Natural Gas Geoscience ›› 2020, Vol. 31 ›› Issue (3): 325-334.doi: 10.11764/j.issn.1672-1926.2019.11.009

Previous Articles     Next Articles

Advantages of thermal stimulation to induce shale cracking after hydraulic fracturing over organic-rich shale reservoirs

Li-jun YOU(),Xin-lei LI,Yi-li KANG,Ming-jun CHEN,Jiang LIU   

  1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation//Southwest Petroleum University, Chengdu 610500, China
  • Received:2019-08-03 Revised:2019-11-08 Online:2020-03-10 Published:2020-03-26
  • Supported by:
    The National Natural Science Foundation of China(51674209);The Innovative Research Project for Sichuan Youth Scientific and Technological Innovation(2016TD0016);The Major Cultivation Project of Sichuan Scientific and Technological Achievements Transformation, China(17CZ0040);The China Postdoctoral Science Foundation(2017M623062)

Abstract:

The economic development of shale gas reservoirs has become the focus of current unconventional gas development. The development method of shale gas reservoirs is based on "horizontal well and hydraulic fracturing" as the core technology. In the process of hydraulic fracturing, a great amount of fracturing fluids retain in the reservoirs, which are difficult to flowback, forming water phase trap damage and hindering gas production. In addition, large-scale complex fracture networks formed by hydraulic fracturing can communicate micron-scale cracks, but it is still difficult for gas in the nano-scale pores of the matrix to enter the crack. This paper proposes a method for thermal stimulation to cause shale cracking coordinated with hydraulic fracturing technology over organic-rich shale gas reservoirs. The research progress of formation heat treatment is summarized from the aspects of laboratory experiments and field tests. In terms of the geological characteristics and engineering technologies, the advantages of this method over organic-rich shale gas reservoirs are also analyzed. It is considered that the role of hydrocarbon-generating overpressure, different thermal expansion coefficients of minerals as well as pressure compartments formed by micro-nanoscale pores provides the favorable factors. Based on the fracture network formed by application of the stimulated reservoir volume, the retaining fracturing fluids can enhance the heat transfer area of shale. Aquathermal pressuring and hydrothermal fluids at certain temperature can also contribute to thermal fracturing. By making full use of the unique geological superiorities and favorable engineering conditions of organic-shale gas reservoirs, this method will effectively transform the shale gas reservoirs after hydraulic fracturing, which can obviously alleviate or even eliminate water trapping damage, promote thermal cracking of matrix rocks on both sides of hydraulic fractures or natural fractures and finally improve the multiscale gas transport ability from matrix-natural fracture-artificial fracture network of shale. Meanwhile, with increasing temperature, the recovery and utilization of flowback fluids can be realized and it will be an environment-friendly new method for the effective development of shale gas reservoirs.

Key words: Shale, Gas reservoir, Hydraulic fracturing, Thermal stimulation, Formation damage

CLC Number: 

  • TE357

Table 2

Characteristics of downhole heating technologies"

传热方式 技术种类 作用温度 作用范围 技术特点 经济性
热对流[33,34] 蒸汽吞吐 200~400 ℃ 水平段长度约为300 m

向井口注入的高温

高压蒸汽

成本低
蒸汽辅助重力驱(SAGD)
热传导或热辐射 电加热加热[24,25] 约400 ℃ 20 m 需要供输大量的电力,加热温度与速率可控 成本高
微波加热[35] 400~900 ℃

近井带1~2 m

燃烧加热法[27](UCG) 储层温度~1 400 ℃ 作用于储层大部分位置 不断供入空气,点燃储层甲烷加热温度与速率不易控 成本低

Fig.1

Variations of density-Pvelocity versus temperature (revised after Ref.[29])"

Fig.2

Variations of tensile strength versus temperature (revised after Ref.[30])"

Fig.3

Characteristics of physical properties of organic-rich shale before and after high temperature heat treatment[34] "

Fig.4

The apparent characteristics of the organic-rich shale before and after heat treatment 500 °C[35] "

Fig.5

Thermal stimulation to activate gas desorption"

Fig.6

Development of pores and fractures in shale induced by them alcracking"

Fig.7

Thermal cracking modeling of shale with layer well developped"

Fig.8

Thermal stimulation coordinating hydraulic fracturing to enlarge the transformation scale of shale reservoir"

1 董大忠,王玉满,李新景,等 . 中国页岩气勘探开发新突破及发展前景思考[J].天然气工业,2016,36(1):19-32.
DONG D Z , WANG Y M , LI X J , et al . Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1): 19-32.
2 YOU L J , KANG Y L , CHEN Z X , et al . Wellbore instability in shale gas wells drilled by oil-based fluids[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 72: 294-299.
3 游利军,王飞,康毅力,等 . 页岩气藏水相损害评价与尺度性[J].天然气地球科学,2016,27(11):2023-2029.
YOU L J , WANG F , KANG Y L , et al . Evaluation and scale effect of aqueous phase damage in shale gas reservoir[J]. Natural Gas Geoscience, 2016, 27(11): 2023-2029.
4 张士诚,郭天魁,周彤,等 . 天然页岩压裂裂缝扩展机理试验[J].石油学报,2014,35(3):496-503.
ZHANG S C , GUO T K , ZHOU T , et al . Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica, 2014, 35(3): 496-503.
5 游利军,谢本彬,杨建,等 . 页岩气井压裂液返排对储层裂缝的损害机理[J].天然气工业,2018,38(12):61-69.
YOU L J , XIE B B , YANG J , et al . Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(12): 61-69.
6 康毅力,陈强,游利军,等 . 页岩气藏水相圈闭损害实验研究及控制对策——以四川盆地东部龙马溪组露头页岩为例[J].油气地质与采收率,2014,21(6):87-91.
KANG Y L , CHEN Q , YOU L J , et al . Laboratory investigation of water phase trapping damage in shale gas reservoir:A case of Longmaxi shale in the eastern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(6): 87-91.
7 康毅力,张晓怡,游利军,等 . 页岩气藏自然返排缓解水相圈闭损害实验研究[J]. 天然气地球科学,2017,28(6):819-827.
KANG Y L , ZHANG X Y , YOU L J , et al . The experimental research on spontaneous flowback relieving aqueous phase trapping damage in shale gas reservoirs [J]. Natural Gas Geoscience, 2017, 28(6): 819-827.
8 JAMALUDDIN A K M , VANDAMME L M , MANN B K . Formation heat treatment(FHT): A state-of-the-art technology for near-wellbore formation damage treatment[J].Quarterly Journal of Experimental Physiology, 1995,70(3):365-375.
9 JAMALUDDIN A K M , BENNION D B , THOMAS F B , et al . Application of heat treatment to enhance permeability in tight gas reservoirs[J]. Journal of Canadian Petroleum Technology, 1998,39(11):19-24.
10 ALBAUGH F W . Oil Well Production Process: United States,US4396248A[P].1954-8-10[2020-2-24].https://www. uspto.gov/.
11 JAMALUDDIN A K M , HAMELIN M , HARKE K , et al . Field testing of the formation heat treatment process[J]. Journal of Canadian Petroleum Technology, 1999,38(3):38-45.
12 刘均荣,吴晓东 . 岩石热增渗机理初探[J]. 石油钻采工艺,2003,25(5):43-47.
LIU J R , WU X D . Preliminary study on the mechanism of thermal cracking to enhance permeability of rock[J].Oil Drilling & Production Technology,2003,25(5):43-47.
13 贺玉龙,杨立中 . 温度和有效应力对砂岩渗透率的影响机理研究[J]. 岩石力学与工程学报,2005,24(14):2420-2427.
HE Y L , YANG L Z . Study on mechanism of influence of temperature and effective stress on sandstone permeability[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(14): 2420-2427.
14 谭启,骆循,李仕雄,等 . 岩石热破裂研究进展评述[J].露天采矿技术,2006(6):16-19.
TAN Q , LUO X , LI S X , et al . Comments on rock thermal fracturing study progress[J]. Opencast Mining Technology,2006(6):16-19.
15 张渊,曲方,赵阳升 . 岩石热破裂的声发射现象[J]. 岩土工程学报,2006,28(1):73-75.
ZHANG Y , QU F , ZHAO Y S . Acoustic emission phenomena of thermal cracking of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 73-75.
16 赵阳升,万志军,张渊,等 . 岩石热破裂与渗透性相关规律的试验研究[J].岩石力学与工程学报,2010,29(10):1970-1976.
ZHAO Y S , WAN Z J , ZHANG Y , et al . Experimental study of related laws of rock thermal cracking and permeability[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(10):1970-1976.
17 游利军,康毅力 . 热处理对致密岩石物理性质的影响[J]. 地球物理学进展,2009,24(5):1850-1854.
YOU L J , KANG Y L . Effects of thermal treatment on physical property of tight rocks[J]. Progressin Geophysics, 2009, 24(5): 1850-1854.
18 陈明君,康毅力,游利军 . 利用高温热处理提高致密储层渗透性[J]. 天然气地球科学,2013,24(6):1226-1231.
CHEN M J , KANG Y L , YOU L J . Advantages in formation heat treatment to enhance permeability in tight reservoir[J]. Natural Gas Geoscience, 2013, 24(6): 1226-1231.
19 BURNHAM A K , MCCONAGHY J R . Comparison of the Acceptability of Various Oil Shale Processes[C]∥ Colorado School of Mines: 26th Oil Shales symposium, 2006.
20 钱家麟,王剑秋 . 世界油页岩发展近况——并记2006年两次国际油页岩会议[J]. 中外能源,2007(1):7-11.
QIAN J L , WANG J Q . Current status of world oil shale development-two world oil shale conferences sponsored in 2006[J]. Sino-Global Energy, 2007(1): 7-11.
21 李隽,汤达祯,薛华庆,等 . 中国油页岩原位开采可行性初探[J]. 西南石油大学学报:自然科学版,2014,36(1):58-64.
LI J , TANG D Z , XUE H Q , et al . Discission of oil shale in-situ conversion process in China[J]. Journal of Southwest Petroleum University: Science & Technology Edition,2014,36(1): 58-64.
22 赵阳升,杨栋,关克伟,等 . 高温烃类气体对流加热油页岩开采油气的方法:中国,CN 101122226A[P]. 2008-2-13.[2020-2-24]. https://www.ixueshu.com/.
ZHAO Y S , YANG D , GUAN K W , et al . A Method of Convection Heating of High-temperature Hydrocarbon Gas on Oil Shale to Produce Oil and Gas: China, CN 101122226A[P]. 2008-2-13[2020-2-24]. https://www.ixueshu.com/.
23 KANG Y L , CHEN M J , Chen Z X , et al . Investigation of formation heat treatment to enhance the multiscale gas transport ability of shale[J]. Journal of Natural Gas Science and Engineering, 2016,35:265-275.
24 刘德勋,王红岩,郑德温,等 . 世界油页岩原位开采技术进展[J]. 天然气工业,2009,29(5):128-132.
LIU D X , WANG H Y , ZHENG D W , et al . World progress of oil shale in-situ exploitation methods[J]. Natural Gas Industry,2009,29(5):128-132.
25 FOWLER T D , VINEGAR H J .Oil Shale ICP-Colorado Field Pilots[C]∥California:SPE Western Regional Meeting, 2009.
26 SHAHTALEBI A , KHAN C , DMYTERKO A , et al . Investigation of thermal stimulation of coal seam gas fields for accelerated gas recovery[J]. Fuel, 2016,180:301-313.
27 LACIAK M , KOSTÚR K , DURDÁN M , et al . The analysis of the underground coal gasification in experimental equipment[J]. Energy,2016,114:332-343.
28 BHUTTO A W , BAZMI A A , ZAHEDI G . Underground coal gasification: From fundamentals to applications[J]. Progress in Energy and Combustion Science, 2013,39(1):189-214.
29 LIU S , XU J Y . An experimental study on the physico-mechanical properties of two post-high-temperature rocks[J]. Engineering Geology, 2015,185:63-70.
30 LÜ C , SUN Q , ZHANG W Q , et al . The effect of high temperature on tensile strength of sandstone[J]. Applied Thermal Engineering, 2017,111:573-579.
31 KANG Y L , CHEN M J , YOU L J , et al . Laboratory measurement and interpretation of the changes of physical properties after heat treatment in tight porous media[J]. Journal of Chemistry, 2015,26(6):1-10.
32 索彧,王小琼,葛洪魁 .加热引起含有机质页岩的性质变化及其波速各向异性[C].北京:中国地球科学联合学术年会,2014.
SUO Y , WANG X Q , GE H K . Heating Induces Changes in the Properties of the Organic Shale and Its Wave Velocity Anisotropy[C].Beijing: Joint Annual Conference on Geosciences in China, 2014.
33 郑伟,张利军,朱国金,等 . 渤海L油田稠油水平井蒸汽吞吐开发效果分析[J].石油地质与工程,2019,33(4):80-82.
ZHENG W , ZHANG L , ZHU G J , et al . Thermal recovery effect evaluation of cyclic steam stimulation of heavy oil horizontal wells in Bohai L Oilfield[J]. Petroleum Geology and Engineering, 2019,33(4):80-82.
34 高永荣,郭二鹏,沈德煌,等 . 超稠油油藏蒸汽辅助重力泄油后期注空气开采技术[J]. 石油勘探与开发,2019,46(1):109-115.
GAO Y R , GUO E P , SHEN D H , et al . Air-SAGD technology for super-heavy oil reservoirs[J]. Petroleum Exploration and Development, 2019,46(1):109-115.
35 李皋,孟英峰,董兆雄,等 . 砂岩储集层微波加热产生微裂缝的机理及意义[J]. 石油勘探与开发,2007,34(1):93-97.
LI G , MENG Y F , DONG Z X , et al . Mechanisms and significance of microfractures generated by microwave heating in sandstone reservoirs[J]. Petroleum Exploration and development, 2007, 34(1): 93-97.
36 游利军,陈明君,康毅力,等 . 一种促进致密气井水力裂缝面微裂缝创生的高温热激法:中国,CN 108571305 A[P].2018-9-25.[2020-2-24].https:∥www.cnki.net/.
YOU L J , CHEN M J , KANG Y L , et al . High-temperature Heat Shock Method for Promoting Micro-crack Creation in Hydraulic Fracture Surface of Tight Gas Well: China, CN 108571305 A[P]. 2018-9-25[2020-2-24]. https:∥www.cnki.net/.
37 CURTIS J B . Fractured shale-gas systems[J]. AAPG Bulletin, 2002,86(11):1921-1938.
38 朱如凯,白斌,崔景伟,等 . 非常规油气致密储集层微观结构研究进展[J]. 古地理学报,2013,15(5):615-623.
ZHU R K , BAI B , CUI J W , et al .Research advances of microstructure in unconventional tight oil and gas reservoirs[J]. Journal of Palaeogeography, 2013, 15(5): 615-623.
39 吴松涛,朱如凯,崔京钢,等 . 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发,2015,42(2):167-176.
WU S T , ZHU R K , CUI J G , et al . Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015,42(2):167-176.
40 高玉巧,蔡潇,张培先,等 . 渝东南盆缘转换带五峰组—龙马溪组页岩气储层孔隙特征与演化[J]. 天然气工业,2018,38(12):15-25.
GAO Y Q , CAI X , ZHANG P X . Pore characteristics and evolution of Wufeng-Longmaxi Formations shale gas reservoirs in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018,38(12):15-25.
41 王新洲,宋一涛,王学军 . 石油成因与排油物理模拟:方法、机理及应用[M]. 北京:石油大学出版社,1996.
WANG X Z , SONG Y T , WANG X J . Physical Simulation of Oil Genesis and Its Displacement: Methods, Mechanisms and Application[M]. Beijing: China University of Petroleum Press,1996.
42 FAN Z Q , JIN Z H , Johnson S E . Modelling petroleum migration through microcrack propagation in transversely isotropic source rocks[J]. Geophysical Journal International, 2012,190(1):179-187.
43 LASH G G , ENGELDER T . An analysis of horizontal microcracking during catagenesis: Example from the Catskill Delta complex[J]. AAPG Bulletin, 2005,89(11):1433-1449.
44 朱维耀,马东旭 . 层理缝对页岩渗透率的影响及表征[J]. 特种油气藏,2018,25(2):134-137.
ZHU W Y , MA D X . Effect of bedding seam on shale permeability and its characterization[J]. Special Oil & Gas Reservoirs, 2018, 25(2): 134-137.
45 TÓTH J , MACCAGNO M , OTTO C , et al . Generation and migration of petroleum from abnormally pressured fluid compartments: Discussion[J]. AAPG Bulletin, 1991,75:331-335.
46 ORTOLEVA J O . Basin compartmentation: Definitions and mechanisms[C]∥ ORTOLEVA. AAPG Special Volumes, The American Association of Petroleum Geologists,1994.
47 GHANBARI E , DEHGHANPOUR H . The fate of fracturing water: A field and simulation study[J]. Fuel, 2016,163:282-294.
48 ZOLFAGHARI A , DEHGHANPOUR H , NOEL M , et al . Laboratory and field analysis of flowback water from gas shales[J]. Journal of Unconventional Oil & Gas Resources, 2016,14:113-127.
49 张建,熊炜,赵宇新 . 隆页1HF井桥塞分段大型压裂技术[J].油气藏评价与开发,2018,8(1):76-80.
ZHANG J , XIONG W , ZHAO Y X . Large segment fracturing technology of pumping bridge plug in well Longye-lHF[J]. Reservoir Evaluation and Development, 2018,8(1):76-80.
50 郭建成,林伯韬,向建华,等 .四川盆地龙马溪组页岩压后返排率及产能影响因素分析[J].石油科学通报,2019(3):273-287.
GUO J C , LIN B T , XIANG J H , et al . Study of factors affecting the flowback ratio and productive capacity of Longmaxi Formation shale in the Sichuan Basin after fracturing[J]. Petroleum Science Bulletin, 2019(3):273-287.
51 BARKER C . Aquathermal pressuring-role of temperature in development of abnormal pressure zones[J]. AAPG Bulletin, 1972,56(10):2068-2071.
52 HETTEMA M H H , WOLF K A A , DE PATER C J . The influence of steam pressure on thermal spalling of sedimentary rock: Theory and experiments[J]. International Journal of Rock Mechanics and Mining Sciences, 1998,35(1):3-15.
53 李香兰,刘绍文,徐明,等 华南下扬子区泥页岩热物性测试与分析 [J] 天然气地球科学,2015,26(8):1525-1533.
LI X L , LIU S W , XU M , et al . Measurement and analysis of thermal properties of mudstones and shales in the Lower Yangtze area, South China[J]. Natural Gas Geoscience, 2015, 26(8): 1525-1533.
54 WALSH J B , DECKER E R . Effect of pressure and saturating fluid on the thermal conductivity of compact rock[J]. Journal of Geophysical Research, 1966,71(12):3053-3061.
55 孙亚平,褚健,张铭,等 天然含放矿物的水热蚀变研究进展 [J]. 矿物学报,2019,39(27):1-9.
SUN Y P , CHU J , ZHANG M , et al . The research progress of hydrothermal alteration of natural minerals containing-radionuclides[J]. ActaMineralogica Sinica, 2019,39(27): 1-9.
[1] Wei-yao ZHU, Bai-chuan WANG, Dong-xu MA, Kun HUANG, Bing-bing LI. Effect of water on seepage capacity of shale with microcracks [J]. Natural Gas Geoscience, 2020, 31(3): 317-324.
[2] Li-ming ZHANG, Xiao-qiang WANG, Da-li HOU, Ke XIAO, Chen-guang JIANG, Xiao-mei ZOU. Phase behavior characteristics of near-critical oil and gas reservoirs in Tarim Basin [J]. Natural Gas Geoscience, 2020, 31(3): 370-374.
[3] Zhi-heng SHU, Dong-liang FANG, Ai-wei ZHENG, Chao LIU, Li LIU, Jing JI, Bang LIANG. Geological characteristics and development potential of upper shale gas reservoirs of the 1st member of Longmaxi Formation in Jiaoshiba area, Sichuan Basin [J]. Natural Gas Geoscience, 2020, 31(3): 393-401.
[4] Qian-ru WANG, Shi-zhen TAO, Ping GUAN. Progress in research and exploration & development of shale oil in continental basins in China [J]. Natural Gas Geoscience, 2020, 31(3): 417-427.
[5] Shu-qin LI, Sen-lin YIN, Yang GAO, Fang ZHANG, Ying-yan LI, Shou-chang PENG. Study on sedimentary microfacies of mixed fine-grained rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(2): 235-249.
[6] Er-ting LI, Bao-li XIANG, Xiang-jun LIU, Ni ZHOU, Chang-chun PAN, Dilidaer·Rouzi, Ju-lei MI. Study on the genesis of shale oil thickening in Lucaogou Formation in Jimsar Sag,Junggar Basin [J]. Natural Gas Geoscience, 2020, 31(2): 250-257.
[7] Zhen QIU, Cai-neng ZOU, Hong-yan WANG, Da-zhong DONG, Bin LU, Zhen-hong CHEN, De-xun LIU, Gui-zhong LI, Han-lin LIU, Jiang-lin HE, Lin WEI. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China [J]. Natural Gas Geoscience, 2020, 31(2): 163-175.
[8] Qiu ZHONG, Xue-hai FU, Miao ZHANG, Qing-hui ZHANG, Wei-ping CHENG. Development potential of Carboniferous-Permian coal measures shales gas in Qinshui coalfield [J]. Natural Gas Geoscience, 2020, 31(1): 110-121.
[9] Li-chao CHEN, Sheng-wei WANG. Fracture properties of high-rank coal and its constraint on hydraulic fracturing stimulation of coal reservoir [J]. Natural Gas Geoscience, 2020, 31(1): 122-131.
[10] Lei-fu Zhang, Da-zhong Dong, Sha-sha Sun, Rong-ze Yu, Lin Li, Shi-yao Lin, Xiao-hu Ouyang, Zhen-sheng Shi, Jin Wu, Yan Chang, Chao Ma, Ning Li. Application of 3D geological modeling in quantitative characterization of shale gas sweet spots: Case study of Zhaotong national demonstration area of Yangtze region [J]. Natural Gas Geoscience, 2019, 30(9): 1332-1340.
[11] Jia-xiang Xu, Li-feng Yang, Yun-hong Ding, Zhe Liu, Rui Gao, Zhen Wang. Stress sensitivity analysis of the shale reservoir by the quartet structure generation set [J]. Natural Gas Geoscience, 2019, 30(9): 1341-1348.
[12] Meng⁃qi Zhang, Cai⁃neng Zou, Ping Guan, Da⁃zhong Dong, Sha⁃sha Sun, Zhen⁃sheng Shi, Zhi⁃xin Li, Zi⁃qi Feng, Lilamaocaidan. Pore-throat characteristics of deep shale gas reservoirs in south of Sichuan Basin: Case study of Longmaxi Formation in Well Z201 of Zigong area [J]. Natural Gas Geoscience, 2019, 30(9): 1349-1361.
[13] Feng-hua Ma, Jin-li Pan, Rui-yun Ma, Yong Zhang, Xiao-juan Ma. Division of immature mud-shale organic type of Madongshan Formation in Liupanshan Basin [J]. Natural Gas Geoscience, 2019, 30(9): 1370-1377.
[14] Wang Lan, Zeng Wen-ting, Xia Xiao-min, Zhou Hai-yan, Bi He, Shang Fei, Zhou Xue-xian. Study on lithofacies types and sedimentary environment of black shale of Qingshankou Formation in Qijia-Gulong Depression,Songliao Basin [J]. Natural Gas Geoscience, 2019, 30(8): 1125-1133.
[15] Guo Xu-guang, He Wen-jun, Yang Sen, Wang Jiang-tao, Feng You-lun, Jia Xi-yu, Zou Yang, Wang Xia-tian, Huang Li-liang. Evaluation and application of key technologies of “sweet area” of shale oil in Junggar Basin:Case study of Permian Lucaogou Formation in Jimusar Depression [J]. Natural Gas Geoscience, 2019, 30(8): 1168-1179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . STUDIES ON THE OIL & GAS RESERVOIR FORMATION CONDITIONS AND EXPLORATION BEARI NG IN DABAN TOWN SUB-DEPRESSION OF CHAIWOPU DEPRESSION[J]. Natural Gas Geoscience, 2005, 16(1): 20 -24 .
[2] ZHENG Jianjing, JI Liming, MENG Qianxi-ang . DISCUSSION OF GEOCHEMICAL CHARACTERISTIES OF GASES IN THE JUNGGAR BASIN[J]. Natural Gas Geoscience, 2000, 11(4-5): 17 -21 .
[3] . THE STUDY OF THE OIL-PRONE & GAS-PRONE FOR JURASSIC COALS[J]. Natural Gas Geoscience, 2006, 17(2): 183 -186 .
[4] LI Guang-zhi~(1,2), YUAN Zi-yan~2,HU Bin~(1,2),DENG Tian-long~1.
IDENTIFY THE ATTRIBUTE OF THE CONDENSABLE GAS OR OIL BEDS BY USING THE ANALYSIS TECHNOLOGY OF HEADSPACE GAS
[J]. Natural Gas Geoscience, 2006, 17(3): 309 -312 .
[5] NI Jin-long,Lü Bao-feng,XIA Bin. FAULT SYSTEM OF GENTLE SLOPE BELT AND ITS AFFECT ON THE FORM OF OIL-GAS RESERVOIRS OF KONGDANG SET IN BAMIANHE RAMP OF DONGYING DEPRESSION, EASTERN CHINA[J]. Natural Gas Geoscience, 2006, 17(3): 370 -373 .
[6] ZHAO Meng-jun,SONG Yan,LIU Shao-bo,QIN Sheng-fei,HONG Feng,FU Guo-you, DA Jiang. THE PRIMARY STUDY ON THE FORMATION OF OIL AND GAS FIELDS IN THE FORELAND BASINS IN CENTRAL AND WESTERN CHINA[J]. Natural Gas Geoscience, 2006, 17(4): 445 -451 .
[7] LIU Hong-jun,JIA Ya-ni,LI Zheng-hong,ZHENG Cong-bin. EXISTENCE AND SIGNIFICANCE OF MICROUMBONES IN KARST BASIN: SAMPLE FROM ORDOVICIAN KARSTIC PALEOGEOMORPHY IN ORDOS BASIN[J]. Natural Gas Geoscience, 2006, 17(4): 490 -493 .
[8] WANG Xiao-mei,ZHANG Qun, ZHANG Pei-he, ZHAO Jun-feng,CHEN Hong-chun. APLICATION OF COALBED METHANE RESERVOIR SIMULATION[J]. Natural Gas Geoscience, 2004, 15(6): 664 -668 .
[9] . OIL MIGRATION DIRECTION OF DALUHU OILFIELD IN DONGYIN DEPRESSION[J]. Natural Gas Geoscience, 2004, 15(6): 650 -651 .
[10] . STUDY ON STATISTICAL MODEL OF PREDICTING FORMATION FRACTURE PRESSURE USING LOGGING DATA[J]. Natural Gas Geoscience, 2004, 15(6): 633 -636 .