracking by hydrothermal pyrolysis experiments[J]. International Journal of Coal Geology,1999,39:277-250.
36 VANDENBROUCKE M, BEHAR F, RUDKIEWICZ J L. Kinetic modeling of petroleum formation and cracking: Implications from the high pressure/high temperature Elgin Field (UK, North Sea)[J]. Organic Geochemistry, 1999, 30:1105-1125.
37 WAPLES D W. The kinetics of in-reservoir oil destruction and gas formation: Constraints from experimental and empirical data,and from thermodynamics[J].Organic Geochemistry,2000, 31:553-575.
38 HILL R J, TANG Y, KAPLAN I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34:1651-1672.
39 TIAN H, XIAO X M, WILKINS R W T, et al. New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: Implications for the in-situ accumulation of gas cracked from oils[J].AAPG Bulletin, 2008,92(2):181-200.
40 何坤,张水昌,米敬奎.原油裂解的动力学和控制因素研究[J]. 天然气地球科学,2011,22(2):1-8.
HE K, ZHANG S C, MI J K. Research on the kinetics and controlling factors for oil cracking[J].Natural Gas Geoscience, 2011, 22(2): 1-8.
41 ZHAO W Z, ZHANG S C, ZHANG B, et al. New insight into the kinetics of deep liquid hydrocarbon cracking and its significance[J]. Geofluids,2017. Doi:https://doi.org/10.1155/2017/6340986.
42 TANG Y C, PERRY J K, JENDEN P D, et al. Mathematical modeling of stable carbon isotope ratios in natural gases[J]. Geochimica et Cosmochimica Acta, 2000, 64: 2673-2687.
43 TILLEY B, MUEHLENBACHS K. Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems[J].Chemical Geology,2013,339: 194-204.
44 ZHAO W Z, ZHANG S C, HE K, et al. Origin of conventional and shale gas in Sinian-Lower Paleozoic strata in the Sichuan Basin: Relayed gas generation from liquid hydrocarbon cracking[J]. AAPG Bulletin, 2019, 103(6): 1265-1296.
45 DAI J X, ZOU C N, LIAO S M, et al. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin[J]. Organic Geochemistry, 2014, 74: 3-12.
46 戴金星,倪云燕,秦胜飞,等. 四川盆地超深层天然气地球化学特征[J]. 石油勘探与开发,2018, 45(4): 588-597.
DAI J X, NI Y Y, QIN S F, et al. Geochemical characteristics of ultra-deep natural gas in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(4): 588-597.
47 冯子齐,刘丹,黄士鹏,等. 四川盆地长宁地区志留系页岩气碳同位素组成[J]. 石油勘探与开发,2016,43(5): 705-713.
FENG Z Q, LIU D, HUANG S P, et al. Carbon isotopic composition of shale gas in the Silurian Longmaxi Formation of the Changning area, Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(5): 705-713.
48 CAI C F, XIE Z Y, WORDEN R H, et al. Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation east Sichuan Basin, China: Towards prediction of fatal H2S concentrations[J]. Marine and Petroleum Geology, 2004, 21(10): 1265-1279.
49 LIU Q Y, ZHU D Y, JIN Z J, et al. Coupled alteration of hydrothermal fluids and thermal sulfate reduction (TSR) in ancient dolomite reservoirs-An example from Sinian Dengying Formation in Sichuan Basin, southern China[J]. Precambrian Research, 2016, 285: 39-57.
50 LEWAN M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta,1997,61:3691-3723.
51 金之钧,张刘平,杨雷,等. 沉积盆地深部流体的地球化学特征及油气成藏效应初探[J].地球科学,2002,27(6):659-665.
JIN Z J, ZHANG L P, YANG L, et al. Preliminary study on the geochemical characteristics of fluids in deep sedimentary basins and hydrocarbon accumulation effect[J]. Earth Science, 2002, 27(6): 659-665.
52 SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J].Nature,2003,426:327-333.
53 刘全有,朱东亚,孟庆强,等. 深部流体及有机—无机相互作用下油气形成的基本内涵[J]. 中国科学:地球科学,2019,49(3): 499-520.
LIU Q Y, ZHU D Y, MENG Q Q, et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Science China Earth Sciences, 2019,49(3): 499-520.
54 ORR W L. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation-study of Big Horn Basin Paleozoic oils[J]. AAPG Bulletin, 1974, 58(11): 2295-2318.
55 KIYOSU Y, KROUSE H R. Carbon isotope effect during abiogenic oxidation of methane[J].Earth and Planetary Science Letters, 1989, 95(3-4): 302-306.
56 WORDEN R H, SMALLEY P C, OXTOBY N H. Gas souring by thermochemical sulfate reduction at 140 °C[J]. AAPG Bulletin, 1995, 79(6): 854-863.
57 MACHEL H G. Bacterial and thermochemical sulfate reduction in diagenetic settings old and new insights[J]. Sedimentary Geology, 2001, 140(1-2): 143-175.
58 CAI C F, ZHANG C M, HE H, et al. Carbon isotope fractionation during methane-dominated TSR in east Sichuan Basin gas fields, China: A review[J]. Marine and Petroleum Geology, 2013, 48: 100-110.
59 ZHANG T W, AMRANI A, ELLIS G S, et al. Experimental investigation on thermochemical sulfate reduction by H2S initiation[J].Geochimica et Cosmochimica Acta,2008,72: 3518-3530.
60 ZHANG T W, ELLIS G S, MA Q S, et al. Kinetics of uncatalyzed thermochemical sulfate reduction by sulfur-free paraffin[J]. Geochimica et Cosmochimica Acta, 2012, 96: 1-17.
61 AMRANI A, ZHANG T W, MA Q S, et al. The role of labile sulfur compounds in thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2008, 72: 2960-2972.
62 MA Q S, ELLIS G S, AMRANI A, et al. Theoretical study on the reactivity of sulfate species with hydrocarbons[J]. Geochimica et Cosmochimica Acta, 2008, 72: 4565-4576.
63 张水昌,朱光有,何坤.硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J]. 岩石学报,2011,27(3):809-826.
ZHANG S C, ZHU G Y, HE K. The effect and mechanism of sulphate thermochemical reduction on the formation of gas from crude oil pyrolysis and transformation of carbonate reservoirs[J]. Acta Petrologica Sinica, 2011, 27(3): 809-826.
64 HE K, ZHANG S C, MI J K, et al. The speciation of aqueous sulfate and its implication on the initiation mechanisms of TSR at different temperatures[J].Applied Geochemistry,2014, 43: 121-131.
65 LIU Q Y, WORDEN R H, JIN Z J, et al. TSR versus non-TSR processes and their impact on gas geochemistry and carbon stable isotopes in Carboniferous, Permian and Lower Triassic marine carbonate gas reservoirs in the eastern Sichuan Basin[J].Geochimica et Cosmochimica Acta,2013,100:96-115.
66 HE K, ZHANG S C, MI J K, et al. Experimental and theoretical studies on kinetics for thermochemical sulfate reduction of oil, C2-5 and methane[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 59-72.
67 HAO F,ZHANG X F,WANG C W,et al. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin,China[J]. Earth-Science Reviews,2015,141:154-177.
68 HE K, ZHANG S C, WANG X M, et al. Hydrothermal experiments involving methane and sulfate: Insights into carbon isotope fractionation of methane during thermochemical sulfate reduction[J]. Organic Geochemistry,2020. Doi:https://doi.org/10.1016/j.orggeochem.2020.104101.
69 HOERING T C. Thermal reactions of kerogen with added water, heavy water and pure organic substances[J]. Organic Geochemistry, 1984, 5(4): 267-278.
70 HE K,ZHANG S C,MI J K,et al. Pyrolysis involving n-hexadecane, water and minerals: Insight into the mechanisms and isotope fractionation for water-hydrocarbon reaction[J]. Journal of Analytical and Applied Pyrolysis,2018,130:198-208.
71 BURRUSS R C, LAUGHREY C D. Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons[J]. Organic Geochemistry,2010,41: 1285-1296.
72 LEWAN M D,ROY S.Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation[J]. Organic Geochemistry,2011,42(1):31-41.
73 SCHIMMELMANN A, BOUDOU J P, LEWAN M D, et al. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis[J].Organic Geochemistry, 2001, 32(8): 1009-1018.
74 CAI Y W, ZHNAG S C, HE K, et al. Effects of U-ore on the chemical and isotopic composition of products of hydrous pyrolysis of organic matters[J]. Petroleum Science, 2017, 14(2): 315-329.
75 LEIF R N, SIMONEIT B R T. The role of alkenes produced during hydrous pyrolysis of a shale[J]. Organic Geochemistry, 2000, 31(11): 1189-1208.
76 GAO L, SCHIMMELMANN A, TANG Y C, et al. Isotope rollover in shale gas observed in laboratory pyrolysis experiments: Insight to the role of water in thermogenesis of mature gas[J]. Organic Geochemistry, 2014, 68: 95-106.
77 HE K, ZHANG S C, MI J K, et al. Carbon and hydrogen isotope fractionation for methane from non-isothermal pyrolysis of oil in anhydrous and hydrothermal conditions[J]. Energy Exploration & Exploitation,2019,37(5):1558-1576.
78 REEVES E P, SEEWALD J S, SYLVA S P. Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions[J]. Geochimica et Cosmochimica Acta, 2012, 77: 582-599.
79 WEI L, SCHIMMELMANN A, MASTALERZ M, et al. Catalytic generation of methane at 60 to 100 °C and 0.1 to 300 MPa from source rocks containing kerogen Types I, II, and III[J]. Geochimica et Cosmochimica Acta, 2018, 23: 88-116.
80 ETIOPE G, WHITICAR M J. Abiotic methane in continental ultramafic rock systems: Towards a genetic model[J]. Applied Geochemistry, 2019, 102: 139-152.
81 MCCOLLOM T M. Abiotic methane formation during experimental serpentinization of olivine[J]. Proceedings of the National Academy of Science of the United States of America, 2016, 113(49): 13965-13970.
82 KLEIN F, GROZEVA N G, SEEWALD J S, et al. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions[J]. Proceedings of the National Academy of Science of the United States of America,2019,116(36):17666-17672.
83 SEEWALD J S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: Constraints from mineral buffered laboratory experiments[J]. Geochimica et Cosmochimica Acta,2001,65(10):1641-1664.
84 MILESI V, PRINZHOFER A, GUYOT F, et al. Contribution of siderite-water interaction for the unconventional generation of hydrocarbon gases in the Solimoes basin, north-west Brazil[J].Marine and Petroleum Geology,2016,71:168-182.
85 HE K, ZHANG S C, MI J K. Hydrous pyrolysis of kerogens with FeS: Insights into the carbon and hydrogen isotope fractionation of hydrocarbon gases in deep formation[C].Goldschmidt,2018 Conference, Boston,2018.
86 JENDEN P D, DRAZAN D J, KAPLAN I R. Mixing of thermogenic natural gases in northern Appalachian Basin[J]. AAPG Bulletin, 1993, 77(6): 980-998.
87 戴金星, 米敬奎, 李志生,等. 无机成因和有机成因烷烃气的鉴别[J]. 中国科学:地球科学, 2008, 38(11): 1329-1341.
DAI J X, MI J K, LI Z S, et al. Identification of inorganic and organic alkane gases[J].Chinese Science:Earth Science,2008, 38(11): 1329-1341.
88 MCCOLLOM T M, SEEALD J S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine[J].Geochimica et Cosmochimica Acta, 2001, 659(21): 3769-3778.
89 ZHANG S C, MI J K, HE K. Synthesis of hydrocarbon gases from four different carbon sources and hydrogen gas using a gold-tube system by Fischer-Tropsch method[J]. Chemical Geology, 2013, 349-350: 27-35.
90 ERDMANN M, HORSFIELD B. Enhanced late gas generation potential of petroleum source rocks via recombination reactions: Evidence from the Norwegian North Sea[J]. Geochimica et Cosmochimica Acta, 2006, 70(15): 3943-3956.
91 BRAUN R L, BURNHAM A K. Mathematical model of oil generation, degradation, and expulsion[J]. Energy & Fuels, 1990, 4(2): 132-146.
92 ZHANG S C, SU J, HUANG H P, et al. Genetic origin of sour gas condensates in the Paleozoic dolomite reservoirs of the Tazhong Uplift, Tarim Basin[J]. Marine and Petroleum Geology,2015,68:107-119.
93 邱楠生,刘雯,徐秋晨,等. 深层—古老海相层系温压场与油气成藏[J]. 地球科学,2018, 43(10): 3511-3525.
QIU N S, LIU W, XU Q C, et al. Temperature-pressure field and hydrocarbon accumulation in deep-ancient marine strata[J]. Earth Science, 2018, 43(10): 3511-3525.
[1] Jin LI, Jian LI, Chao WANG, Dejiang LI, Zhongxi HAN, Haizu ZHANG, Hui ZHOU, Yuhong LU, Mancang LIU. Geochemical characteristics of tight sandstone gas in Kuqa Depression, Tarim Basin [J]. Natural Gas Geoscience, 2021, 32(8): 1151-1162.
[2] Da-wei CHEN, Jian LI, Jian-ying GUO, Zhi-sheng LI, Ai-sheng HAO, Xue-ning QI. Simulation of pyrolytic gas generation of continental crude oil in sandstone medium [J]. Natural Gas Geoscience, 2021, 32(4): 518-528.
[3] Quan-you LIU, Xiao-qi WU, Dong-ya ZHU, Qing-qiang MENG, Hui-yuan XU, Wei-long PENG, Xiao-wei HUANG, Jia-yi LIU. Generation and resource potential of abiogenic alkane gas under organic-inorganic interactions in petroliferous basins [J]. Natural Gas Geoscience, 2021, 32(2): 155-163.
[4] Yong-qian CUI, Fei-yu WANG, Chuan-bao ZHANG, Wei-ping FENG, Feng-xiang HOU, Xue-feng MA, Ying MA. Orgaofaices evolution of deep Es4 source rock in Baxian Sag, Jizhong Depression of Bohai Bay Basin and its significance [J]. Natural Gas Geoscience, 2021, 32(1): 38-46.
[5] Liu Yan,Yang Chi-yin,Xiao Dun-qing,Liao Qian-jin,Zhou Li-hong,Yu Xue-min,Guo Jian-ying2,Pu Xiu-gang,Jiang Wen-ya,Zou Lei-luo,Nie Guo-zhen,Liu Qing-xin,Hua Shuang-jun. Hydrocarbon phase limit and conversion process in the deep formation of rift lacustrine basin from Qikou Sag of Bohai Bay Basin,eastern China [J]. Natural Gas Geoscience, 2017, 28(5): 703-712.
[6] Xie Zeng-ye, Li Zhi-sheng, Wei Guo-qi, Li Jian, Wang Dong-liang, Wang Zhi-hong, Dong Cai-yuan. Experimental research on the potential of sapropelic kerogen cracking gas and discrimination of oil cracking gas [J]. Natural Gas Geoscience, 2016, 27(6): 1057-1066.
[7] WANG Jian,WANG Quan,SHI Yu-lei,MA Xue-feng,ZHONG Xue-mei,LI Xiang-yang,WANG Fei-yu. The Cause of Ultra Deep-seated Oil and Gas of Paleogene in Baxian Sag [J]. Natural Gas Geoscience, 2015, 26(1): 21-27.
[8] YANG Xian-cheng,JIANG You-lu,GENG Chun-yan. Origin and Accumulation of Cracking Gas in the Deep Buried Horizons in Jiyang Depression [J]. Natural Gas Geoscience, 2014, 25(8): 1226-1232.
[9] ZHOU Shi-xin; ZOU Hong-liang; XIE Qi-lai, JIA Xin-liang. ORGANIC-INORGANIC INTERACTIONS DURING THE FORMATION OF OILS IN S EDIMENTARY BASIN [J]. Natural Gas Geoscience, 2006, 17(1): 42-47.
[10] . THE STUDY ON BITUMEN AND FOREGONE POOL OF FEIXIANGUAN OOLITIC IN NORTHEAST SICHUAN BASIN [J]. Natural Gas Geoscience, 2005, 16(3): 283-288.
[11] ZHANG Shui-chang,ZHAO Wen-zhi,WANG Fei-yu,CHEN Jian-ping,XIAO Zhong-yiao,ZHONG. PALEOZOIC OIL CRACKING GAS ACCUMULATION HISTORY FROM EASTERN PART OF THE TARIM BASIN:A CASE STUDY OF THE YN2 GAS RESERVOIR [J]. Natural Gas Geoscience, 2004, 15(5): 441-451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . CHARACTERS OF A SPECIAL ROCK-FRACTURED RESERVOIR  AND FACTORS OF CONTROLLING FRACTURED DEVELOPMENT AT QINGXI OIL FIELD IN JIUXI BASIN[J]. Natural Gas Geoscience, 2005, 16(1): 12 -15 .
[2] . APPLY OF PAUCITY HYDROCARBON IN THE BOREHOLE GOECHEMICAL EXPLORA TION LOG[J]. Natural Gas Geoscience, 2005, 16(1): 88 -92 .
[3] . STUDIES ON THE OIL & GAS RESERVOIR FORMATION CONDITIONS AND EXPLORATION BEARI NG IN DABAN TOWN SUB-DEPRESSION OF CHAIWOPU DEPRESSION[J]. Natural Gas Geoscience, 2005, 16(1): 20 -24 .
[4] HE Jiaxiong, LI Mingxing, CHEN Weihuang . GEOTEMPERATURE FIELD AND UP- WELLING ACTION OF HOT FLOW BODY AND ITS RELATIONSHIP WITH NATURAL GAS MIGRATION AND ACCUMULATION IN YINGGEHAI BASIN[J]. Natural Gas Geoscience, 2000, 11(6): 29 -43 .
[5] ZHENG Jianjing, JI Liming, MENG Qianxi-ang . DISCUSSION OF GEOCHEMICAL CHARACTERISTIES OF GASES IN THE JUNGGAR BASIN[J]. Natural Gas Geoscience, 2000, 11(4-5): 17 -21 .
[6] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 30 -44 .
[7] . [J]. Natural Gas Geoscience, 2000, 11(4-5): 57 -67 .
[8] . biaotiyingwen[J]. Natural Gas Geoscience, 2000, 11(3): 44 -45 .
[9] FU Guang; WANG Jianqin. INFLUENCE OF CRUSTAL UPLIFT TO PRESERVATION OF OIL OR GAS POOLS[J]. Natural Gas Geoscience, 2000, 11(2): 18 -23 .
[10] .  APPLICATION OF VSP TECHNOLOGY IN THE DEVELOPMENT AND DEPLOYMENT RESEARCH IN COM PLICATED FAULT BLOCK RESERVOIR JIN 612[J]. Natural Gas Geoscience, 2005, 16(1): 117 -122 .