Diffusion experiment of shale gas and mathematical model

  • Lu CHEN , 1, 2 ,
  • Zhi-Ming HU , 2, 3 ,
  • Wei XIONG 2, 3 ,
  • Xiang-Gang DUAN 3 ,
  • Jin CHANG 3
Expand
  • 1. University of Chinese Academy of Sciences, Beijing 100049, China
  • 2. Department of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China
  • 3. PetroChina Research Institute of Petroleum Exploration & Development (Langfang), Langfang 065007, China

Received date: 2020-02-01

  Revised date: 2020-05-07

  Online published: 2020-09-04

Highlights

Under formation condition, the flow state of shale gas is affected by multi-scale effects, including viscous flow, diffusion flow and slippage flow, etc., gas production is the result of synergy of various mechanisms, and previous diffusion models can no longer accurately describe the diffusion behavior of shale gas in the shales. In order to clarify the influencing factors of shale gas diffusion ability, reveal the flow law of gas wells in the whole life cycle development process as well as the impact on production capacity, experiments on shale gas under the conditions of 0-1 MPa micro-pressure difference is carried out by using the self-developed experimental system with high temperature and high pressure resistance, and put forward a diffusion coefficient calculation method comprehensively considering permeability, temperature and pressure. It was successfully applied to the Wufeng-Longmaxi formations shale in the south of Sichuan, indicating that the critical pressure of the high-quality reservoir in this area is 4.5 MPa when diffusion flow occupy the main position. It is of great significance for the shale gas well productivity evaluation and the quantitative characterization of the diffusion capacity. The experimental results and theoretical analysis show that the diffusion will have a higher partition coefficient under high temperature, low permeability and low pressure level, the diffusion coefficient model considering the permeability of shales can be better applied in actual flow, and there will be a large error in productivity calculation if ignoring the effects of diffusion.

Cite this article

Lu CHEN , Zhi-Ming HU , Wei XIONG , Xiang-Gang DUAN , Jin CHANG . Diffusion experiment of shale gas and mathematical model[J]. Natural Gas Geoscience, 2020 , 31(9) : 1285 -1293 . DOI: 10.11764/j.issn.1672-1926.2020.05.003

(刘文浩 编译)

1
童晓光,张光亚,王兆明,等. 全球油气资源潜力与分布[J]. 石油勘探与开发, 2018, 45(4): 727-736.

TONG X G, ZHANG G Y, WANG Z M, et al. Distribution and potential of global oil and gas resources[J]. Petroleum Exploration and Development, 2018, 45(4): 727-736.

2
杜殿发,赵艳武,张婧,等. 页岩气渗流机理研究进展及发展趋势[J]. 西南石油大学学报:自然科学版, 2017, 39(4): 136-144.

DU D F, ZHAO Y W, ZHANG J, et al. Progress and trends in shale gas seepage mechanism reaserch[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2017, 39(4): 136-144.

3
张东晓,杨婷云,吴天昊,等. 页岩气开发机理和关键问题[J]. 科学通报, 2016, 61(1): 62-71.

ZHANG D X, YANG T Y, WU T H, et al. Recovery mechanisms and key issues in shale gas development[J]. Chinese Science Bulletin, 2016, 61(1): 62-71.

4
JAVADPOUR F, FISHER D, UNSWORTH M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 2007, 46(10): 55-61.

5
JAVADPOUR F. Nanopores and apparent permeability of gas flow in mudrocks(shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21.

6
李晓强,周志宇,冯光,等. 页岩基质扩散流动对页岩气井产能的影响[J]. 油气藏评价与开发, 2011, 1(5): 67-70.

LI X Q, ZHOU Z Y, FENG G, et al. The impact of shale matrix diffusion flow on shale gas capacity[J]. Reservoir Evaluation and Development, 2011, 1(5): 67-70.

7
李智锋. 页岩气藏孔渗特征与微观渗流机理研究[D]. 北京: 中国地质大学(北京), 2013.

LI Z F. Research of Shale Pore-Permeability Characteristic and Microscopic Gas Slippage Mechanism in Shale Gas Reservoir[D].Beijing:China University of Geosciences(Beijing),2013.

8
刘禹. 页岩气在多孔介质中的流动规律研究[D]. 大庆: 东北石油大学, 2014.

LIU Y. Research of the Shale Gas Flow Lows in the Porous Medium[D]. Daqing: Northeast Petroleum University, 2014.

9
盛茂,李根生,黄中伟,等. 考虑表面扩散作用的页岩气瞬态流动模型[J]. 石油学报, 2014, 35(2): 347-352.

SHENG M, LI G S, HUANG Z W, et al. Shale gas transient flow model with effects of surface diffusion[J]. Acta Petrolei Sinica, 2014, 35(2): 347-352.

10
糜利栋,姜汉桥,李俊键,等. 页岩储层渗透率数学表征[J]. 石油学报, 2014, 35(5): 928-934.

MI L D, JIANG H Q, LI J J, et al. Mathematical characterization of permeability in shale reservoirs[J]. Acta Petrolei Sinica, 2014, 35(5): 928-934.

11
WASAKI A, AKKUTLU-I Y. Permeability of organic-rich shale[C]// SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2014.

12
曹成,李天太,刘刚,等. 考虑吸附、滑脱和自由分子流动效应的页岩基质渗透率计算模型[J]. 西安石油大学学报:自然科学版, 2015, 30(5): 8-9, 48-53.

CAO C, LI T T, LIU G, et al. Permeability calculation model of shale matrix with adsorption, slippage and free molecule flow effects[J]. Journal of Xi'an Shiyou University:Natural Science, 2015, 30(5): 8-9, 48-53.

13
李武广,钟兵,杨洪志,等. 页岩储层基质气体扩散能力评价新方法[J]. 石油学报, 2016, 37(1): 88-96.

LI W G, ZHONG B, YANG H Z, et al. A new method for gas diffusivity evaluation in matrix rocks of shale reservoir[J]. Acta Petrolei Sinica, 2016, 37(1): 88-96.

14
李亚雄,刘先贵,胡志明,等. 页岩气滑脱、扩散传输机理耦合新方法[J]. 物理学报, 2017, 66(11): 230-240.

LI Y X, LIU X G, HU Z M, et al. A new method for the transport mechanism coupling of shale gas slippage and diffusion[J]. Acta Physical Sinica, 2017, 66(11): 230-240.

15
董萱. 页岩气微观运移规律与流动机理研究[D]. 徐州: 中国矿业大学, 2019.

DONG X. Study on Microscopic Migration Rule and Flow Mechanism of Shale Gas[D]. Xuzhou: China University of Mining and Technology,2019.

16
王瑞,张宁生,刘晓娟,等. 页岩气扩散系数和视渗透率的计算与分析[J]. 西北大学学报:自然科学版, 2013, 43(1): 75-80, 88.

WANG R, ZHANG N S, LIU X J, et al. The calculation and analysis of diffusion coefficient and apparent permeability of shale gas[J]. Journal of Northwest University:Natural Science Edition, 2013, 43(1): 75-80, 88.

17
薛培,祁攀文,杨添麒,等. 基于绝对吸附量的页岩吸附CH4和CO2的热力学特征[J]. 山东科技大学学报:自然科学版, 2019, 38(5): 21-30.

XUE P, QI P W, YANG T Q, et al. Adsorption thermodynamic property for CH4 and CO2 of shales based on absolute adsorption capacity[J]. Journal of Shandong University of Science and Technology:Natural Science, 2019, 38(5): 21-30.

Outlines

/