Shale facies and its relationship with sedimentary environment and organic matter of Niutitang black shale, Guizhou Province

  • Shitan NING , 1 ,
  • Peng XIA , 1, 2 ,
  • Fang HAO 3 ,
  • Jinqiang TIAN 3 ,
  • Yi ZHONG 1 ,
  • Niuniu ZOU 1, 2 ,
  • Yong FU 1, 2
Expand
  • 1. College of Resource and Environmental Engineering,Guizhou University,Guiyang 550025,China
  • 2. Key Laboratory of Karst Geological Resources and Environment,Guizhou University,Guiyang 550025,China
  • 3. School of Geosciences, China University of Petroleum, Qingdao 266580, China

Received date: 2020-12-28

  Revised date: 2021-02-25

  Online published: 2021-09-14

Supported by

The Science and Technology Department Plan Project of Guizhou Province, China (Grant No. Qiankehe Foundation [2019] 1119)

the Guizhou University 2017 Academic New Seedling Training and Innovation Exploration Project (Grant No. Qiankehe Platform Talent [2017] 7285)

Highlights

The black shale of the Lower Cambrian Niutitang Formation in Guizhou province is a set of good source rock. Based on the summary of previous research results and the analysis of sedimentary paleoenvironment characteristics of the black shale, its lithofacies are classified, and then the distribution of lithofacies is analyzed. Moreover, the coupling relationship among the distributions of lithofacies, sedimentary environment, and organic matter content are compared. The results show that: (1) the black shale of Niutitang Formation is mainly composed of siliceous and argillaceous shales; (2) vertically, the redox environment of shale deposition changes from anoxic condition to oxic condition from bottom to top, and siliceous shale is mainly developed in anoxic environment of deep water phase, while clay-rich siliceous shale is mainly developed in suboxic environment; (3) laterally, the anoxic environment of carbonate platform facies in Well JY1 mainly develops argillaceous/siliceous mixed shale, while the suboxic environment of slope to basin facies in Well TX1 mainly develops silica-rich argillaceous and siliceous shales; (4) both of basins and carbonate platforms facies are enriched in organic matter, which is mainly enriched in siliceous shale.

Cite this article

Shitan NING , Peng XIA , Fang HAO , Jinqiang TIAN , Yi ZHONG , Niuniu ZOU , Yong FU . Shale facies and its relationship with sedimentary environment and organic matter of Niutitang black shale, Guizhou Province[J]. Natural Gas Geoscience, 2021 , 32(9) : 1297 -1307 . DOI: 10.11764/j.issn.1672-1926.2021.02.013

0 引言

黑色页岩多发育在地质历史上的特殊时期,不仅能够反映古环境、古气候、古生物等的演变特点,也是页岩油、页岩气和多种金属矿床的载体1-3。牛蹄塘组黑色页岩广泛分布于我国扬子地区,是该地区从新元古代进入早古生代的标志性沉积,伴生了“寒武纪生命大爆发”和“雪球地球”等重要地质事件4-6。同时,该黑色页岩有机质丰度高,页岩气资源量丰富,是我国重要的页岩气勘探开发目的层7-8。以贵州省为例,该黑色页岩TOC含量最高可达14.6%,平均值为5.2%,有机质成熟度高,R O值分布在1.38%~4.24%之间,平均为2.69%,属于高—过成熟富有机质黑色页岩8-10
尽管具有丰富的有机质和页岩气资源,贵州省牛蹄塘组页岩气开发至今仍未取得突破,这不仅与页岩气勘探起步晚、研究程度低有关,还与复杂的地质条件有很大关系,如多期构造运动的叠加11-13、沉积相的变化814-15,增强了该黑色页岩的非均质程度。
岩相是反映页岩非均质性的重要因素,与沉积环境、矿物组成、有机质丰度、岩石力学性质及孔隙结构等都有非常紧密的关系16-22。关于贵州省牛蹄塘组黑色页岩,已有较多矿物组成、结构和构造方面的研究,然而岩相研究相对薄弱,笔者在总结前人对该套黑色页岩组成和结构特征研究的基础上,综合文献中报道的黑色页岩组成和结构资料划分岩相类型,并分析了岩相与沉积环境、有机质间的分布关系。

1 地质背景

在新元古代早期,江南的造山运动使扬子地块与华夏陆块相互碰撞,形成了扬子克拉通23-24。在埃迪卡拉期—早寒武早期,南方大陆进一步开始剧烈拉张,使扬子克拉通形成了被动的大陆边缘盆地,沉积环境由浅水相环境向盆地相环境逐渐过渡,岩相由碳酸盐岩变化为碎屑岩、硅质岩。经过台内沉降后,可能存在数个台内凹陷盆地(洼地)以及东南面的大规模开放盆地,并发育了多个碳酸盐台地(图125-27,早寒武世,由于海底扩张使得全球海平面迅速上升,灯影期的扬子硅酸盐台地淹没于海平面之下,到牛蹄塘期发生了大规模海侵以后,陆架环境以细粒硅质沉积为主,此后形成的淹没台地控制后续的沉积作用27,黑色岩系直接不整合或整合沉积于灯影期的白云岩或同时期与该层位相当的老堡组硅质岩之上(图2)。
图1 贵州省早寒武世沉积环境特征

(a)沉积相平面分布(修改自文献[26]),(b)沉积环境(修改自文献[11])

Fig.1 Sedimentary environment of Guizhou Province during the Early Cambrian

图2 贵州构造演化与下寒武统黑色页岩岩性特征

(a)构造旋回与地层发育特征(修改自文献[28]);(b)灯影组与牛蹄塘组不整合面,织金;(c)老堡组与牛蹄塘组接触面,三穗

Fig.2 Tectonic evolution and the Lower Cambrian black shale lithology in Guizhou

2 岩相类型划分

2.1 岩相划分依据

笔者在收集贵州牛蹄塘组黑色页岩全矿物组成定量分析数据基础上(表1),采用以长英质矿物、碳酸盐矿物和黏土矿物为三端元的图解法进行两级岩石命名分区,共划分出4个页岩相组和12个页岩相(表2)。
表1 贵州下寒武统黑色页岩平均矿物组成统计

Table 1 Statistics of average mineral composition of Lower Cambrian black shale in Guizhou

地点 矿物组成/%
石英 长石 方解石 白云石 黄铁矿 黏土矿物
金页1井 35.3 5.5 6.6 0.0 3.6 48.7
岩孔箐口 14.0 18.0 0.0 0.0 0.0 68.0
织金桂果 51.0 1.0 7.0 2.0 1.0 38.0
观山湖区百花湖 42.0 22.0 0.0 5.0 6.0 25.0
贵阳龙水 66.0 1.0 0.0 0.0 0.0 30.0
开阳芭蕉寨 60.0 2.0 1.0 0.0 0.0 37.0
开阳磷矿 54.0 1.0 0.0 0.0 0.0 45.0
开阳双流 57.0 5.0 0.0 0.0 0.0 38.0
清镇温水村 42.0 22.0 0.0 5.0 6.0 25.0
翁昭中院 51.0 1.0 0.0 5.0 4.0 39.0
天星1井 54.4 8.9 2.2 7.9 8.7 17.8
丹寨翻仰 54.0 9.0 0.0 1.0 0.0 36.0
丹寨南皋 57.5 5.8 1.7 0.0 1.2 31.6
黄页1井 52.2 17.8 6.3 5.6 0.3 17.9
凯里 54.0 0.0 0.0 0.0 0.0 41.0
凯里下司 59.0 4.0 0.0 0.0 0.0 32.0
麻江 62.0 4.0 2.0 3.0 0.0 25.0
台江九龙山 47.0 12.5 0.0 0.0 1.5 39.0
镇远 44.0 0.0 2.0 13.0 5.0 33.0
镇远都坪 52.0 8.0 4.0 4.5 3.5 27.0
镇远火车站 58.0 15.0 0.0 11.0 5.0 11.0
镇远江古 71.0 14.0 0.0 5.0 0.0 10.0
镇远清溪 57.0 13.0 0.0 0.0 9.0 21.0
镇远五里坡 46.0 8.0 16.0 0.0 3.0 27.0
惠水孟寨 48.0 15.0 0.0 0.0 0.0 37.0
荔波洞独 63.0 3.0 0.0 0.0 0.0 34.0
三都 55.0 0.0 4.0 0.0 0.0 36.0
三都水碾 65.0 3.5 0.0 0.5 0.0 31.0
瓮安 62.0 0.0 1.5 0.0 0.5 36.0
瓮安庙湾 45.0 7.0 0.0 0.0 0.0 48.0
瓮安小河山 53.0 14.0 0.0 0.0 0.0 33.0
瓮安永和 63.0 2.0 0.0 2.0 0.0 33.0
江口桃映 58.0 10.0 0.0 0.0 10.0 22.0
石阡中坝 49.0 5.0 11.0 0.0 0.0 35.0
松桃 60.0 1.0 5.0 0.0 3.0 30.0
松桃林朝沟 60.0 6.0 0.0 0.0 0.0 34.0
松桃牛郎 49.0 16.0 0.0 0.0 0.0 35.0
松桃世昌 34.0 0.0 5.0 48.0 5.0 8.0
沿河夹石 43.0 5.0 0.0 0.0 0.0 52.0
印江石梁 52.0 12.0 0.0 0.0 0.0 36.0
铜仁市区附近 66.1 6.0 0.6 9.0 1.2 17.1
湄潭 50.0 0.0 5.0 6.0 0.0 32.0
仁页1井 54.8 6.0 3.5 1.8 3.3 30.6
松林大巴 42.0 4.0 0.0 22.0 6.0 26.0
余庆小腮 71.0 6.0 0.0 0.0 0.0 23.0
遵义 44.0 0.0 6.0 1.0 0.0 49.0
遵义金顶山 56.0 6.0 0.0 6.0 0.0 32.0
遵义毛石 56.0 2.0 0.0 0.0 0.0 42.0
遵义松林 46.0 6.0 0.0 0.0 0.0 48.0
凤参1井 40.5 23.6 6.9 4.0 19.6
正页1井 42.5 29.6 4.2 4.0 5.1 13.3

注:数据据参考文献[829-37

表2 海相页岩岩相类型划分方案

Table 2 Lithofacies classification scheme of marine shale

岩相组 岩相 矿物组成/%
石英+长石 方解石+白云石 黏土矿物
硅质页岩(I) 硅质页岩(I1 >50 <25 <25
富黏土硅质页岩(I2 >50 <25 25~50
富钙硅质页岩(I3 >50 25~50 <25
钙质页岩(II) 钙质页岩(II1 <25 >50 <25
富硅钙质页岩(II2 25~50 >50 <25
富黏土钙质页岩(II3 <25 >50 25~50
黏土质页岩(III) 黏土质页岩(III1 <25 >50 <25
富硅黏土质页岩(III2 <25 >50 25~50
富钙黏土质页岩(III3 25~50 >50 <25
混合页岩(IV) 黏土/硅混合页岩(IV1 25~50 <30 25~50
硅/钙混合页岩(IV2 25~50 25~50 <30
钙/黏土混合页岩(IV3 <30 25~50 25~50
在页岩相组划分中,以传统岩石学命名方法为依据,并参照川南五峰组—龙马溪组黑色页岩岩相划分标准17,以矿物含量50%为界确定页岩相组类型,划分出硅质页岩相组(I)、钙质页岩相组(II)、黏土质页岩相组(III)和混合页岩相组(IV)[图3(a)]。在相组划分基础上,针对硅质页岩相组、钙质页岩相组和黏土质页岩相组,以矿物含量25%为界划分页岩岩相类型,含量为25%~50%的矿物确定为“富XX”,作为主名前缀;针对混合页岩相组,以相组三角形各边界中点向三角形的中心点连线划分出3个岩相,每种岩相中都有2类矿物组分之合大于70%,并以这2类矿物作为前缀命名“XX/XX混合页岩”。根据该划分原则,将硅质页岩相组(I)细分为硅质页岩相(I1)、富钙硅质页岩相(I2)、富黏土硅质页岩相(I3);钙质页岩相组(II)细分为钙质页岩相(II1)、富硅钙质页岩相(II2)、富黏土钙质页岩相(II3);黏土质页岩相组(III)细分为黏土质页岩相(III1)、富硅黏土质页岩相(III2)、富钙黏土质页岩相(III3);混合页岩相组(IV)细分为黏土/硅混合页岩相(IV1)、硅/钙混合页岩相(IV2)、钙/黏土混合页岩相(IV3)[图3(b)]。
图3 海相页岩全岩矿物两级岩相划分方案

(a)岩相组划分方案;(b)岩相划分方案

Fig.3 Two level lithofacies division scheme of marine shale

2.2 岩相划分结果

采用上述岩相划分方案,将贵州牛蹄塘组黑色页岩平均矿物组成数据(表1)投点到图3中,利用岩矿三端元法,并结合岩石薄片、高精度扫描电镜和测井资料,对牛蹄塘组黑色页岩岩相进行表征,结果表明,该黑色页岩以硅质页岩和富黏土硅质页岩为主,此外还有少量富硅钙质页岩、富硅黏土质页岩和黏土/硅混合页岩。富黏土硅质页岩、硅质页岩、富硅黏土质页岩、黏土/硅混合页岩和富硅钙质页岩占比依次为66.67%、19.61%、5.88%、5.88%和1.96%。
贵州牛蹄塘组黑色页岩岩相平面分布如图4所示,富黏土硅质页岩在省内大部分地区均有分布,硅质页岩主要分布在黔东北地区,富硅黏土质页岩、黏土/硅混合页岩在黔西北和黔北地区零星分布,仅一个样品为富硅钙质页岩,分布在黔东北地区松桃县。结合JY1井和TXI井的测井曲线2937,可以看出JY1井沉积环境处于浅水到深水陆棚的过渡,黏土矿物成分含量较高,以富黏土硅质页岩为主。TX1井沉积环境处于深水陆棚38,石英长石等脆性矿物含量较高,TOC含量较高,以硅质页岩为主。从平面上看,以西南向东北沉积环境与沉积相所对应的关系较为符合。
图4 牛蹄塘组不同类型岩相平面分布(沉积相底图引自文献[26])

Fig.4 Shale lithofacies distribution of the Niutitang Formation(the sedimentary facies base map is modified from Ref.[26])

3 岩相-沉积环境-有机质分布

3.1 岩相与沉积环境

下寒武统牛蹄塘组沉积时期,贵州省发育台地、斜坡和盆地环境(图126,不同环境下黑色页岩岩相类型存在明显差异。台地相黑色页岩中富黏土硅质页岩占70.37%,硅质页岩和富硅黏土质页岩次之,均占11.11%,黏土/硅混合页岩占7.41%。斜坡相以富黏土硅质页岩和硅质页岩为主,分别占60%和26.67%,此外,还有少量黏土/硅混合页岩(6.67%)和富硅钙质页岩(6.67%)。盆地相仅有富黏土硅质页岩和硅质页岩2种岩相,其中富黏土硅质页岩占66.67%,硅质页岩占33.33%[图5(b)]。下寒武统牛蹄塘组沉积时期,上扬子板块的贵州西部水体浅,为台地相,向东部依次为斜坡相和盆地相,水体逐渐变深,陆源物质主要来自西部上扬子西缘的彭灌古陆、宝兴古陆、泸定古陆、滇中古陆和牛首山古陆。陆源碎屑注入导致西部台地相黏土矿物含量高于东部斜坡相和盆地相[图5(a)]。斜坡相和盆地相黑色页岩中长英质矿物含量高于台地相黑色页岩。研究表明,热水沉积作用普遍富集Si、Fe、Mn、P、Cu、Zn、B、As、Ba、Sr、Sb、U、Se等元素39,杨旭等40、付勇等41研究发现在同时期斜坡和盆地地区的P和稀土元素含量较高,富集程度可达成矿,这是判别热水沉积作用的主要标志。因此海底热液喷流可能是导致斜坡和盆地中硅质含量高的主要原因42-43
图5 不同环境下牛蹄塘组黑色页岩矿物组成和岩相类型

Fig.5 Mineral composition and lithofacies of the Niutitang black shale under varied environment

针对贵州省东西部牛蹄塘组黑色页岩沉积相和矿物组成的显著差异,分别选取西部台地相和东部盆地相的典型页岩气钻井对比古环境演化与岩相的关系,其中台地相为织金县JY1井,盆地相为岑巩县TX1井,2口钻井的黑色页岩岩相垂向变化及沉积古环境演化对比如图6所示。
图6 贵州不同相区牛蹄塘组黑色页岩岩相和氧化还原环境特征

(a)浅水台地相JY1井(地球化学数据引自文献[29]);(b)深水盆地相TX1井(数据引自文献[37])

Fig.6 Characteristics of lithofacies and redox environment of the Niutitang black shale in varied sedimentary facies, Guizhou

JY1井牛蹄塘组黑色页岩下部以硅质页岩和黏土/硅混合页岩为主,上部以富硅黏土质页岩为主,整体表现为从下部到上部,黑色页岩中黏土矿物含量增加,由硅质页岩向黏土质页岩转变。TX1井牛蹄塘组黑色页岩下部以硅质页岩为主,上部以富黏土硅质页岩为主,夹少量硅质页岩,整体表现为从下部到上部,黑色页岩中黏土矿物含量增加,长英质矿物减少,由硅质页岩向富黏土硅质页岩转变。
前人844研究表明,在牛蹄塘组沉积的早期,贵州省西部主要为台地,东部为斜坡和盆地。当海水快速海侵时,西部台地水体较浅,水体的含氧量较高,沉积环境为氧化环境,主要沉积矿物为与陆源物质相关的黏土矿物;东部斜坡和盆地水体逐渐变深,水体含氧量逐渐减少,逐渐成为厌氧的还原环境,主要沉积矿物为生物或热液形成的硅质矿物。到了牛蹄塘组沉积的后期,海水逐渐退去,水体变浅,陆源碎屑影响加大,导致上部页岩中黏土矿物含量明显高于下部页岩。因此,在总的垂向沉积上,牛蹄塘组黑色页岩沉积早期,水体环境为厌氧环境,到后期随着水体变浅,逐渐转变为贫氧环境乃至氧化环境,这就导致了上部沉积的页岩黏土矿物含量增加。

3.2 岩相与有机质(环境—岩相—有机质)

目前,能够用于指示海相页岩氧化还原环境的指标有U/Th、V/(V+Ni)、V/Cr、Ni/Co等44-46。U/Th指标能够有效指示氧化还原环境。U性质活跃,受氧化和淋滤的影响,迁移能力强,Th 为惰性元素,迁移能力弱,因此可以利用U/Th值来判定氧化还原环境。U/Th<0.75为氧化环境,U/Th>1.25为弱还原环境46-47。TX1井(图7)中U/Th和TOC呈正相关性,说明在厌氧环境下,硅质页岩有机质含量变高。JY1井(图7)中,黏土质页岩同样存在着在厌氧环境下有机质含量变高的情况。但是黏土质页岩的正相关性比硅质页岩的相关性来的更高。这些佐证了在不同的氧化还原环境下有机质的富集也有所不同。总体表现为在越缺氧的还原环境下,有机质富集程度越高。
图7 TOC、U/Th和长英质矿物关系(JY1井数据引自文献[29];TX1井数据引自文献[37])

Fig. 7 TOC,U/Th and felsic mineral relationship diagram(Well JY1 data is quoted from Ref.[29],Well TX1 data is quoted from Ref.[37])

V/(V+Ni)值能反映水体分层性和氧化还原性,V/(V+Ni)<0.46指示为富氧的沉积环境,V/(V+Ni)>0.46指示为缺氧的沉积环境。图6中,JY1井的V/(V+Ni)值总体小于0.46,体现该地区总体处在厌氧到氧化的沉积环境中;TX1井的V/(V+Ni)值总体大于0.46,体现该地区沉积环境主要为厌氧环境。
V/Cr值可指示古水体氧化还原性,V/Cr<2指示氧化环境,2<V/Cr<4.24指示贫氧环境,比值越大代表水体还原性越强,沉积环境显示为厌氧的缺氧环境。如图6所示,JY1井V/Cr值的分布范围体现出其厌氧到氧化的沉积环境,TX1井表现出贫氧的沉积环境。
图6所示,厌氧环境下有机质富集的程度更高,说明有利的保存条件是决定牛蹄塘组黑色页岩有机质富集的主要因素之一。此外,黑色页岩中有机质与硅质含量(长英质矿物)之间具有明显的正相关性(图7),反映硅质中有相当一部分属于生物成因硅。说明有机质的富集不仅受到氧化还原环境的影响,同时,不同的岩相中有机质的富集规律和特征也存在明显差异。
图8可知在浅水台地相中,TOC平均含量从低到高依次为黏土/硅混合页岩、硅质页岩、富硅黏土质页岩;在深水盆地相中,TOC平均含量从高到低依次为硅质页岩、富硅黏土质页岩。而在深水盆地相和浅水盆地相两相对比中,深水盆地相的TOC平均含量和变化范围程度,总体优于浅水盆地相。这与深水盆地有利于硅质页岩形成有很大的关系,并且硅质页岩有利于富集有机质,因此深水盆地相的硅质页岩为生烃提供良好的物质基础。
图8 不同岩相与TOC含量关系

Fig.8 Relationship between TOC content and different lithofacies

4 结论

笔者总结了前人对贵州牛蹄塘组黑色页岩组成、结构和沉积环境方面的成果,进而详细划分了该黑色页岩岩相,并讨论了岩相与沉积环境、有机质分布的关系,取得以下主要认识:
(1)贵州牛蹄塘组黑色页岩以硅质页岩和富黏土硅质页岩为主,此外还有少量富硅钙质页岩、富硅黏土质页岩和黏土/硅混合页岩。富黏土硅质页岩、硅质页岩、富硅黏土质页岩、黏土/硅混合页岩和富硅钙质页岩占比依次为66.67%、19.61%、5.88%、5.88%和1.96%。
(2)深水盆地相主要发育硅质页岩和富黏土硅质页岩,含少量钙质页岩。浅水台地相主要发育黏土/硅混合页岩和富硅黏土质页岩,含少量富黏土硅质页岩。
(3)牛蹄塘组页岩沉积时期古氧化还原环境为由厌氧向氧化转变,其中下部页岩为厌氧环境沉积,上部为贫氧—氧化环境沉积。不同氧化还原环境对应页岩岩相有明显差别,深水相厌氧环境主要发育硅质页岩,贫氧环境主要发育富黏土硅质页岩。浅水台地相厌氧环境主要发育黏土/硅混合页岩,贫氧环境主要发育富硅黏土质页岩。
(4)深水盆地环境和浅水台地环境均出现有机质富集,但有机质主要富集于硅质页岩中,黏土质页岩有机质含量普遍较低。
1
叶杰, 范德廉. 黑色岩系型矿床的形成作用及其在我国的产出特征[J]. 矿物岩石地球化学通报, 2000,19(2):95-102.

YE J, FAN D L. Formation of black rock series type deposits and their occurrence characteristics in China[J]. Bulletin of Mi-neralogy, Petrology and Geochemistry, 2000,19(2): 95-102.

2
SHI C, CAO J, HAN S, et al. A review of polymetallic mineralization in Lower Cambrian black shales in South China: Combined effects of seawater, hydrothermal fluids, and biological activity[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2021,561:110073.

3
范德廉, 张焘, 叶杰. 中国的黑色岩系及其有关矿床[M].北京:科学出版社, 2004:1-60.

FAN D L, ZHANG T, YE J. Black Rock Series and Related Deposits in China[M]. Beijing: Science Press, 2004:1-60.

4
朱茂炎, 赵方臣, 殷宗军, 等. 中国的寒武纪大爆发研究:进展与展望[J]. 中国科学:地球科学, 2019,49(10):1455-1490.

ZHU M Y, ZHAO F C, YIN Z J, et al. Cambrian explosion in China: Progress and prospect[J]. Scientia Sinica: Terrae, 2019,49 (10): 1455-1490.

5
朱茂炎. 动物的起源和寒武纪大爆发:来自中国的化石证据[J]. 古生物学报, 2010,49(3):269-287.

ZHU M Y. Origin of animals and Cambrian explosion: Fossil evidence from China[J]. Acta Palaeontologica Sinica, 2010,49 (3): 269-287.

6
YEASMIN R, CHEN D, FU Y, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences, 2017,134:365-386.

7
邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010,37(6):641-653.

ZOU C N, DONG D Z, WANG S J, et al. Formation mechanism, geological characteristics and resource potential of shale gas in China[J].Petroleum Exploration and Development, 2010,37(6): 641-653.

8
朱立军, 张大伟, 张金川, 等.上扬子东部古生代被动陆缘页岩气地质理论技术与实践[M].北京: 科学出版社, 2019:1-320.

ZHU L J, ZHANG D W, ZHANG J C, et al. Geological Theory and Practice of Paleozoic Passive Continental Margin Shale Gas in Eastern Upper Yangtze[M]. Beijing: Science Press,2019:1-320.

9
ZHANG J, FAN T, LI J, et al. Characterization of the Lower Cambrian shale in the northwestern Guizhou Province, South China: Implications for shale-gas potential[J]. Energy & Fuels, 2015,29(10):6383-6393.

10
HAN S, BAI S, TANG Z, et al. Nitrogen-rich gas shale logging evaluation and differential gas-bearing characterization of Lower Cambrian Formation in northern Guizhou, South China[J]. Marine and Petroleum Geology, 2020,115:104270.

11
戴传固, 郑启钤, 陈建书, 等. 贵州雪峰—加里东构造旋回期成矿地质背景研究[J]. 地学前缘, 2013,20(6):219-225.

DAI C G, ZHENG Q Q, CHEN J S, et al. Study on metallogenic geological background of Xuefeng Caledonian tectonic cycle in Guizhou[J].Earth Science Frontiers,2013,20(6):219-225.

12
夏鹏, 王甘露, 曾凡桂, 等. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018,29(9):1345-1355.

XIA P, WANG G L, ZENG F G, et al. Nitrogen enrichment characteristics and mechanism of high over mature shale gas from Niutitang Formation in northern Guizhou[J]. Natural Gas Geoscience, 2018,29(9):1345-1355.

13
夏鹏, 王甘露, 周豪, 等. 黔北凤冈区块典型残余隐伏向斜特征及其页岩气选区选带意义[J]. 东北石油大学学报, 2018,42(2):71-79.

XIA P, WANG G L, ZHOU H, et al. Characteristics of typical residual concealed Syncline in Fenggang block of Northern Guizhou and its significance for shale gas selection[J]. Journal of Northeast Petroleum University, 2018,42(2): 71-79.

14
JIN C, LI C, ALGEO T J, et al. Controls on organic matter accumulation on the Early-Cambrian western Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2020,111:75-87.

15
李进. 黔北下寒武统牛蹄塘组页岩古环境恢复与有机质富集研究[D]. 北京:中国地质大学(北京),2018:187.

LI J. Paleoenvironment Restoration and Organic Matter Enrichment of Lower Cambrian Niutitang Formation Shale in Northern Guizhou[D]. Beijing:China University of Geosciences (Beijing), 2018:187.

16
董春梅,马存飞,林承焰,等. 一种泥页岩层系岩相划分方法[J]. 中国石油大学学报:自然科学版, 2015,39(3):1-7.

DONG C M, MA C F, LIN C Y, et al. A lithofacies division method of shale series[J]. Journal of China University of Petroleum: Edition of Natural Science, 2015,39(3): 1-7.

17
王玉满, 王淑芳, 董大忠, 等. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘, 2016,23(1):119-133.

WANG Y M, WANG S F, DONG D Z, et al. Shale facies characterization of Lower Silurian Longmaxi Formation in southern Sichuan[J]. Earth Science Frontiers, 2016,23(1): 119-133.

18
WU L, LU Y, JIANG S, et al. Pore structure characterization of different lithofacies in marine shale: A case study of the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formation in the Sichuan Basin, SW China[J]. Journal of Natural Gas Science and Engineering, 2018,57:203-215.

19
XU S, GOU Q, HAO F, et al. Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba shale gas field, Sichuan Basin, China: Dominated by lithofacies or preservation condition?[J]. Marine and Petroleum Geology, 2020,114:104211.

20
XIA P, LI H, FU Y, et al. Effect of lithofacies on pore structure of the Cambrian organic‐rich shale in northern Guizhou, China[J]. Geological Journal, 2020,56(2):113-142.

21
刘忠宝, 刘光祥, 胡宗全, 等. 陆相页岩层系岩相类型、组合特征及其油气勘探意义——以四川盆地中下侏罗统为例[J]. 天然气工业, 2019,39(12):10-21.

LIU Z B, LIU G X, HU Z Q, et al. Lithofacies types and assemblage characteristics of continental shale series and their significance for oil and gas exploration: A case study of Middle and Lower Jurassic in Sichuan Basin[J]. Natural Gas Industry, 2019,39 (12): 10-21.

22
FENG Z, HAO F, ZHOU S, et al. Pore characteristics and methane adsorption capacity of different lithofacies of the Wufeng Formation-Longmaxi Formation shales, southern Sichuan Basin[J]. Energy Fuels, 2020,34(7):8046-8062.

23
SHU L S, FAURE M, YU J H, et al. Geochronological and geochemical features of the Cathaysia block(South China): New evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Research, 2011,187(3-4):263-276.

24
CHARVET J. The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block: An overview[J]. Journal of Asian Earth Sciences, 2013,74:198-209.

25
GUO Q,SHIELDS G A,LIU C,et al.Trace element chemo-stratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography Palaeoclimatology Palaeoecology,2007,254(1-2):194-216.

26
CHEN D, WANG J, QING H, et al. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints[J]. Chemical Geology, 2009,258(3-4):168-181.

27
YEASMIN R, CHEN D, FU Y, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences, 2016,134:365-386.

28
贵州省地质调查院.贵州省地质志[M].北京: 地质出版社, 2016:317-320.

GUIZHOU GEOLOGICAL SURVEY INSTITUTE. Geological Records of Guizhou Province[M]. Beijing: Geological Publishing House, 2016:317-320.

29
罗超. 上扬子地区下寒武统牛蹄塘组页岩特征研究[D].成都:成都理工大学,2014:2-17.

LUO C. Shale Characteristics of Lower Cambrian Niutitang Formation in Upper Yangtze Area[D],Chengdu:Chengdu Uni-versity of Technology, 2014:2-17.

30
LIU L, TANG S, XI Z. Total organic carbon enrichment and its impact on pore characteristics: A case study from the Niutitang Formation shales in northern Guizhou[J]. Energies (Basel), 2019,12(8):1480.

31
LI T, TIAN H, XIAO X, et al. Geochemical characterization and methane adsorption capacity of overmature organic-rich Lower Cambrian shales in northeast Guizhou region, southwest China[J]. Marine and Petroleum Geology,2017,86:858-873.

32
WU C, TUO J, ZHANG L, et al. Pore characteristics differences between clay-rich and clay-poor shales of the Lower Cambrian Niutitang Formation in the northern Guizhou area, and insights into shale gas storage mechanisms[J]. International Journal of Coal Geology, 2017,178:13-25.

33
WU Y, FAN T, JIANG S, et al. Lithofacies and sedimentary sequence of the Lower Cambrian Niutitang shale in the Upper Yangtze platform, South China[J]. Journal of Natural Gas Science and Engineering, 2017,43:124-136.

34
曾维特, 丁文龙, 张金川, 等. 渝东南—黔北地区牛蹄塘组页岩微纳米级孔隙发育特征及主控因素分析[J]. 地学前缘, 2019,26(3):220-235.

ZENG W T, DING W L, ZHANG J C, et al. Micro nano pore development characteristics and main controlling factors of Niutitang Formation shale in southeastern Chongqing northern Guizhou area[J]. Earth Science Frontiers, 2019,26 (3): 220-235.

35
ZHANG J, FAN T, LI J, et al. Characterization of the Lower Cambrian shale in the northwestern Guizhou Province, South China: Implications for Shale-Gas Potential[J]. Energy & Fuels, 2015,29(10):6383-6393.

36
XIA J, SONG Z, WANG S, et al. Preliminary study of pore structure and methane sorption capacity of the Lower Cambrian shales from the north Guizhou Province[J]. Journal of Natural Gas Science and Engineering, 2017,38:81-93.

37
赖富强, 罗涵, 龚大建, 等. 一种新的页岩气储层脆性指数评价模型研究——以贵州下寒武统牛蹄塘组页岩储层为例[J]. 地球物理学进展, 2018,33(6):2358-2367.

LAI F Q, LUO H, GONG D J, et al. A new evaluation model of shale gas reservoir brittleness index: A case study of Lower Cambrian Niutitang Formation shale reservoir in Guizhou[J]. Progress in Geophysics, 2018,33(6): 2358-2367.

38
王兴华. 黔北岑巩区块下寒武统牛蹄塘组页岩储层裂缝表征与控气作用[D]. 北京:中国地质大学(北京),2020:23-30.

WANG X H. Fracture Characterization and Gas Control of Lower Cambrian Niutitang Formation Shale Reservoir in Cengong Block, Northern Guizhou[D]. Beijing:China University of Geosciences (Beijing), 2020:23-30.

39
贾智彬, 侯读杰, 孙德强, 等. 热水沉积判别标志及与烃源岩的耦合关系[J]. 天然气地球科学, 2016,27(6):1025-1034.

JIA Z B,HOU D J,SUN D Q,et al.Identification criteria of hydro-thermal sedimentation and its coupling relationship with source rocks[J]. Natural Gas Geoscience,2016,27(6): 1025-1034.

40
杨旭, 谢宏, 王志罡, 等. 铜仁坝黄磷矿稀土元素地球化学特征及其指示意义[J]. 中国稀土学报, 2018,36(6):760-768.

YANG X, XIE H, WANG Z G, et al. Geochemical characteristics of rare earth elements in Tongrenba yellow phosphorite and their indicative significance[J].Journal of the Chinese Rare Earth Society,2018,36(6):760-768.

41
付勇, 周文喜, 王华建, 等. 黔北下寒武统黑色岩系的沉积环境与地球化学响应[J]. 地质学报, 2021,95(2):536-548.

FU Y, ZHOU W X, WANG H J, et al. Sedimentary environment and geochemical response of Lower Cambrian black rock series in northern Guizhou[J]. Acta Geologica Sinica, 2021,95(2):536-548.

42
魏帅超, 陈启飞, 付勇, 等. 湘黔地区埃迪卡拉纪-寒武纪之交硅质岩的成因探讨——来自稀土元素和Ge/Si比值的证据[J]. 北京大学学报:自然科学版, 2018,54(5):1010-1020.

WEI S C, CHEN Q F, FU Y, et al. Discussion on the genesis of siliceous rocks at the intersection of Ediacaran and Cambrian in Hunan Guizhou area: Evidence from rare earth elements and Ge / Si ratio[J]. Journal of Peking University: Edition of Natural Science, 2018,54(5):1010-1020.

43
夏鹏, 付勇, 杨镇, 等. 黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系[J]. 地质学报, 2020,94(3):947-956.

XIA P, FU Y, YANG Z, et al. Relationship between sedimentary environment and organic matter enrichment of black shale in Niutitang Formation, Zhenyuan, northern Guizhou[J]. Acta Geologica Sinica, 2020,94 (3):947-956.

44
BRYN J, C. M D A. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994,111(1-4):111-129.

45
何龙, 王云鹏, 陈多福, 等. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019,30(2):203-218.

HE L, WANG Y P, CHEN D F, et al. Relationship between sedimentary environment and organic matter enrichment of black shale from Wufeng Formation to Longmaxi Formation in Nanchuan area,Chongqing[J].Natural Gas Geoscience,2019,30(2):203-218.

46
WIGNALL P B,TWITCHETT R J. Oceanic anoxia and the End Permian mass extinction[J]. Science, 1996,272(5265):1155-1158.

47
王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报, 2017,35(6):1265-1273.

WANG F, LIU X C, DENG X Q, et al. Trace element geochemical characteristics and sedimentary environment indication of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2017,35 (6): 1265-1273.

Outlines

/