Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (9): 1285-1293.doi: 10.11764/j.issn.1672-1926.2020.05.003

Previous Articles     Next Articles

Diffusion experiment of shale gas and mathematical model

Lu CHEN1,2(),Zhi-Ming HU2,3(),Wei XIONG2,3,Xiang-Gang DUAN3,Jin CHANG3   

  1. 1.University of Chinese Academy of Sciences, Beijing 100049, China
    2.Department of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China
    3.PetroChina Research Institute of Petroleum Exploration & Development (Langfang), Langfang 065007, China
  • Received:2020-02-01 Revised:2020-05-07 Online:2020-09-10 Published:2020-09-04
  • Contact: Zhi-Ming HU E-mail:83874772@qq.com;huzhiming69@petrochina.com.cn

Abstract:

Under formation condition, the flow state of shale gas is affected by multi-scale effects, including viscous flow, diffusion flow and slippage flow, etc., gas production is the result of synergy of various mechanisms, and previous diffusion models can no longer accurately describe the diffusion behavior of shale gas in the shales. In order to clarify the influencing factors of shale gas diffusion ability, reveal the flow law of gas wells in the whole life cycle development process as well as the impact on production capacity, experiments on shale gas under the conditions of 0-1 MPa micro-pressure difference is carried out by using the self-developed experimental system with high temperature and high pressure resistance, and put forward a diffusion coefficient calculation method comprehensively considering permeability, temperature and pressure. It was successfully applied to the Wufeng-Longmaxi formations shale in the south of Sichuan, indicating that the critical pressure of the high-quality reservoir in this area is 4.5 MPa when diffusion flow occupy the main position. It is of great significance for the shale gas well productivity evaluation and the quantitative characterization of the diffusion capacity. The experimental results and theoretical analysis show that the diffusion will have a higher partition coefficient under high temperature, low permeability and low pressure level, the diffusion coefficient model considering the permeability of shales can be better applied in actual flow, and there will be a large error in productivity calculation if ignoring the effects of diffusion.

Key words: Shale gas, Diffusion flow, Flow experiment, Influence factor, Generalized diffusion modelFoundation item:The National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2017ZX05037-001).

CLC Number: 

  • TE31

Fig.1

Experimental setup"

Table 1

Sample parameters of Wufeng-Longmaxi Formation in Sichuan Basin"

岩心编号层位长度/cm直径/cm干重/g密度/(g/cm3渗透率/(10-3 μm2
1龙一136.5022.52684.912.610.000 033
2龙一125.5102.52067.102.440.000 268
3龙一145.5522.52570.642.540.010 641

Fig.2

Experimental flow chart"

Table 2

Experimental parameter design"

岩心编号左端压力/MPa右端压力/MPa温度/℃
17.58.540
27.58.540
37.58.540
17.58.560
27.58.560
37.58.560

Fig.3

Relationship between pressure and time at both ends of the shale sample (40 ℃)"

Fig.4

Relationship between pressure and time at both ends of the shale sample (60 ℃)"

Fig.5

Relationship between flow rate and pressure gradient"

Fig.6

Relationship between diffusion distribution coefficient and pressure gradient"

Fig.7

Shale sample gas production versus with time in the late experiment"

Fig.8

Comparison between classic model and generalized diffusion coefficient model"

Fig.9

Shale diffusion capacity chart"

Fig.10

Diagram of relationship between diffusion distribution coefficient and reservoir pressure"

"

项目名称资助金额/万美元实施机构
结构材料辅助先进更新技术修复(智能修复)500橡树岭国家实验室
管道封装技术的测试和分析540科罗拉多大学博尔德分校
地下管道非开挖检修500通用电气全球研发总部
管套管的快速、连续、智能的合金涂层研发100马里兰大学
天然气管道的自主修复和维护500自主材料公司
用于管内维修机器人的受限空间映射模块研发120卡内基梅隆大学
“神经支配”管道:现场维修和嵌入式智能的新技术平台100匹兹堡大学
用于管道快速修复的凝灰岩内部包装595特拉华大学
全新及创新的3D绘图技术,可修复天然气管道基础设施200怀特河科技公司
冷喷涂添加剂制造,用于在现场、天然气配送干线中制造新管道100ULC机器人公司
1 童晓光,张光亚,王兆明,等. 全球油气资源潜力与分布[J]. 石油勘探与开发, 2018, 45(4): 727-736.
TONG X G, ZHANG G Y, WANG Z M, et al. Distribution and potential of global oil and gas resources[J]. Petroleum Exploration and Development, 2018, 45(4): 727-736.
2 杜殿发,赵艳武,张婧,等. 页岩气渗流机理研究进展及发展趋势[J]. 西南石油大学学报:自然科学版, 2017, 39(4): 136-144.
DU D F, ZHAO Y W, ZHANG J, et al. Progress and trends in shale gas seepage mechanism reaserch[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2017, 39(4): 136-144.
3 张东晓,杨婷云,吴天昊,等. 页岩气开发机理和关键问题[J]. 科学通报, 2016, 61(1): 62-71.
ZHANG D X, YANG T Y, WU T H, et al. Recovery mechanisms and key issues in shale gas development[J]. Chinese Science Bulletin, 2016, 61(1): 62-71.
4 JAVADPOUR F, FISHER D, UNSWORTH M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 2007, 46(10): 55-61.
5 JAVADPOUR F. Nanopores and apparent permeability of gas flow in mudrocks(shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21.
6 李晓强,周志宇,冯光,等. 页岩基质扩散流动对页岩气井产能的影响[J]. 油气藏评价与开发, 2011, 1(5): 67-70.
LI X Q, ZHOU Z Y, FENG G, et al. The impact of shale matrix diffusion flow on shale gas capacity[J]. Reservoir Evaluation and Development, 2011, 1(5): 67-70.
7 李智锋. 页岩气藏孔渗特征与微观渗流机理研究[D]. 北京: 中国地质大学(北京), 2013.
LI Z F. Research of Shale Pore-Permeability Characteristic and Microscopic Gas Slippage Mechanism in Shale Gas Reservoir[D].Beijing:China University of Geosciences(Beijing),2013.
8 刘禹. 页岩气在多孔介质中的流动规律研究[D]. 大庆: 东北石油大学, 2014.
LIU Y. Research of the Shale Gas Flow Lows in the Porous Medium[D]. Daqing: Northeast Petroleum University, 2014.
9 盛茂,李根生,黄中伟,等. 考虑表面扩散作用的页岩气瞬态流动模型[J]. 石油学报, 2014, 35(2): 347-352.
SHENG M, LI G S, HUANG Z W, et al. Shale gas transient flow model with effects of surface diffusion[J]. Acta Petrolei Sinica, 2014, 35(2): 347-352.
10 糜利栋,姜汉桥,李俊键,等. 页岩储层渗透率数学表征[J]. 石油学报, 2014, 35(5): 928-934.
MI L D, JIANG H Q, LI J J, et al. Mathematical characterization of permeability in shale reservoirs[J]. Acta Petrolei Sinica, 2014, 35(5): 928-934.
11 WASAKI A, AKKUTLU-I Y. Permeability of organic-rich shale[C]// SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2014.
12 曹成,李天太,刘刚,等. 考虑吸附、滑脱和自由分子流动效应的页岩基质渗透率计算模型[J]. 西安石油大学学报:自然科学版, 2015, 30(5): 8-9, 48-53.
CAO C, LI T T, LIU G, et al. Permeability calculation model of shale matrix with adsorption, slippage and free molecule flow effects[J]. Journal of Xi'an Shiyou University:Natural Science, 2015, 30(5): 8-9, 48-53.
13 李武广,钟兵,杨洪志,等. 页岩储层基质气体扩散能力评价新方法[J]. 石油学报, 2016, 37(1): 88-96.
LI W G, ZHONG B, YANG H Z, et al. A new method for gas diffusivity evaluation in matrix rocks of shale reservoir[J]. Acta Petrolei Sinica, 2016, 37(1): 88-96.
14 李亚雄,刘先贵,胡志明,等. 页岩气滑脱、扩散传输机理耦合新方法[J]. 物理学报, 2017, 66(11): 230-240.
LI Y X, LIU X G, HU Z M, et al. A new method for the transport mechanism coupling of shale gas slippage and diffusion[J]. Acta Physical Sinica, 2017, 66(11): 230-240.
15 董萱. 页岩气微观运移规律与流动机理研究[D]. 徐州: 中国矿业大学, 2019.
DONG X. Study on Microscopic Migration Rule and Flow Mechanism of Shale Gas[D]. Xuzhou: China University of Mining and Technology,2019.
16 王瑞,张宁生,刘晓娟,等. 页岩气扩散系数和视渗透率的计算与分析[J]. 西北大学学报:自然科学版, 2013, 43(1): 75-80, 88.
WANG R, ZHANG N S, LIU X J, et al. The calculation and analysis of diffusion coefficient and apparent permeability of shale gas[J]. Journal of Northwest University:Natural Science Edition, 2013, 43(1): 75-80, 88.
17 薛培,祁攀文,杨添麒,等. 基于绝对吸附量的页岩吸附CH4和CO2的热力学特征[J]. 山东科技大学学报:自然科学版, 2019, 38(5): 21-30.
XUE P, QI P W, YANG T Q, et al. Adsorption thermodynamic property for CH4 and CO2 of shales based on absolute adsorption capacity[J]. Journal of Shandong University of Science and Technology:Natural Science, 2019, 38(5): 21-30.
[1] Sheng-xiang LONG, Ya-zhao LIU, Hua-ming XU, Qian CHEN, Zhe CHENG. Exploration domains and technological breakthrough directions of natural gas in SINOPEC exploratory areas, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1195-1203.
[2] Teng-fei LI, Hui TIAN, Xian-ming XIAO, Peng CHENG, Xing WANG, Yao-wen WU, Zi-jin WU. The effect of particle size on low pressure gas adsorption experiments for high-maturity shale [J]. Natural Gas Geoscience, 2020, 31(9): 1271-1284.
[3] Qiang NIU,Huan-xu ZHANG,Di ZHU,Zhi-yao XU,Yun-feng YANG,An-xu DING,He-qun GAO,Li-sheng ZHANG. Mud gas isotopic logging of Wufeng-Longmaxi shale in southeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(9): 1294-1305.
[4] Xiang-feng WEI, Zhu-jiang LIU, Qiang WANG, Fu-bin WEI, Tao YUAN. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(8): 1041-1051.
[5] Sheng-yuan LUO, Xiao-hong CHEN, Yong YUE, Pei-jun LI, Quan-sheng CAI, Rui-zhi YANG. Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area, Middle Yangtze [J]. Natural Gas Geoscience, 2020, 31(8): 1052-1068.
[6] De-yong SHAO, Liu-liu ZHANG, Ya-jun ZHANG, Yu ZHANG, Huan LUO, Bo QIAO, Jian-ping YAN, Tong-wei ZHANG. The characteristics of water uptake for the Lower Cambrian shales in Middle-Upper Yangtze region and its implication for shale gas exploration [J]. Natural Gas Geoscience, 2020, 31(7): 1004-1015.
[7] Bin-bin XI, Bao-jian SHEN, Hong JIANG, Zhen-heng YANG, Xiao-lin WANG. The trapping temperature and pressure of CH4-H2O-NaCl immiscible fluid inclusions and its application in natural gas reservoir [J]. Natural Gas Geoscience, 2020, 31(7): 923-930.
[8] Jin-xing DAI, Da-zhong DONG, Yun-yan NI, Feng HONG, Su-rong ZHANG, Yan-ling ZHANG, Lin DING. Some essential geological and geochemical issues about shale gas research in China [J]. Natural Gas Geoscience, 2020, 31(6): 745-760.
[9] Hong-lin LIU, Huai-chang WANG, Hui ZHANG, Wei-bo ZHAO, Yan LIU, De-xun LIU, Shang-wen ZHOU. Nano pore network of asphalt in Xiaoheba Formation in the eastern Sichuan Basin and its significance for reservoir formation [J]. Natural Gas Geoscience, 2020, 31(6): 818-826.
[10] Ze-yang PENG, Sheng-xiang LONG, Yong-gui ZHANG, Ting LU, Ru-yue WANG. A new method of adsorption isotherm in high temperature and pressure [J]. Natural Gas Geoscience, 2020, 31(6): 827-834.
[11] Ai-wei ZHENG, Bang LIANG, Zhi-guo SHU, Bai-qiao ZHANG, Ji-qing LI, Ya-qiu LU, Li LIU, Zhi-heng SHU. Analysis of influencing factors of shale gas productivity based on large data technology: A case of Jiaoshiba block in Fuling Gas Field, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(4): 542-551.
[12] Lin DING, Feng CHENG, Rong-ze YU, Zhao-yuan SHAO, Jia-qi LIU, Guan-he LIU. Current situation and development trend of horizontal well spacing for shale gas in North America [J]. Natural Gas Geoscience, 2020, 31(4): 559-566.
[13] Wei-yao ZHU, Bai-chuan WANG, Dong-xu MA, Kun HUANG, Bing-bing LI. Effect of water on seepage capacity of shale with microcracks [J]. Natural Gas Geoscience, 2020, 31(3): 317-324.
[14] Zhi-heng SHU, Dong-liang FANG, Ai-wei ZHENG, Chao LIU, Li LIU, Jing JI, Bang LIANG. Geological characteristics and development potential of upper shale gas reservoirs of the 1st member of Longmaxi Formation in Jiaoshiba area, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(3): 393-401.
[15] Qiu ZHONG, Xue-hai FU, Miao ZHANG, Qing-hui ZHANG, Wei-ping CHENG. Development potential of Carboniferous-Permian coal measures shales gas in Qinshui coalfield [J]. Natural Gas Geoscience, 2020, 31(1): 110-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Xian-bin, TUO Jin-cai, ZHOU Shi-xin, LI Zhen-xi, ZHANG Ming-jie, YAN Hong. THE FORMATION MECHANISM OF NATURAL AND RELATIVE TO PROBLEMS IN EARTH SCIENCE[J]. Natural Gas Geoscience, 2006, 17(1): 7 -13 .
[2] . FLUID FLOW SIMULATION OF DIFFERENT RESERVOIR MODEL  OF PU 53[J]. Natural Gas Geoscience, 2006, 17(2): 201 -205 .
[3] . [J]. Natural Gas Geoscience, 2002, 13(5-6): 66 -73 .
[4] . THE DISTRIBUTION AND CONTROL FACTORS OF PHASE STATE OF OIL AND GAS POOLS IN KUQA PETROLEUM SYSTEM[J]. Natural Gas Geoscience, 2004, 15(3): 205 -213 .
[5] . [J]. Natural Gas Geoscience, 1997, 8(3): 9 -17 .
[6] ZOU Dong-bo, WU Shi-guo,LIU Gang,HAN Wen-gong. THE FEATURES OF THE NNE TRENDING FAULTS AND ITS IMPLICATION FOR HYDROCARBON IN THE ZHUANGHAI AREA, BOHAIWAN BASIN[J]. Natural Gas Geoscience, 2004, 15(5): 503 -507 .
[7] QIN Bai-ping,Lü Xiu-xing,ZHANG Zhen-hong,WAN Xiao-long. NUMERICAL SIMULATION STUDY AND DEVELOPMENT MEANING OF CHANG 1 RESERVOIR IN DING 31 WELL AREA OFYOUFANGZHUANG OIL FIELD IN ORDOS BASIN[J]. Natural Gas Geoscience, 2004, 15(5): 531 -535 .
[8] . THE KINETICS MODEL OF HYDRATE FORMATION IN SEDIMENTS[J]. Natural Gas Geoscience, 2004, 15(4): 436 -440 .
[9] . GENESIS ANALYSIS OF THE OVERPRESSURE CAUSED BY FLUIDS CHARGE IN KUCHE DEPRESSION[J]. Natural Gas Geoscience, 2004, 15(3): 218 -221 .
[10] Chen Qi-lin,Yang Zhan-long. EXPLORATION TECHNIQUES IN LITHOLOGIC RESERVOIRS[J]. Natural Gas Geoscience, 2006, 17(5): 622 -626 .