Differential evolution model of wide/narrow channel tight sandstone reservoir: A case study of tight sandstone in the Sha 1 Member of the Zitong area, Sichuan Basin

  • Xun YANG , 1 ,
  • Zhiyun SUN 1, 2 ,
  • Yunying TIAN 1 ,
  • Hua YANG 1 ,
  • Bing ZHANG 2 ,
  • Bai LIU 1 ,
  • Tao YANG 1 ,
  • Qian HUANG 1 ,
  • Honglin LI 1 ,
  • Ming TANG 1 ,
  • Zhenglin YANG 1 ,
  • Xinghong WU 1
Expand
  • 1. Northwest Sichuan Gas District,PetroChina Southwest Oil & Gasfield Company,Jiangyou 621700,China
  • 2. College of Geophysics,Chengdu University of Technology,Chengdu 610059,China

Received date: 2024-12-10

  Revised date: 2025-03-20

  Online published: 2025-04-17

Supported by

The Scientific Project of Northwest Sichuan Gas District, PetroChina Southwest Oil & Gasfield Company(2023-01)

the National Natural Science Foundation of China(42472180)

Abstract

The Zitong area is an important replacement area for tight gas exploration and development in the Sichuan Basin. There are two types of tight sandstone reservoirs with wide and narrow channels in the first member of the Shaximiao Formation. For a long time, the genetic mechanism and evolution model of reservoir differences have not been well constrained. Based on core observation, casting thin section, scanning electron microscope, cathodoluminescence, porosity and permeability test and high pressure mercury injection test, the difference characteristics of tight sandstone reservoirs between wide channel type (sand group 4) and narrow channel type (sand group 1) in the Sha 1 Member were systematically identified, the internal control process of reservoir differentiation was clarified, and a differential evolution model for wide and narrow channel-type reservoirs was established. The results show that: (1) The Sha 1 Member mainly develops lithic arkose and feldspathic lithic sandstone, which are ultra-low porosity and ultra-low permeability reservoirs. The reservoir space is mainly intergranular dissolved pores. The proportion of clastic particle size and reservoir permeability, pore throat radius, residual intergranular pores and microfractures in the wide channel sand group is generally greater than that in the narrow channel sand group. (2) The difference of petrology and pore structure caused by hydrodynamic conditions is the material basis of reservoir differential diagenesis evolution, and differential diagenesis is the key factor of reservoir differential evolution. (3) The anti-compaction effect of laumontite cement has a good pore-preserving effect on the reservoir of sand group 4. At the same time, the synergistic effect of moderate dissolution and fracture enhances the permeability of macropores and forms a wide channel reservoir with relatively high permeability. (4) The chlorite coating plays a key role in maintaining the pores during the formation of sand group 1, while a large number of calcite cements and a large number of secondary clay particles produced by strong dissolution can lead to blockage of throats and destruction of pore connectivity, thus developing relatively ultra-low permeability narrow channel reservoirs. This study reveals the control mechanism of sedimentary environment and diagenesis on the differential development of tight sandstone reservoirs, which will provide an important reference for the development and evaluation of similar reservoirs.

Cite this article

Xun YANG , Zhiyun SUN , Yunying TIAN , Hua YANG , Bing ZHANG , Bai LIU , Tao YANG , Qian HUANG , Honglin LI , Ming TANG , Zhenglin YANG , Xinghong WU . Differential evolution model of wide/narrow channel tight sandstone reservoir: A case study of tight sandstone in the Sha 1 Member of the Zitong area, Sichuan Basin[J]. Natural Gas Geoscience, 2025 , 36(8) : 1446 -1458 . DOI: 10.11764/j.issn.1672-1926.2025.03.011

0 引言

伴随着全球高品位常规油气资源的日益枯竭,碳中和目标的日益推进,非常规油气资源在世界能源格局中的地位稳步提升。其中,致密砂岩气作为油气资源的重要补充和储备,且具有清洁能源特性,其勘探与开发已在全球多个国家掀起热潮,并且不断取得突破1-3。目前已在中国、美国、加拿大、澳大利亚等国家探明了丰富的致密砂岩气资源储量4-6,中国具有极其丰富的致密砂岩气资源量,约占全球资源量的10%,主要分布于四川、鄂尔多斯、塔里木、准噶尔等多个盆地,地质资源量高达21.85×1012 m3,致密砂岩油气资源俨然已成为中国油气储量增长的重点领域7-9
四川盆地具有上三叠统须家河组和中侏罗统沙溪庙组2套优质致密砂岩储层发育层系,且分布面积较大,展现出巨大的勘探潜力。相较于须家河组致密气悠久的勘探历史10-12,沙溪庙组致密气勘探开发进程主要集中在近10年,并陆续在川中地区发现了金秋气田和天府气田两大致密气藏,其中天府气田沙溪庙组致密砂岩气藏探明储量高达1 349×108 m3,由此将沙溪庙组致密砂岩气的勘探开发推向高潮13-15。随着沙溪庙组致密气勘探工作向北挺进,揭示川西北部中生界油气成藏配置优越16,并在梓潼地区多口沙溪庙组钻井喜获工业气流,表明梓潼地区沙溪庙组有望成为下一个油气勘探的突破口。
与四川盆地新场气田沙溪庙组宽河道型毯状砂体(砂体宽5~15 km)和中江气田沙溪庙组窄河道型条带状砂体(砂体宽0.2~1.0 km)相比17,梓潼地区沙溪庙组一段(沙一段)垂向上呈现窄河道砂体(砂体宽0.4~1.4 km)向宽河道砂体(砂体宽1.5~3.6 km)转变特征,该套砂体表现为强非均质性,严重制约了对该区沙溪庙组优质储层成因机制的理解。而随着对天府、金秋、盐亭、中江等气田沙溪庙组的研究逐渐加深,大量学者揭示了沙一段储层复杂的控制因素及孔隙演化机理,表明不同地区在沉积—成岩演化过程中存在显著差异性18-19。由于梓潼地区沙一段沉积期存在宽/窄河道沉积转变,导致沉积—成岩演化过程趋向于复杂化,使得成熟区块的致密砂岩储层相关结论难以在全盆范围内推广,查明梓潼地区宽/窄河道型储层差异性及其主控因素显得尤为关键。因此,本文以梓潼地区沙一段致密砂岩储层为研究对象,开展铸体薄片、扫描电镜、阴极发光观察以及孔渗和高压压汞测试等分析工作,查明沙一段致密砂岩储层岩石学、储集空间、物性及成岩作用差异性特征,明确宽窄河道型致密砂岩储层差异性的内在控制过程,建立宽窄河道型储层差异演化模式,系统揭示优质储层主控因素,为下一步研究区及类似盆地的致密气勘探开发提供科学依据和重要参考。

1 区域地质概况

四川盆地位于中国西南部,上扬子板块西北部,是我国重要的含油气盆地之一20-21。四川盆地的形成与演化受多幕构造运动的影响,尤其是晚印支运动后,四川盆地进入陆内坳陷盆地演化阶段,呈现侏罗纪“陆相红盆”沉积特征22。中—晚侏罗纪,受到秦岭洋关闭的影响,盆地东北部的大巴山—米仓山发生快速而强烈隆升,剥蚀和侵蚀作用的加强促使米仓山—大巴山成为盆地东北部重要的物源区(图1),并控制着川北和川中地区沙溪庙组沉积格局23
图1 四川盆地梓潼地区构造位置(a)与沙一段1、4砂组砂体展布(b)及地层综合柱状图(c)

Fig.1 Structural location(a) and distribution(b) of sand bodies in the sand groups 1 and 4 of the Sha 1 Member (J2 s 1) in the Zitong area of Sichuan Basin, as well as a comprehensive stratigraphic column(c)

梓潼地区位于川西北部(图1),构造位置隶属于川北低缓带西南侧,侏罗系发育较全,其中下侏罗统发育自流井组和凉高山组,中侏罗统沉积沙溪庙组,上侏罗统自下而上发育遂宁组和蓬莱镇组24-25。中侏罗统沙溪庙组沉积时期,四川盆地主要发育半干旱—半湿润气候,梓潼地区浅水三角洲沉积体系广泛发育。根据岩性、测井及电性组合特征,可将沙溪庙组自下而上划分为2段。本文研究对象为沙一段,呈现薄层泥岩与厚层细—中粒砂岩互层特征,W3、W203和Z5等钻井的砂体厚度可高达180 m以上,部分井段的砂地比可以达80%以上,河道砂体厚度大为有利储层发育提供了物质基础。此外,梓潼地区沙一段自下而上可划分为5个砂组,其中1号和4号砂组为储层主要发育层段。研究表明1号砂组沉积期单期河道规模小,砂体宽度通常小于1.5 km,呈现河口坝和水下分流河道垂向叠置的沉积特征;而4号砂组沉积期处于高能沉积环境,单期河道规模较大(砂体宽1.5~3.6 km),显示为多期水下分流河道叠置。

2 宽、窄河道型储层差异性特征

2.1 岩石学特征差异性

沙一段沉积环境差异导致窄河道型储层(1号砂组)和宽河道型储层(4号砂组)颗粒粒度、分选磨圆、杂基和胶结物含量也显示出一定的差异性(图2)。其中,1号砂组主要发育细砂岩及细—中砂岩,占比可达60.7% [图2(a)],颗粒分选中等—好[图2(b)],磨圆为次棱角—次圆状[图2(c)],填隙物中杂基和方解石胶结物含量高[图2(d)];而4号砂组主要发育中砂岩和粗—中砂岩,含量高达66.8%;颗粒分选差—中等,磨圆次棱角状[图2(e)—图2(g)],填隙物中浊沸石和石英胶结物占主导地位[图2(h)]。图2(i)显示沙一段主要发育岩屑长石砂岩和长石岩屑砂岩,而岩屑类型以变质岩岩屑为主[图2(j)]。
图2 梓潼地区沙一段致密砂岩粒度、分选、磨圆及岩石组成特征

(a)1号砂组颗粒粒度分布饼状图;(b)1号砂组颗粒分选性特征饼状图;(c)1号砂组颗粒磨圆特征饼状图;(d)1号砂组致密砂岩杂基和胶结物含量饼状图;(e)4号砂组颗粒粒度分布饼状图;(f)4号砂组颗粒分选性特征饼状图;(g)4号砂组颗粒磨圆特征饼状图;(h)4号砂组致密砂岩杂基和胶结物含量饼状图;(i)沙一段致密砂岩岩性分类三角图;(j)沙一段致密砂岩岩屑组成三角图

Fig.2 The characteristics of grain size, sorting, rounding and rock composition of tight sandstone in the Sha 1 Member of Zitong area

2.2 储集空间及孔渗透特征差异性

梓潼地区沙一段致密砂岩储集空间显示出粒间溶蚀孔占主导地位,次为残余粒间孔、粒内溶蚀孔及微裂缝(图3)。残余粒间孔多呈现规则的几何边缘特征[图3(a)—图3(c), 图3(h)],且此类孔隙外部多分布有绿泥石包膜[图3(e)]。粒间溶孔普遍发育且其形态具有多样性,常呈港湾状[图3(a), 图3(b)]、树突状[图3(f)],或者蜂巢状[图3(e),图3(f)],分析认为可能与溶蚀矿物的种类、颗粒接触关系等条件相关。而粒内溶蚀孔通常与硅酸盐矿物溶蚀有关,长石解理面或者裂隙处因溶蚀作用而变得不规则[图3(d)],表明成岩过程中存在酸性流体21。此外,研究区还可见微裂缝发育,微裂缝多经历了2期演化,首先是构造应力作用产生构造缝,而晚期烃类流体注入促使溶蚀加剧形成溶蚀缝[图3(d)]。总体上宽、窄河道砂组储集空间类型仍存在些许差异,宽河道砂组残余粒间孔(28.4%)和微裂缝(13.2%)更为发育,而窄河道砂组粒间溶蚀孔(40.7%)占比更高[图3(i),图3(j)]。
图3 梓潼地区沙一段致密砂岩储集空间类型

(a)残余粒间孔发育,见微裂缝,W2井,3 176.00 m;;(b)见残余粒间孔和粒间溶蚀孔隙,W3井,3 007.50 m;(c)见残余粒间孔隙,W3井,3 011.10 m; (d)粒间溶蚀孔和溶蚀缝发育,多与长石溶蚀有关,W203井,2 889.61 m;(e)粒间溶蚀孔隙发育,主要为长石溶蚀,见微裂缝,W203井,3 092.91 m;(f)粒间溶蚀孔发育,W6井,3 160.72 m,单偏光;(g)粒间溶蚀孔发育,W203井,2 899.76 m;(h)粒间溶蚀孔和粒内溶孔发育,W4井,3 183.74 m;(i)宽河道砂组孔隙构成;(j)窄河道砂组孔隙构成

Fig.3 Types of tight sandstone reservoir space in Sha 1 Member of Zitong area

孔渗测试结果表明1号砂组储层孔隙度介于1.37%~11.4%之间,平均值为6.90%;4号砂组孔隙度介于0.80%~10.19%之间,平均值为7.19%。对于渗透率而言,1号砂组储层渗透率介于(0.005~0.83)×10-3 μm2之间,平均值为0.23×10-3 μm2;而4号砂组渗透率介于(0.013~13.90)×10-3 μm2之间,平均值为0.65×10-3 μm2。整体上沙一段砂岩属于典型的特低孔特低渗储层26图4),宽、窄河道型储层孔隙度相当,但宽河道砂组渗透率明显优于窄河道砂组。
图4 梓潼地区沙一段致密砂岩孔渗特征

(a)沙一段致密砂岩孔隙度分布直方图;(b)沙一段致密砂岩渗透率分布直方图;(c)沙一段致密砂岩孔隙度与渗透率交会图

Fig.4 Porosity and permeability characteristics of tight sandstone in Sha 1 Member of Zitong area

2.3 孔隙结构特征差异性

挑选典型样品开展高压压汞测试分析,以揭示宽窄河道砂组储层孔隙结构特征差异性。根据前人的孔喉分类标准27,将沙一段储层孔隙类型分为以下4种类型,分别为:大孔(R>1 μm)、中孔(0.1 μm≤R<1 μm)、过渡孔(0.01 μm≤R<0.1 μm)和微孔(R<0.01 μm)。结果表明不论在孔喉结构参数上,还是孔径大小和分布上,宽河道型储层和窄河道型储层均存在明显差异。
1号砂组储层排驱压力介于0.67~1.37 MPa之间,最大进汞饱和度为65.10%~81.90%,平台特征不明显[图5(a)];孔喉半径偏小,平均值仅为0.15 μm,相对分选系数介于0.14~0.16之间;孔喉分布具有双峰特征,最大峰值在0.63 μm处,部分样品在0.02~0.04 μm处存在次级峰[图5(b)]。1号砂组主要发育过渡孔,含量在36%~56%之间,次为中孔(25%~48%),而微孔和大孔占比最小[图5(c)]。
图5 沙一段致密砂岩毛细管压力曲线、孔径分布与孔隙类型特征[(a)—(c)为1号砂组;(d)—(f)为4号砂组]

Fig.5 Characteristics of capillary pressure curve, pore diameter distribution and pore type of tight sandstone in Sha 1 Member[(a)-(c) sand group 1;(d)-(f) sand group 4]

4号砂组储层排驱压力通常较低,在0.14~0.30 MPa之间,最大进汞饱和度平均值为82.51%,平台特征较明显[图5(d)];孔喉半径偏大,平均值仅为0.44 μm,相对分选系数介于0.18~0.30之间;孔喉分布主要呈现单峰特征,最大峰值在1.6 μm处,少量样品在0.02~0.05 μm处存在次级峰[图5(e)]。与1号砂组相比,4号砂组中孔(26%~45%)和大孔(15%~43%)占比最高,次为过渡孔,而微孔占比最小[图5(f)]。

3 宽窄河道型储层差异性成因

3.1 差异沉积水动力条件的影响

碎屑岩物源属性在控制碎屑岩物质成分中扮演着关键作用28-29。前人通过重矿物分析,揭示了米仓山—大巴山前地区和川西北部地区砂岩重矿物组合均呈现高绿帘石和中石榴石特征,表明梓潼地区沙一段物源来自于盆地北部米仓山—大巴山30-31。川西北部金溪、陈家岭等沙一段剖面的岩屑组成均显示出变质岩岩屑的主导地位,次为沉积岩岩屑,与梓潼地区W2、W203等多口钻井的岩屑组分特征相类似,进一步证实米仓山—大巴山对于梓潼地区乃至川西北部的物源贡献(图6)。富含长石和变质石英岩的物源区供给,促使梓潼地区沙一段主要发育岩屑长石砂岩和长石岩屑砂岩[图2(i)]。同时,由于不同岩屑类型常具有差异孔隙保护和破坏机制32-33,富变质石英岩屑砂岩常具有良好的抗压实作用,保孔效应较为显著。因此,梓潼地区沙一段储层富含变质石英岩屑可以有效抵挡压实作用,为沙一段储层孔隙发育提供了较佳的物质基础。
图6 四川盆地梓潼地区沙一段砂岩岩屑组分分区(据曹甲新等,202329修改)

Fig.6 The zoning map of sandstone lithic components in the Sha 1 Member in the Zitong area of the Sichuan Basin(according to CAO et al.,202329,revised)

图7(c)显示梓潼地区沙一段沉积物粒度与储层物性呈现正相关关系,表明沉积物粒度越大,其储层孔隙度越佳,揭示宽河道型储层具有相对更佳的物性条件。以W203井4号砂组为例,其水下分流河道沉积于强水动力条件下,高能沉积环境导致沉积物以中砂岩为主,且泥质含量较少,原生孔隙相对发育[图3(i)],储层物性较佳[图7(b)];而1号砂组处于中等水动力环境,发育河口坝与水下分流河道微相,沉积物以细砂岩为主,导致原生孔隙较小,且黏土和胶结物含量较高,极易堵塞原生孔隙导致物性变差[图7(a)],与较低含量的残余粒间孔相一致[图3(j)]。此外,图7(d)表明致密砂岩分选系数越大,储层孔隙度也更高,而宽河道型储层更高的分选系数表明其孔隙结构更加均匀,孔隙之间的连通性也更佳。因此,差异沉积水动力条件导致宽、窄河道砂岩颗粒粒度和填隙物含量显著不同,构成了宽、窄河道型储层差异演化的物质基础。
图7 沙一段单井储层综合柱状图及储层粒度中值、分选系数与孔隙度交会图

(a)W2井1号砂组孔隙度、渗透率及沉积微相综合柱状图;(b)W203井4号砂组孔隙度、渗透率及沉积微相综合柱状图;

(c)沙一段致密砂岩粒度中值与孔隙度交会图;(d)沙一段致密砂岩分选系数与孔隙度交会图

Fig.7 Comprehensive histogram of reservoir in Sha 1 Member and crossplots of median grain size, sorting coefficient and porosity

3.2 差异成岩作用的影响

在致密砂岩的成岩演化过程中,压实作用通常对储层的物性起到显著降低作用34。云母发生较大规模的弯曲变形,颗粒间接触关系主要呈现点—线接触关系[图8(a)],凹凸接触较少出现,表明沙一段经历了强烈压实作用。由于4号砂组与1号砂组埋深相差约260 m,4号砂组相对较浅的埋深促使其压实作用较1号砂组有所减弱,因而偏弱的压实作用促使宽河道型储层残余粒间孔更为发育[图3(i)]。
图8 沙一段致密砂岩成岩作用特征

(a)压实作用强烈,云母弯曲变形,颗粒间点—线接触,W2井,3 176.77 m,正交偏光;(b)方解石基底式胶结,W2井,3 008.18 m,阴极发光;(c)长石和岩屑溶蚀发育次生孔隙,见浊沸石和方解石胶结,W2井,3 169.96 m;(d)浊沸石和方解石胶结,W203井,2 891.23 m;(g)岩屑和长石溶蚀,W6井,3 178.25 m;(e)方解石胶结和泥质胶结堵塞孔隙,W203井,2 897.61 m;(f)长石溶蚀,绿泥石包膜,W4井,3 181.73 m;(g)岩屑和长石溶蚀,W6井,3 178.25 m;(h)针叶状绿泥石,发育自生石英,W203井,3 084.51 m;(i)书页状高岭石,W4井,3 203.28 m;(j)浊沸石胶结,W6井,2 990.09 m,阴极发光;(k)石英次生加大,W2井,3 176 m;(l)石英次生加大,W6井,3 162.73 m

Fig.8 Diagenetic characteristics of tight sandstone in Sha 1 Member

方解石胶结是沙一段普遍发育的胶结作用形式,尤其是在1号砂组,镜下方解石胶结物分别呈现红色和亮黄色特征,形态上呈基底式胶结[图8(b)]和孔隙式胶结[图8(c), 图8(d)]。伴随方解石胶结物含量的增多,不论是自生孔隙还是原生孔隙占比均明显下降[图9(a), 图9(b)],表明方解石胶结是研究区典型的破坏性成岩作用,且方解石胶结物会显著缩小喉道[图8(e)],因此方解石胶结可能是窄河道型储层渗透率降低的重要因素。前人研究指出致密砂岩储层中的溶蚀作用常与成岩过程中的酸性流体环境有关,并造成酸性不稳定矿物发生溶蚀35-36。沙一段溶蚀矿物主要为长石和岩屑[图8(c),图8(f),图8(g)],且长石溶蚀增孔效应明显强于岩屑溶蚀,而溶蚀流体主要来源于下伏须家河组、凉高山组的有机质生烃过程中产生的有机酸输入2125,由于1号砂组富含长石导致其溶蚀作用更为强烈,有效提升了储层孔隙度[图9(c)]。然而,由于强烈溶蚀作用会产生较多次生矿物和黏土颗粒,而1号砂组孔径较小,其在压力作用下运移极易堵塞喉道并形成“无效孔隙”或“死孔隙”,这可能也是窄河道型储层渗透率降低的关键。此外,沙一段致密砂岩中绿泥石包膜普遍发育良好[图8(f),图8(h)],在富含绿泥石包膜的1号砂组样品中,高岭石胶结和沉淀较为少见[图8(i)],表明绿泥石包膜可抑制黏土矿物生长过程13,从而维持孔隙通道的连通性[图8(f),图8(h)],为后期流体的迁移和溶蚀作用提供条件,进而促进次生溶蚀孔隙的形成。
图9 沙一段差异成岩作用与储层物性及孔隙特征的关系

(a)沙一段致密砂岩方解石胶结物含量与原生孔占比交会图;(b)沙一段致密砂岩方解石胶结物含量与次生孔占比交会图;

(c)沙一段致密砂岩溶蚀增加孔隙度直方图;(d)沙一段致密砂岩自生浊沸石含量与面孔率交会图

Fig.9 The relationship between differential diagenesis and reservoir physical properties and pore characteristics in Sha 1 Member

沙一段浊沸石胶结作用较为发育,主要发育在4号砂组中[图8(d), 图8(j)],前人研究指出大量的浊沸石胶结物可能与沙溪庙组沉积期火山喷发作用有关2137,与4号砂组中酸性火山凝灰质组分相一致[图8(c),图8(d)]。4号砂组浊沸石含量与储层孔隙度显示出正相关关系[图9(d)],这与前期认识的浊沸石作为破坏性成岩作用相悖2138,孔隙度的保持可能与浊沸石作为刚性骨架的抗压实作用有关,且晚期浊沸石溶蚀也会有效释放孔隙空间,因而浊沸石胶结是宽河道型储层孔隙保持的关键。同时4号砂组表现为适度溶蚀作用,因而适量溶蚀产物可以伴随储层流体运移排出,不易堵塞孔隙和喉道。岩心观察揭示4号砂组发育大量层理缝,与高能河道沉积作用有关,微裂缝为酸性流体提供了运移通道,微裂缝与适度溶蚀作用协同优化了宽河道型储层物性。此外,石英胶结主要表现为石英次生加大[图8(k),图8(l)],镜下可见石英胶结物占据孔隙空间并显著缩小喉道[图8(l)],因而4号砂组更强的石英胶结作用可能是其储层物性降低的关键。

4 宽窄河道型储层差异演化模式

4号砂组储层孔渗交会的斜率较低[图4(c)],表明渗透率对孔隙度的变化不敏感,指示了砂岩孔隙连通性可能较差。从孔隙结构的角度来揭示这种差异,图10揭示孔喉大小及组成是控制致密砂岩储层物性的关键因素39,尤其是渗透率对于孔喉结构差异极为敏感。梓潼地区致密砂岩的渗透率主要受控于较大孔径的孔喉,伴随着最大孔径及渗透率贡献的峰位孔径增大,致密砂岩储层的渗透率呈现增大趋势[图10(a)]。因4号砂组孔径普遍大于1号砂组(图5),4号砂组更易形成高渗透率的储层,然而,图10(b)表明砂岩储集能力主要由较小孔径的孔喉所提供,因而小孔径的1号砂组仍可能呈现较高的孔隙度。梓潼地区沙一段储层存在孔隙结构及物性上的显著差异性,这种差异性深刻反映了沉积环境转变与成岩作用差异在储层演化中的综合影响。
图10 沙一段致密砂岩孔喉半径与渗透率的关系(a)及压汞孔喉结构表征(b)

Fig.10 The relationship between pore throat radius and permeability of tight sandstone(a) and the characterization of mercury injection pore throat structure(b) in the Sha 1 Member

其中4号砂组形成于高能河道沉积环境,发育多期水下分流河道,沉积宽河道型叠置砂体,碎屑颗粒粒径较大且岩屑含量较高,碳酸盐胶结物较少且埋藏较浅(图11)。早成岩阶段,中酸性火山凝灰质组分的蚀变和重结晶是储层中浊沸石形成的关键37,浊沸石与石英构成刚性骨架有效抵抗了上覆地层压实作用,并保护原生孔隙免于破坏,促使4号砂组残余粒间孔更为发育(图11),而此阶段早期溶蚀作用偏弱,对于储层物性贡献有限;而在中成岩阶段,长石、岩屑和浊沸石胶结物发生适度溶蚀(图11),此阶段溶蚀和裂缝的协同促进作用优化了孔喉结构并增强了大孔隙的渗透能力,形成相对较高渗透率的宽河道型储层。相比之下,1号砂组沉积期水动力条件有所减弱,发育河口坝和水下分流河道沉积微相,沉积窄河道型叠置砂体,其分流河道—河口坝叠置储层具有较好的分选性,绿泥石包膜和碳酸盐胶结物发育,埋藏深度较大。早成岩阶段,1号砂组方解石胶结物大量沉淀,导致堵塞喉道并破坏孔隙连通性;而中成岩阶段,绿泥石包膜有效抑制了石英次生加大作用,有效保护残余粒间孔隙免于破坏(图11),此阶段1号砂组发育强烈的晚期溶蚀作用,尽管溶蚀作用会对粒间孔隙产生大量贡献,极大优化储层的储集性能,但与强烈溶蚀作用相伴生的大量次生矿物和黏土颗粒也易堵塞喉道,且小孔径孔喉对渗透率贡献并不明显,从而发育相对特低渗窄河道型储层(图11)。
图11 梓潼地区沙一段宽/窄河道型储层差异沉积—成岩—成储模式

Fig.11 Differential sedimentation-diagenesis-reservoir forming model of wide/narrow channel type reservoir in Sha 1 Member of Zitong area

5 结论

(1)四川盆地梓潼地区沙一段主要发育岩屑长石砂岩和长石岩屑砂岩,其中宽河道砂组的中砂岩占比高、分选中等—差、填隙物以浊沸石胶结物为主,而窄河道砂组的细砂岩占比高、分选中等—好、填隙物以方解石胶结物为主。沙一段致密砂岩储集空间以粒间溶孔为主,其次为残余粒间孔、粒内溶孔和微裂缝,其中,宽河道砂组残余粒间孔占比更高。沙一段储层平均孔隙度为7.21%,平均渗透率为0.38×10-3 μm2,属于典型的特低孔特低渗砂岩储层,其中,宽河道砂组孔喉半径通常高于窄河道砂组。
(2)水动力条件导致的岩石学及孔隙结构差异是储层差异成岩演化的物质基础,宽河道型储层沉积水动力条件强于窄河道型储层,促使其沉积物颗粒大小、原生孔隙含量及孔隙度均高于窄河道型储层。
(3)宽、窄河道砂体差异成岩作用是储层差异演化的关键。浊沸石胶结物的抗压实作用对4号砂组储层起到较好的保孔效应,同时适度溶蚀和裂缝的协同促进作用增强了大孔隙的渗透能力,形成相对较高渗透率的宽河道型储层;1号砂组成岩过程中绿泥石包膜对孔隙起到关键保持作用,而大量方解石胶结物和强烈溶蚀产生的大量次生黏土颗粒导致堵塞喉道并破坏孔隙连通性,从而发育相对特低渗窄河道型储层。
[1]
邹才能, 陶士振, 杨智, 等. 中国非常规油气勘探与研究新进展[J]. 矿物岩石地球化学通报, 2012, 31(4): 312-322.

ZOU C N, TAO S Z, YANG Z, et al. New advance in unconventional petroleum exploration and research in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(4): 312-322.

[2]
OLUWADEBI A G, TAYLOR K G, MA L. A case study on 3D characterisation of pore structure in a tight sandstone gas reservoir: The Collyhurst Sandstone, East Irish Sea Basin, northern England[J]. Journal of Natural Gas Science and Engineering, 2019, 68: 102917.

[3]
郭彤楼, 熊亮, 叶素娟, 等. 输导层(体)非常规天然气勘探理论与实践——四川盆地新类型页岩气与致密砂岩气突破的启示[J]. 石油勘探与开发, 2023, 50(1): 24-37.

GUO T L, XIONG L, YE S J, et al. Theory and practice of unconventional gas exploration in carrier beds: Insight from the breakthrough of new type of shale gas and tight gas in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(1): 24-37.

[4]
MASTERS J A. Deep basin gas traps, western Canada[J]. AAPG Bulletin, 1979, 34(2):152-181.

[5]
KUUSKRAA V A, HOAK T E, KUUSKRAA J A, et al. Tight sands gain as U. S. gas source[J].Oil & Gas Journal, 1996, 94(12): 102-107.

[6]
魏国齐, 张福东, 李君, 等. 中国致密砂岩气成藏理论进展[J].天然气地球科学, 2016, 27(2): 199-210.

WEI G Q, ZHANG F D, LI J, et al. New progress of tight sand gas accumulation theory and favorable exploration zones in China[J]. Natural Gas Geoscience,2016, 27(2): 199-210.

[7]
戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发, 2012, 39(3): 257-264.DAI J X, NI Y Y, WU X Q. Tight gas in China and its significance in exploration and exploitation[J].Petroleum Exploration and Development, 2012, 39(3): 257-264.

[8]
邹才能, 张国生, 杨智,等.非常规油气概念、特征、潜力及技术:兼论非常规油气地质学[J].石油勘探与开发,2013,40(4):385-399.

ZOU C N, ZHANG G S, YANG Z, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399.

[9]
唐大海, 谭秀成, 涂罗乐, 等. 川中—川西过渡带沙溪庙组第二段致密砂岩储层物性控制因素及孔隙演化[J]. 成都理工大学学报(自然科学版), 2020, 47(4): 460-471.

TANG D H, TAN X C, TU L L, et al. Control factors and pore evolution of tight sandstone reservoir of the Second Member of Shaximiao Formation in the transition zone between central and western Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(4): 460-471.

[10]
王自剑, 刘树根, 冉波, 等. 川北上三叠统须家河组砾岩物源的多源性探讨: 来自阴极发光的约束[J]. 矿物岩石, 2015, 35(1): 109-120.

WANG Z J, LIU S G, RAN B, et al. Discussion on the multiple source of the provenance of siliceous conglomerate form Upper Triassic Xujiahe Formation, northern Sichuan: Constraints from cathodoluminescence analysis[J]. Mineral and Petrology, 2015, 35(1): 109-120.

[11]
YU Y, LIN L B, ZHAI C B, et al. Impacts of lithologic characteristics and diagenesis on reservoir quality of the 4th member of the Upper Triassic Xujiahe Formation tight gas sandstones in the western Sichuan Basin,Southwest China[J].Marine and Petroleum Geology, 2019, 107: 1-19.

[12]
岳亮, 孟庆强, 刘自亮, 等. 致密砂岩储层物性及非均质性特征——以四川盆地中部广安地区上三叠统须家河组六段为例[J]. 石油与天然气地质, 2022, 43(3): 597-609.

YUE L,MENG Q Q,LIU Z L,et al.Physical property and heterogeneity of tight sandstone reservoirs:A case of the Upper Triassic 6th member of Xujiahe Formation,Guang’an,central Sichuan Basin[J].Oil & Gas Geology,2022,43(3):597-609.

[13]
肖尧, 王锦西, 肖柏夷, 等. 四川盆地天府含气区侏罗系沙溪庙组一段致密砂岩储层特征及主控因素[J].天然气地球科学, 2023, 34(11): 1916-1926.

XIAO Y, WANG J X, XIAO B Y, et al. Characteristics and main controlling factors of tight sandstone reservoir in the first member of Jurassic Shaximiao Formation in Tianfu gas-bearing area, Sichuan Basin[J].Natural Gas Geoscience, 2023, 34(11): 1916-1926.

[14]
杨雨, 文龙, 周刚, 等. 四川盆地油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2023, 44(12): 2045-2069.

YANG Y, WEN L, ZHOU G, et al. New fields, new types and resource potentials of hydrocarbon exploration in Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(12): 2045-2069.

[15]
潘辉, 蒋裕强, 朱讯, 等. 河流相致密砂岩气地质甜点评价—以四川盆地川中地区侏罗系沙溪庙组二段1亚段为例[J]. 石油与天然气地质, 2024, 45(2): 471-485.

PAN H, JIANG Y Q, ZHU X, et al. Evaluation of geological sweet spots in fluvial tight sandstone gas: A case study of the first submember of the second member of the Jurassic Shaximiao Formation,central Sichuan Basin[J].Oil & Gas Geology,2024,45(2): 471-485.

[16]
刘辉, 刘鑫, 吴雪峰, 等. 四川盆地梓潼—平昌地区雷口坡组四段成藏地质条件差异[J].天然气勘探与开发,2022,45(1):22-32.

LIU H,LIU X,WU X F,et al. Reservoir-forming difference in Leikoupo 4 Member,Zitong-Pingchang area,Sichuan Basin[J].Natural Gas Exploration and Development,2022,45(1):22-32.

[17]
刘成川, 杨建, 卜淘, 等. 川西窄河道致密砂岩气藏井型井网设计[J].特种油气藏, 2020, 27(1): 82-88.

LIU C C,YANG J,BU T,et al.Well-type and well-pattern design for the narrow channel tight sandstone gas reservoir in wes-tern Sichuan[J].Special Oil & Gas Reservoir,2020,27(1):82-88.

[18]
何江, 杨羿, 陈文, 等. 窄河道型致密砂岩储层特征及主控因素—以天府气田金华区块沙溪庙组为例[J]. 断块油气田, 2024, 31(1): 1-10.

HE J,YANG Y,CHEN W,et al. Characteristics and main controlling factors for narrow channel tight sandstone reservoir:A case study of Shaximiao Formation in Jinhua Block of Tianfu Gas Field[J].Fault-Block Oil & Gas Field,2024,31(1):1-10.

[19]
谢格云, 田云英, 刘柏, 等. 川西南部地区中侏罗统沙溪庙组优质储层形成条件与控制因素[J]. 天然气工业, 2022, 42(7):45-54.

XIE G Y, TIAN Y Y, LIU B, et al. Formation conditions and controlling factors of high-quality reservoirs in the Middle Jurassic Shaximiao Formation of the southwestern Sichuan Basin[J]. Natural Gas Industry, 2022, 42(7): 45-54.

[20]
刘树根, 李智武, 孙玮, 等. 四川含油气叠合盆地基本特征[J]. 地质科学, 2011, 46(1):233-257.

LIU S G,LI Z W,SUN W,et al.The basic characteristics of the overlapping petroleum-bearing basins in Sichuan[J].Chinese Journal of Geology, 2011, 46(1): 233-257.

[21]
陈少云,杨勇强,邱隆伟,等.川中地区侏罗系沙溪庙组储层特征及控制因素[J].天然气地球科学,2022,33(10):1597-1610.

CHEN S Y, YANG Y Q, QIU L W, et al. Reservoir characteristics and controlling factors of Jurassic Shaximiao Formation in central Sichuan Basin[J].Natural Gas Geoscience,2022,33(10): 1597-1610.

[22]
韦腾强, 吴长江, 黄亚浩, 等.流体包裹体拉曼定量技术在致密砂岩气藏研究中的应用:以四川盆地中部侏罗系沙溪庙组为例[J]. 天然气地球科学, 2021, 32(2): 1-10.

WEI T Q, WU C J, HUANG Y H, et al. Application of fluid inclusion Raman quantitative technique to the study of tight sandstone gas reservoirs:Case study of Jurassic Shaximiao Formation in central Sichuan Basin[J].Natural Gas Geoscience, 2021, 32(2): 1-10.

[23]
王小娟, 洪海涛, 吴长江, 等.四川盆地川中地区侏罗系沙溪庙组致密砂岩储层特征及成因[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1037-1051.

WANG X J,HONG H T,WU C J,et al.Characteristics and for-mation mechanisms of tight sandstone reservoirs in Jurassic Sha-ximiao Formation, central of Sichuan Basin[J].Journal of Jilin University(Earth Science Edition),2022,52(4):1037-1051.

[24]
祁若琳. 川中地区公山庙油田大安寨段致密油储层特征[D]. 成都:西南石油大学, 2018.

QI R L.Characteristics of Tight Oil Reservoirs in the Da'anzhai Member of the Gongshanmiao Oilfield in the Central Sichuan Region[D].Chengdu:Southwest Petroleum University,2018.

[25]
卿元华. 川中侏罗系凉上段—沙一段致密油储层形成机理[D]. 成都:成都理工大学, 2020.

QIN Y H. Formation Mechanism of Tight Oil Reservoirs in the Upper Liangshang Member and Sha 1 Member Jurassic, Central Sichuan Basin[D].Chengdu:Chengdu University of Te-chnology, 2020.

[26]
国家能源局. SY/T6285-2011 中华人民共和国石油与天然气行业标准[S].北京:中国标准出版社, 2011: 5.

National Energy Administration. SY/T6285-2011 Petroleum and Natural Gas Industry Standards of the People's Republic of China[S].Beijing: China Standards Press,2011: 5.

[27]
WU J, FAN T L, GOMEZ-RIVAS E, et al. Impact of pore structure and fractal characteristics on the sealing capacity of Ordovician carbonate cap rock in the Tarim Basin,China[J].Marine and Petroleum Geology, 2019, 102: 557–579.

[28]
VERMA S P, ARMSTRONG-ALTRIN J S. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Pre-Cambrian basins[J].Che-mical Geology,2013,355:117-180.

[29]
ZHANG B L,YAO S P,HU W X,et al.Middle Permian palaeo-climatic-palaeoceanographic evolution and its controls on organic matter accumulation in the Lower Yangtze upwelling region[J].International Journal of Coal Geology,2022,264:104132.

[30]
安红艳.川西坳陷中段侏罗系沙溪庙组和遂宁组物源分析及油气地质意义[D]. 成都:成都理工大学,2011.

AN H Y. Provenance Analysis and Petroleum Geological Significance of the Jurassic Shaximiao and Suining Formations in the Middle of the Western Sichuan Depression[D].Chengdu:Chengdu University of Technology, 2011.

[31]
曹甲新, 徐文礼, 曹脊翔, 等.川中地区中侏罗统沙溪庙组一段物源分析[J/OL].沉积学报.https://doi.org/10.14027/j.issn.1000-0550.2023.116.

CAO J X, XU W L, CAO J X, et al. Provenance analysis of the first member of the Middle Jurassic Shaximiao Formation in central Sichuan Basin[J/OL]. Acta Sedimentologica Sinica. https://doi.org/10.14027/j.issn.1000-0550.2023.116.

[32]
邱隆伟, 穆相骥, 李浩, 等. 杭锦旗地区下石盒子组致密砂岩储层成岩作用对孔隙发育的影响[J]. 油气地质与采收率, 2019, 26(2): 42-50.

QIU L W, MU X J, LI H, et al. Influence of diagenesis of tight sandstone reservoir on the porosity development of Lower Shihezi Formation in Hangjinqi area,Ordos Basin[J].Petroleum Geology and Recovery Efficiency, 2019, 26(2): 42-50.

[33]
覃硕, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒一段致密砂岩储层特征及其主控因素[J]. 地球科学, 2022, 47(5): 1604-1618.

QIN S, SHI W Z, WANG R, et al. Characteristics of tight sandstone reservoirs and their controlling factors of He-1 Member in Hangjinqi block, Ordos Basin[J]. Earth Science, 2022, 47(5): 1604-1618.

[34]
王小娟,陈双玲,谢继容,等.川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J].岩性油气藏,2024,36(1):78-87.

WANG X J, CHEN S L, XIE J R, et al. Accumulation characteristics and main controlling factors of tight sandstone of Jurassic Shaximiao Formation in southwestern Sichuan Basin[J]. Lithologic Reservoirs, 2024, 36(1): 78-87.

[35]
朱彤, 李祖兵, 刘冀, 等. 鄂尔多斯盆地苏里格气田北部苏75区块盒8段成岩作用及其对储层的影响[J]. 天然气地球科学, 2023, 34(10): 1739-1751.

ZHU T, LI Z B, LIU Y, et al. Diagenesis and its influence on reservoir in He 8 Member of Su 75 block in northern Sulige Gas Field, Ordos Basin[J].Natural Gas Geoscience,2023,34(10):1739-1751.

[36]
张向涛, 彭光荣, 谢世文, 等. 珠江口盆地白云凹陷西南部珠海组储层成岩特征及其对储层物性的影响[J]. 天然气地球科学, 2024, 35(3): 379-392.

ZHANG X T, PENG G R, XIE S W, et al. Characteristics of reservoir diagenesis in the Zhuhai Formation in the southwestern Baiyun Depression, Pearl River Mouth Basin, and its influence on reservoir physical properties[J].Natural Gas Geoscience, 2024,35(3):379-392.

[37]
杨晓萍,张宝民,陶士振.四川盆地侏罗系沙溪庙组浊沸石特征及油气勘探意义[J].石油勘探与开发,2005,32(3):37-40,44.

YANG X P, ZHANG B M, TAO S Z. Laumonite and its significance for petroleum exploration in Jurassic Shaximiao reservoir, Sichuan Basin[J].Petroleum Exploration and Development, 2005(3): 37-40,44.

[38]
卿元华, 吕正祥, 赵福, 等. 川中东北部中侏罗统沙一段致密砂岩中自生浊沸石形成机理[J]. 矿物岩石地球化学通报, 2020, 39(3): 536-547.

QING Y H,LÜ Z X,ZHAO F,et al. Formation mechanism of authigenic laumonites in tight sandstone of Member 1 of the Middlie Jurassic Shaximiao Formation in the northeastern Central Sichuan Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(3): 536-547.

[39]
陈少云, 杨勇强, 邱隆伟, 等. 致密砂岩孔喉结构分析与渗透率预测方法——以川中地区侏罗系沙溪庙组为例[J]. 石油实验地质, 2024, 46(1): 202-214.

CHEN X Y, YANG Y Q, QIU L W, et al. The pore throat structure analysis and permeability prediction method of tight sandstone: A case study of Jurassic Shaximiao Formation in central Sichuan Basin[J].Petroleum Geology & Experiment. 2024, 46(1): 202-214.

Outlines

/