0 引言
1 富有机质页岩储层热激法提出
1.1 储层高温热处理方法
表2 常见几种井下加热技术特点Table 2 Characteristics of downhole heating technologies |
Advantages of thermal stimulation to induce shale cracking after hydraulic fracturing over organic-rich shale reservoirs
Received date: 2019-08-03
Revised date: 2019-11-08
Online published: 2020-03-26
Supported by
The National Natural Science Foundation of China(51674209)
The Innovative Research Project for Sichuan Youth Scientific and Technological Innovation(2016TD0016)
The Major Cultivation Project of Sichuan Scientific and Technological Achievements Transformation, China(17CZ0040)
The China Postdoctoral Science Foundation(2017M623062)
The economic development of shale gas reservoirs has become the focus of current unconventional gas development. The development method of shale gas reservoirs is based on "horizontal well and hydraulic fracturing" as the core technology. In the process of hydraulic fracturing, a great amount of fracturing fluids retain in the reservoirs, which are difficult to flowback, forming water phase trap damage and hindering gas production. In addition, large-scale complex fracture networks formed by hydraulic fracturing can communicate micron-scale cracks, but it is still difficult for gas in the nano-scale pores of the matrix to enter the crack. This paper proposes a method for thermal stimulation to cause shale cracking coordinated with hydraulic fracturing technology over organic-rich shale gas reservoirs. The research progress of formation heat treatment is summarized from the aspects of laboratory experiments and field tests. In terms of the geological characteristics and engineering technologies, the advantages of this method over organic-rich shale gas reservoirs are also analyzed. It is considered that the role of hydrocarbon-generating overpressure, different thermal expansion coefficients of minerals as well as pressure compartments formed by micro-nanoscale pores provides the favorable factors. Based on the fracture network formed by application of the stimulated reservoir volume, the retaining fracturing fluids can enhance the heat transfer area of shale. Aquathermal pressuring and hydrothermal fluids at certain temperature can also contribute to thermal fracturing. By making full use of the unique geological superiorities and favorable engineering conditions of organic-shale gas reservoirs, this method will effectively transform the shale gas reservoirs after hydraulic fracturing, which can obviously alleviate or even eliminate water trapping damage, promote thermal cracking of matrix rocks on both sides of hydraulic fractures or natural fractures and finally improve the multiscale gas transport ability from matrix-natural fracture-artificial fracture network of shale. Meanwhile, with increasing temperature, the recovery and utilization of flowback fluids can be realized and it will be an environment-friendly new method for the effective development of shale gas reservoirs.
Li-jun YOU , Xin-lei LI , Yi-li KANG , Ming-jun CHEN , Jiang LIU . Advantages of thermal stimulation to induce shale cracking after hydraulic fracturing over organic-rich shale reservoirs[J]. Natural Gas Geoscience, 2020 , 31(3) : 325 -334 . DOI: 10.11764/j.issn.1672-1926.2019.11.009
表2 常见几种井下加热技术特点Table 2 Characteristics of downhole heating technologies |
感谢西南石油大学油气藏地质及开发工程国家重点实验室储层保护团队白佳佳、田键、郝志伟、杨东升、曾涛和黄恒清等同学在论文写作中给予的支持和帮助;感谢审稿人与编辑提出的宝贵意见及付出的辛勤努力。
1 |
董大忠,王玉满,李新景,等 . 中国页岩气勘探开发新突破及发展前景思考[J].天然气工业,2016,36(1):19-32.
|
2 |
|
3 |
游利军,王飞,康毅力,等 . 页岩气藏水相损害评价与尺度性[J].天然气地球科学,2016,27(11):2023-2029.
|
4 |
张士诚,郭天魁,周彤,等 . 天然页岩压裂裂缝扩展机理试验[J].石油学报,2014,35(3):496-503.
|
5 |
游利军,谢本彬,杨建,等 . 页岩气井压裂液返排对储层裂缝的损害机理[J].天然气工业,2018,38(12):61-69.
|
6 |
康毅力,陈强,游利军,等 . 页岩气藏水相圈闭损害实验研究及控制对策——以四川盆地东部龙马溪组露头页岩为例[J].油气地质与采收率,2014,21(6):87-91.
|
7 |
康毅力,张晓怡,游利军,等 . 页岩气藏自然返排缓解水相圈闭损害实验研究[J]. 天然气地球科学,2017,28(6):819-827.
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
刘均荣,吴晓东 . 岩石热增渗机理初探[J]. 石油钻采工艺,2003,25(5):43-47.
|
13 |
贺玉龙,杨立中 . 温度和有效应力对砂岩渗透率的影响机理研究[J]. 岩石力学与工程学报,2005,24(14):2420-2427.
|
14 |
谭启,骆循,李仕雄,等 . 岩石热破裂研究进展评述[J].露天采矿技术,2006(6):16-19.
|
15 |
张渊,曲方,赵阳升 . 岩石热破裂的声发射现象[J]. 岩土工程学报,2006,28(1):73-75.
|
16 |
赵阳升,万志军,张渊,等 . 岩石热破裂与渗透性相关规律的试验研究[J].岩石力学与工程学报,2010,29(10):1970-1976.
|
17 |
游利军,康毅力 . 热处理对致密岩石物理性质的影响[J]. 地球物理学进展,2009,24(5):1850-1854.
|
18 |
陈明君,康毅力,游利军 . 利用高温热处理提高致密储层渗透性[J]. 天然气地球科学,2013,24(6):1226-1231.
|
19 |
|
20 |
钱家麟,王剑秋 . 世界油页岩发展近况——并记2006年两次国际油页岩会议[J]. 中外能源,2007(1):7-11.
|
21 |
李隽,汤达祯,薛华庆,等 . 中国油页岩原位开采可行性初探[J]. 西南石油大学学报:自然科学版,2014,36(1):58-64.
|
22 |
赵阳升,杨栋,关克伟,等 . 高温烃类气体对流加热油页岩开采油气的方法:中国,CN 101122226A[P]. 2008-2-13.[2020-2-24]. https://www.ixueshu.com/.
|
23 |
|
24 |
刘德勋,王红岩,郑德温,等 . 世界油页岩原位开采技术进展[J]. 天然气工业,2009,29(5):128-132.
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
索彧,王小琼,葛洪魁 .加热引起含有机质页岩的性质变化及其波速各向异性[C].北京:中国地球科学联合学术年会,2014.
|
33 |
郑伟,张利军,朱国金,等 . 渤海L油田稠油水平井蒸汽吞吐开发效果分析[J].石油地质与工程,2019,33(4):80-82.
|
34 |
高永荣,郭二鹏,沈德煌,等 . 超稠油油藏蒸汽辅助重力泄油后期注空气开采技术[J]. 石油勘探与开发,2019,46(1):109-115.
|
35 |
李皋,孟英峰,董兆雄,等 . 砂岩储集层微波加热产生微裂缝的机理及意义[J]. 石油勘探与开发,2007,34(1):93-97.
|
36 |
游利军,陈明君,康毅力,等 . 一种促进致密气井水力裂缝面微裂缝创生的高温热激法:中国,CN 108571305 A[P].2018-9-25.[2020-2-24].https:∥www.cnki.net/.
|
37 |
|
38 |
朱如凯,白斌,崔景伟,等 . 非常规油气致密储集层微观结构研究进展[J]. 古地理学报,2013,15(5):615-623.
|
39 |
吴松涛,朱如凯,崔京钢,等 . 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发,2015,42(2):167-176.
|
40 |
高玉巧,蔡潇,张培先,等 . 渝东南盆缘转换带五峰组—龙马溪组页岩气储层孔隙特征与演化[J]. 天然气工业,2018,38(12):15-25.
|
41 |
王新洲,宋一涛,王学军 . 石油成因与排油物理模拟:方法、机理及应用[M]. 北京:石油大学出版社,1996.
|
42 |
|
43 |
|
44 |
朱维耀,马东旭 . 层理缝对页岩渗透率的影响及表征[J]. 特种油气藏,2018,25(2):134-137.
|
45 |
|
46 |
|
47 |
|
48 |
|
49 |
张建,熊炜,赵宇新 . 隆页1HF井桥塞分段大型压裂技术[J].油气藏评价与开发,2018,8(1):76-80.
|
50 |
郭建成,林伯韬,向建华,等 .四川盆地龙马溪组页岩压后返排率及产能影响因素分析[J].石油科学通报,2019(3):273-287.
|
51 |
|
52 |
|
53 |
李香兰,刘绍文,徐明,等 华南下扬子区泥页岩热物性测试与分析 [J] 天然气地球科学,2015,26(8):1525-1533.
|
54 |
|
55 |
孙亚平,褚健,张铭,等 天然含放矿物的水热蚀变研究进展 [J]. 矿物学报,2019,39(27):1-9.
|
/
〈 |
|
〉 |