Natural Gas Geoscience ›› 2021, Vol. 32 ›› Issue (9): 1297-1307.doi: 10.11764/j.issn.1672-1926.2021.02.013

Previous Articles     Next Articles

Shale facies and its relationship with sedimentary environment and organic matter of Niutitang black shale, Guizhou Province

Shitan NING1(),Peng XIA1,2(),Fang HAO3,Jinqiang TIAN3,Yi ZHONG1,Niuniu ZOU1,2,Yong FU1,2   

  1. 1.College of Resource and Environmental Engineering,Guizhou University,Guiyang 550025,China
    2.Key Laboratory of Karst Geological Resources and Environment,Guizhou University,Guiyang 550025,China
    3.School of Geosciences, China University of Petroleum, Qingdao 266580, China
  • Received:2020-12-28 Revised:2021-02-25 Online:2021-09-10 Published:2021-09-14
  • Contact: Peng XIA E-mail:877967242@qq.com;pxia@gzu.edu.cn
  • Supported by:
    The Science and Technology Department Plan Project of Guizhou Province, China (Grant No. Qiankehe Foundation [2019] 1119);the Guizhou University 2017 Academic New Seedling Training and Innovation Exploration Project (Grant No. Qiankehe Platform Talent [2017] 7285)

Abstract:

The black shale of the Lower Cambrian Niutitang Formation in Guizhou province is a set of good source rock. Based on the summary of previous research results and the analysis of sedimentary paleoenvironment characteristics of the black shale, its lithofacies are classified, and then the distribution of lithofacies is analyzed. Moreover, the coupling relationship among the distributions of lithofacies, sedimentary environment, and organic matter content are compared. The results show that: (1) the black shale of Niutitang Formation is mainly composed of siliceous and argillaceous shales; (2) vertically, the redox environment of shale deposition changes from anoxic condition to oxic condition from bottom to top, and siliceous shale is mainly developed in anoxic environment of deep water phase, while clay-rich siliceous shale is mainly developed in suboxic environment; (3) laterally, the anoxic environment of carbonate platform facies in Well JY1 mainly develops argillaceous/siliceous mixed shale, while the suboxic environment of slope to basin facies in Well TX1 mainly develops silica-rich argillaceous and siliceous shales; (4) both of basins and carbonate platforms facies are enriched in organic matter, which is mainly enriched in siliceous shale.

Key words: Guizhou, Niutitang Formation, Black shale, Lithofacies, Sedimentary environment, Organic matter

CLC Number: 

  • TE121.1

Fig.1

Sedimentary environment of Guizhou Province during the Early Cambrian"

Fig.2

Tectonic evolution and the Lower Cambrian black shale lithology in Guizhou"

Table 1

Statistics of average mineral composition of Lower Cambrian black shale in Guizhou"

地点矿物组成/%
石英长石方解石白云石黄铁矿黏土矿物
金页1井35.35.56.60.03.648.7
岩孔箐口14.018.00.00.00.068.0
织金桂果51.01.07.02.01.038.0
观山湖区百花湖42.022.00.05.06.025.0
贵阳龙水66.01.00.00.00.030.0
开阳芭蕉寨60.02.01.00.00.037.0
开阳磷矿54.01.00.00.00.045.0
开阳双流57.05.00.00.00.038.0
清镇温水村42.022.00.05.06.025.0
翁昭中院51.01.00.05.04.039.0
天星1井54.48.92.27.98.717.8
丹寨翻仰54.09.00.01.00.036.0
丹寨南皋57.55.81.70.01.231.6
黄页1井52.217.86.35.60.317.9
凯里54.00.00.00.00.041.0
凯里下司59.04.00.00.00.032.0
麻江62.04.02.03.00.025.0
台江九龙山47.012.50.00.01.539.0
镇远44.00.02.013.05.033.0
镇远都坪52.08.04.04.53.527.0
镇远火车站58.015.00.011.05.011.0
镇远江古71.014.00.05.00.010.0
镇远清溪57.013.00.00.09.021.0
镇远五里坡46.08.016.00.03.027.0
惠水孟寨48.015.00.00.00.037.0
荔波洞独63.03.00.00.00.034.0
三都55.00.04.00.00.036.0
三都水碾65.03.50.00.50.031.0
瓮安62.00.01.50.00.536.0
瓮安庙湾45.07.00.00.00.048.0
瓮安小河山53.014.00.00.00.033.0
瓮安永和63.02.00.02.00.033.0
江口桃映58.010.00.00.010.022.0
石阡中坝49.05.011.00.00.035.0
松桃60.01.05.00.03.030.0
松桃林朝沟60.06.00.00.00.034.0
松桃牛郎49.016.00.00.00.035.0
松桃世昌34.00.05.048.05.08.0
沿河夹石43.05.00.00.00.052.0
印江石梁52.012.00.00.00.036.0
铜仁市区附近66.16.00.69.01.217.1
湄潭50.00.05.06.00.032.0
仁页1井54.86.03.51.83.330.6
松林大巴42.04.00.022.06.026.0
余庆小腮71.06.00.00.00.023.0
遵义44.00.06.01.00.049.0
遵义金顶山56.06.00.06.00.032.0
遵义毛石56.02.00.00.00.042.0
遵义松林46.06.00.00.00.048.0
凤参1井40.523.66.94.019.6
正页1井42.529.64.24.05.113.3

Table 2

Lithofacies classification scheme of marine shale"

岩相组岩相矿物组成/%
石英+长石方解石+白云石黏土矿物
硅质页岩(I)硅质页岩(I1>50<25<25
富黏土硅质页岩(I2>50<2525~50
富钙硅质页岩(I3>5025~50<25
钙质页岩(II)钙质页岩(II1<25>50<25
富硅钙质页岩(II225~50>50<25
富黏土钙质页岩(II3<25>5025~50
黏土质页岩(III)黏土质页岩(III1<25>50<25
富硅黏土质页岩(III2<25>5025~50
富钙黏土质页岩(III325~50>50<25
混合页岩(IV)黏土/硅混合页岩(IV125~50<3025~50
硅/钙混合页岩(IV225~5025~50<30
钙/黏土混合页岩(IV3<3025~5025~50

Fig.3

Two level lithofacies division scheme of marine shale"

Fig.4

Shale lithofacies distribution of the Niutitang Formation(the sedimentary facies base map is modified from Ref.[26])"

Fig.5

Mineral composition and lithofacies of the Niutitang black shale under varied environment"

Fig.6

Characteristics of lithofacies and redox environment of the Niutitang black shale in varied sedimentary facies, Guizhou"

Fig. 7

TOC,U/Th and felsic mineral relationship diagram(Well JY1 data is quoted from Ref.[29],Well TX1 data is quoted from Ref.[37])"

Fig.8

Relationship between TOC content and different lithofacies"

1 叶杰, 范德廉. 黑色岩系型矿床的形成作用及其在我国的产出特征[J]. 矿物岩石地球化学通报, 2000,19(2):95-102.
YE J, FAN D L. Formation of black rock series type deposits and their occurrence characteristics in China[J]. Bulletin of Mi-neralogy, Petrology and Geochemistry, 2000,19(2): 95-102.
2 SHI C, CAO J, HAN S, et al. A review of polymetallic mineralization in Lower Cambrian black shales in South China: Combined effects of seawater, hydrothermal fluids, and biological activity[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2021,561:110073.
3 范德廉, 张焘, 叶杰. 中国的黑色岩系及其有关矿床[M].北京:科学出版社, 2004:1-60.
FAN D L, ZHANG T, YE J. Black Rock Series and Related Deposits in China[M]. Beijing: Science Press, 2004:1-60.
4 朱茂炎, 赵方臣, 殷宗军, 等. 中国的寒武纪大爆发研究:进展与展望[J]. 中国科学:地球科学, 2019,49(10):1455-1490.
ZHU M Y, ZHAO F C, YIN Z J, et al. Cambrian explosion in China: Progress and prospect[J]. Scientia Sinica: Terrae, 2019,49 (10): 1455-1490.
5 朱茂炎. 动物的起源和寒武纪大爆发:来自中国的化石证据[J]. 古生物学报, 2010,49(3):269-287.
ZHU M Y. Origin of animals and Cambrian explosion: Fossil evidence from China[J]. Acta Palaeontologica Sinica, 2010,49 (3): 269-287.
6 YEASMIN R, CHEN D, FU Y, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences, 2017,134:365-386.
7 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010,37(6):641-653.
ZOU C N, DONG D Z, WANG S J, et al. Formation mechanism, geological characteristics and resource potential of shale gas in China[J].Petroleum Exploration and Development, 2010,37(6): 641-653.
8 朱立军, 张大伟, 张金川, 等.上扬子东部古生代被动陆缘页岩气地质理论技术与实践[M].北京: 科学出版社, 2019:1-320.
ZHU L J, ZHANG D W, ZHANG J C, et al. Geological Theory and Practice of Paleozoic Passive Continental Margin Shale Gas in Eastern Upper Yangtze[M]. Beijing: Science Press,2019:1-320.
9 ZHANG J, FAN T, LI J, et al. Characterization of the Lower Cambrian shale in the northwestern Guizhou Province, South China: Implications for shale-gas potential[J]. Energy & Fuels, 2015,29(10):6383-6393.
10 HAN S, BAI S, TANG Z, et al. Nitrogen-rich gas shale logging evaluation and differential gas-bearing characterization of Lower Cambrian Formation in northern Guizhou, South China[J]. Marine and Petroleum Geology, 2020,115:104270.
11 戴传固, 郑启钤, 陈建书, 等. 贵州雪峰—加里东构造旋回期成矿地质背景研究[J]. 地学前缘, 2013,20(6):219-225.
DAI C G, ZHENG Q Q, CHEN J S, et al. Study on metallogenic geological background of Xuefeng Caledonian tectonic cycle in Guizhou[J].Earth Science Frontiers,2013,20(6):219-225.
12 夏鹏, 王甘露, 曾凡桂, 等. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018,29(9):1345-1355.
XIA P, WANG G L, ZENG F G, et al. Nitrogen enrichment characteristics and mechanism of high over mature shale gas from Niutitang Formation in northern Guizhou[J]. Natural Gas Geoscience, 2018,29(9):1345-1355.
13 夏鹏, 王甘露, 周豪, 等. 黔北凤冈区块典型残余隐伏向斜特征及其页岩气选区选带意义[J]. 东北石油大学学报, 2018,42(2):71-79.
XIA P, WANG G L, ZHOU H, et al. Characteristics of typical residual concealed Syncline in Fenggang block of Northern Guizhou and its significance for shale gas selection[J]. Journal of Northeast Petroleum University, 2018,42(2): 71-79.
14 JIN C, LI C, ALGEO T J, et al. Controls on organic matter accumulation on the Early-Cambrian western Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2020,111:75-87.
15 李进. 黔北下寒武统牛蹄塘组页岩古环境恢复与有机质富集研究[D]. 北京:中国地质大学(北京),2018:187.
LI J. Paleoenvironment Restoration and Organic Matter Enrichment of Lower Cambrian Niutitang Formation Shale in Northern Guizhou[D]. Beijing:China University of Geosciences (Beijing), 2018:187.
16 董春梅,马存飞,林承焰,等. 一种泥页岩层系岩相划分方法[J]. 中国石油大学学报:自然科学版, 2015,39(3):1-7.
DONG C M, MA C F, LIN C Y, et al. A lithofacies division method of shale series[J]. Journal of China University of Petroleum: Edition of Natural Science, 2015,39(3): 1-7.
17 王玉满, 王淑芳, 董大忠, 等. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘, 2016,23(1):119-133.
WANG Y M, WANG S F, DONG D Z, et al. Shale facies characterization of Lower Silurian Longmaxi Formation in southern Sichuan[J]. Earth Science Frontiers, 2016,23(1): 119-133.
18 WU L, LU Y, JIANG S, et al. Pore structure characterization of different lithofacies in marine shale: A case study of the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formation in the Sichuan Basin, SW China[J]. Journal of Natural Gas Science and Engineering, 2018,57:203-215.
19 XU S, GOU Q, HAO F, et al. Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba shale gas field, Sichuan Basin, China: Dominated by lithofacies or preservation condition?[J]. Marine and Petroleum Geology, 2020,114:104211.
20 XIA P, LI H, FU Y, et al. Effect of lithofacies on pore structure of the Cambrian organic‐rich shale in northern Guizhou, China[J]. Geological Journal, 2020,56(2):113-142.
21 刘忠宝, 刘光祥, 胡宗全, 等. 陆相页岩层系岩相类型、组合特征及其油气勘探意义——以四川盆地中下侏罗统为例[J]. 天然气工业, 2019,39(12):10-21.
LIU Z B, LIU G X, HU Z Q, et al. Lithofacies types and assemblage characteristics of continental shale series and their significance for oil and gas exploration: A case study of Middle and Lower Jurassic in Sichuan Basin[J]. Natural Gas Industry, 2019,39 (12): 10-21.
22 FENG Z, HAO F, ZHOU S, et al. Pore characteristics and methane adsorption capacity of different lithofacies of the Wufeng Formation-Longmaxi Formation shales, southern Sichuan Basin[J]. Energy Fuels, 2020,34(7):8046-8062.
23 SHU L S, FAURE M, YU J H, et al. Geochronological and geochemical features of the Cathaysia block(South China): New evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Research, 2011,187(3-4):263-276.
24 CHARVET J. The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block: An overview[J]. Journal of Asian Earth Sciences, 2013,74:198-209.
25 GUO Q,SHIELDS G A,LIU C,et al.Trace element chemo-stratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography Palaeoclimatology Palaeoecology,2007,254(1-2):194-216.
26 CHEN D, WANG J, QING H, et al. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints[J]. Chemical Geology, 2009,258(3-4):168-181.
27 YEASMIN R, CHEN D, FU Y, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences, 2016,134:365-386.
28 贵州省地质调查院.贵州省地质志[M].北京: 地质出版社, 2016:317-320.
GUIZHOU GEOLOGICAL SURVEY INSTITUTE. Geological Records of Guizhou Province[M]. Beijing: Geological Publishing House, 2016:317-320.
29 罗超. 上扬子地区下寒武统牛蹄塘组页岩特征研究[D].成都:成都理工大学,2014:2-17.
LUO C. Shale Characteristics of Lower Cambrian Niutitang Formation in Upper Yangtze Area[D],Chengdu:Chengdu Uni-versity of Technology, 2014:2-17.
30 LIU L, TANG S, XI Z. Total organic carbon enrichment and its impact on pore characteristics: A case study from the Niutitang Formation shales in northern Guizhou[J]. Energies (Basel), 2019,12(8):1480.
31 LI T, TIAN H, XIAO X, et al. Geochemical characterization and methane adsorption capacity of overmature organic-rich Lower Cambrian shales in northeast Guizhou region, southwest China[J]. Marine and Petroleum Geology,2017,86:858-873.
32 WU C, TUO J, ZHANG L, et al. Pore characteristics differences between clay-rich and clay-poor shales of the Lower Cambrian Niutitang Formation in the northern Guizhou area, and insights into shale gas storage mechanisms[J]. International Journal of Coal Geology, 2017,178:13-25.
33 WU Y, FAN T, JIANG S, et al. Lithofacies and sedimentary sequence of the Lower Cambrian Niutitang shale in the Upper Yangtze platform, South China[J]. Journal of Natural Gas Science and Engineering, 2017,43:124-136.
34 曾维特, 丁文龙, 张金川, 等. 渝东南—黔北地区牛蹄塘组页岩微纳米级孔隙发育特征及主控因素分析[J]. 地学前缘, 2019,26(3):220-235.
ZENG W T, DING W L, ZHANG J C, et al. Micro nano pore development characteristics and main controlling factors of Niutitang Formation shale in southeastern Chongqing northern Guizhou area[J]. Earth Science Frontiers, 2019,26 (3): 220-235.
35 ZHANG J, FAN T, LI J, et al. Characterization of the Lower Cambrian shale in the northwestern Guizhou Province, South China: Implications for Shale-Gas Potential[J]. Energy & Fuels, 2015,29(10):6383-6393.
36 XIA J, SONG Z, WANG S, et al. Preliminary study of pore structure and methane sorption capacity of the Lower Cambrian shales from the north Guizhou Province[J]. Journal of Natural Gas Science and Engineering, 2017,38:81-93.
37 赖富强, 罗涵, 龚大建, 等. 一种新的页岩气储层脆性指数评价模型研究——以贵州下寒武统牛蹄塘组页岩储层为例[J]. 地球物理学进展, 2018,33(6):2358-2367.
LAI F Q, LUO H, GONG D J, et al. A new evaluation model of shale gas reservoir brittleness index: A case study of Lower Cambrian Niutitang Formation shale reservoir in Guizhou[J]. Progress in Geophysics, 2018,33(6): 2358-2367.
38 王兴华. 黔北岑巩区块下寒武统牛蹄塘组页岩储层裂缝表征与控气作用[D]. 北京:中国地质大学(北京),2020:23-30.
WANG X H. Fracture Characterization and Gas Control of Lower Cambrian Niutitang Formation Shale Reservoir in Cengong Block, Northern Guizhou[D]. Beijing:China University of Geosciences (Beijing), 2020:23-30.
39 贾智彬, 侯读杰, 孙德强, 等. 热水沉积判别标志及与烃源岩的耦合关系[J]. 天然气地球科学, 2016,27(6):1025-1034.
JIA Z B,HOU D J,SUN D Q,et al.Identification criteria of hydro-thermal sedimentation and its coupling relationship with source rocks[J]. Natural Gas Geoscience,2016,27(6): 1025-1034.
40 杨旭, 谢宏, 王志罡, 等. 铜仁坝黄磷矿稀土元素地球化学特征及其指示意义[J]. 中国稀土学报, 2018,36(6):760-768.
YANG X, XIE H, WANG Z G, et al. Geochemical characteristics of rare earth elements in Tongrenba yellow phosphorite and their indicative significance[J].Journal of the Chinese Rare Earth Society,2018,36(6):760-768.
41 付勇, 周文喜, 王华建, 等. 黔北下寒武统黑色岩系的沉积环境与地球化学响应[J]. 地质学报, 2021,95(2):536-548.
FU Y, ZHOU W X, WANG H J, et al. Sedimentary environment and geochemical response of Lower Cambrian black rock series in northern Guizhou[J]. Acta Geologica Sinica, 2021,95(2):536-548.
42 魏帅超, 陈启飞, 付勇, 等. 湘黔地区埃迪卡拉纪-寒武纪之交硅质岩的成因探讨——来自稀土元素和Ge/Si比值的证据[J]. 北京大学学报:自然科学版, 2018,54(5):1010-1020.
WEI S C, CHEN Q F, FU Y, et al. Discussion on the genesis of siliceous rocks at the intersection of Ediacaran and Cambrian in Hunan Guizhou area: Evidence from rare earth elements and Ge / Si ratio[J]. Journal of Peking University: Edition of Natural Science, 2018,54(5):1010-1020.
43 夏鹏, 付勇, 杨镇, 等. 黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系[J]. 地质学报, 2020,94(3):947-956.
XIA P, FU Y, YANG Z, et al. Relationship between sedimentary environment and organic matter enrichment of black shale in Niutitang Formation, Zhenyuan, northern Guizhou[J]. Acta Geologica Sinica, 2020,94 (3):947-956.
44 BRYN J, C. M D A. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994,111(1-4):111-129.
45 何龙, 王云鹏, 陈多福, 等. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019,30(2):203-218.
HE L, WANG Y P, CHEN D F, et al. Relationship between sedimentary environment and organic matter enrichment of black shale from Wufeng Formation to Longmaxi Formation in Nanchuan area,Chongqing[J].Natural Gas Geoscience,2019,30(2):203-218.
46 WIGNALL P B,TWITCHETT R J. Oceanic anoxia and the End Permian mass extinction[J]. Science, 1996,272(5265):1155-1158.
47 王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报, 2017,35(6):1265-1273.
WANG F, LIU X C, DENG X Q, et al. Trace element geochemical characteristics and sedimentary environment indication of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2017,35 (6): 1265-1273.
[1] Shiyu MA,Wuren XIE,Wei YANG,Shufu DUAN,Zecheng WANG,Saijun WU,Nan SU,Cuiguo HAO,Xiaodan WANG. Lithofacies and paleogeography of the lower Canglangpu Formation of the Lower Cambrian in Sichuan Basin and its periphery [J]. Natural Gas Geoscience, 2021, 32(9): 1324-1333.
[2] Xiao-tong XU, Li-kuan ZHANG, Ming-ze YE, Li-qiang ZHANG, Jin-lei XIU, Zhi-ping ZENG, Bin-feng CAO, Chao LI, Yu-hong LEI, Ming Cheng, Cai-zhi HU. Different diagenesis of deep sandstone reservoir and its relationship with reservoir property: Case study of Jurassic in Zhengshacun area, central Junggar Basin [J]. Natural Gas Geoscience, 2021, 32(7): 1022-1036.
[3] Ye-tong WANG, Guo-qiang SUN, Shun-cun ZHANG, Bo CHEN, Wen-jun ZHU, Yun JIANG. Characteristics and genesis of carbonate cement in abdomen sandstone in northern margin of Qaidam Basin [J]. Natural Gas Geoscience, 2021, 32(7): 1037-1046.
[4] Wei YANG, Man-cang LIU, Guo-qi WEI, Hui JIN, Wu-ren XIE, Sai-jun WU, Nan SU, Qiu-ying ZHU, Cui-guo HAO, Xiao-dan WANG. Sedimentary characteristics and sequence lithofacies paleogeography of the semi-closed carbonate platform of the Leikoupo Formation in Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(6): 781-793.
[5] Guang-rong ZHANG, Hai-kuan NIE, Xuan TANG, Dong-hui LI, Chuan-xiang SUN, Pei-xian ZHANG. Optimization method and application of shale gas enrichment layer based on biogenic silica and organic matter pore:Case study of Wufeng-Longmaxi formations shale in the Sichuan Basin and its periphery [J]. Natural Gas Geoscience, 2021, 32(6): 888-898.
[6] Xin-ping TANG, Dong LEI, Xiao-wen SONG. Sedimentary characteristics and facies model of lacustrine carbonate rocks of Buxin Formation, Sanshui Basin [J]. Natural Gas Geoscience, 2021, 32(5): 675-684.
[7] Bing-kun MENG, Shi-xin ZHOU, Jing LI, Ke-fei CHEN, Chen ZHANG, Peng-Peng LI, Ze-xiang SUN. Distribution characteristics and significance of the aromatic hydrocarbons molecular biomarker in crude oil from the northwestern Qaidam Basin [J]. Natural Gas Geoscience, 2021, 32(5): 738-753.
[8] Guo-yi HU, Fei HE, Jing-kui MI, Yi-lin YUAN, Jin-hao GUO. The geochemical characteristics, distribution patterns, and gas exploration potential of marine source rocks in northwest Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(3): 319-333.
[9] Yi HE, Xuan TANG, Yan-sheng SHAN, Guang-xiang LIU, Huang-chang XIE, Zi-jie MA. Lithofacies division and comparison and characteristics of Longtan Formation shale in typical areas of Sichuan Basin and its surrounding [J]. Natural Gas Geoscience, 2021, 32(2): 174-190.
[10] Hao-fei SUN, Bing LUO, Long WEN, Jin-xi WANG, Gang ZHOU, Hua-guo WEN, Fei HUO, Xin DAI, Chang-long HE. The first discovery of organic-rich shale in Leikoupo Formation and new areas of sub-salt exploration, Sichuan Basin [J]. Natural Gas Geoscience, 2021, 32(2): 233-247.
[11] Xu ZENG, Tong LIN, Fei ZHOU, Jie LI, Yi ZHANG, Xiao-shuang SHEN, Yong-sheng FANG, Ke WANG. Carbon and oxygen isotope characteristics of carbonate and Neogene depositional environment in the Yiliping area of Qaidam Basin [J]. Natural Gas Geoscience, 2021, 32(1): 73-85.
[12] Yi-li KANG, Dong-sheng YANG, Li-jun YOU, Xin-lei LI, Jia-jia BAI, Jia-xin SHAO, Tao ZENG. Experimental evaluation method for permeability changes of organic-rich shales by high-temperature thermal stimulation [J]. Natural Gas Geoscience, 2021, 32(1): 86-97.
[13] Zhao-feng ZHANG, Liang-jun WANG, Li-qiang ZHANG, Cheng-yin LI. The element characteristics and paleoenvironmental significance of Xiaoheba Formation sandstone in Huilongchang area, southeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1239-1249.
[14] Jun-jun YOU, Xi-bing YANG, Ming-zhu LEI, Gang LIANG, Zi-ling WANG. The characteristics and significances of cheilanthane tricyclic terpanes and bicyclic sesquiterpanes in source rocks and oils under different depositional environments in Zhu Ⅲ Depression, Pearl River Mouth Basin [J]. Natural Gas Geoscience, 2020, 31(7): 904-914.
[15] Wen-zheng LI, Jian-yong ZHANG, Hao-han LI, Xiao-fang WANG, Qian ZOU, Hua JIANG, Xiao-dong FU, Peng-wan WANG, Zheng-yu XU, Li-qiao MA. Distribution characteristics of intracratonic rift and its exploration significance in western Hubei and eastern Chongqing area [J]. Natural Gas Geoscience, 2020, 31(5): 675-685.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Natural Gas Geoscience, 2015, 26(4): 1 -2 .
[2] . [J]. Natural Gas Geoscience, 2015, 26(6): 1 -2 .
[3] CAO Ying-chang,DU Liang-hui,WANG Yan-zhong,XI Ke-lai,WANG Xiao-ming,ZHANG Jiang-hua. Reservoir Sedimentary-diagenetic Synthetic Facies and Its Logging Identification of Sangonghe Formation in Block 1 of Central Junggar Basin[J]. Natural Gas Geoscience, 2015, 26(6): 1016 -1027 .
[4] . [J]. Natural Gas Geoscience, 2016, 27(5): 1 -2 .
[5] . [J]. Natural Gas Geoscience, 2016, 27(6): 1 -2 .
[6] Li Deng-hua,Liu Zhuo-ya,Zhang Guo-sheng,Zheng Zhi-hong,Jia Jun,Gao Xuan,Zan Xin. Comparison and revelation of tight oil accumulation conditions, distribution characteristics and development status between China and U.S.[J]. Natural Gas Geoscience, 2017, 28(7): 1126 -1138 .
[7] Hu Dong-feng. Main controlling factors on normal pressure shale gas enrichmentsin Wufeng-Longmaxi Formations in synclines,southeastern Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(5): 605 -615 .
[8] Liao Feng-rong, Hong Feng. Distribution characteristics of giant gas fields in the world and its enlightenment[J]. Natural Gas Geoscience, 2019, 30(6): 860 -865 .
[9] 《天然气地球科学》-期封面及目次. Natural Gas geoscience 2019-6 covers and titles[J]. Natural Gas Geoscience, 2019, 30(6): 9061 -9062 .
[10] Fang Xiang, Yang Zhi, Guo Xu-guang, Wu Yan-xiong, Liu Jun-tian. Resource grading evaluation and exploration potential of tight oil in major basins of China[J]. Natural Gas Geoscience, 2019, 30(8): 1094 -1105 .