Fracture-fluid chronology and reservoir evolution in Middle-Lower Ordovician in the Southwest Tarim Basin

  • Chenjun HUANG , 1, 2 ,
  • Geyun LIU 1, 2 ,
  • Cunli JIAO 1, 2 ,
  • Yang LI 1, 2 ,
  • Tieyi WANG 1, 2 ,
  • Xiaoqun YANG 1, 2
Expand
  • 1. Petroleum Exploration and Production Research Institute,SINOPEC,Beijing 102206,China
  • 2. Key Laboratory of Subsurface Geology and Resources,SINOPEC,Beijing 102206,China

Received date: 2024-10-26

  Revised date: 2025-01-06

  Online published: 2025-01-26

Supported by

The Project of Science and Technology Department of SINOPEC(P22122)

Abstract

The formation and evolution mechanism of carbonate reservoir is one of the key issues to be solved in oil and gas exploration. Taking the middle-lower Ordovician in the Yubei area, the Southwest Tarim Basin as an example, we utilized drilling cores, thin sections, FMI logs, conventional logs and geochemical data to obtain the diagenetic evolution process of carbonate reservoirs and reveal the controlling factors of reservoir development, based on the study of fracture-fluid chronology. According to the cutting relationship of core fractures containing different types of fillings, it is determined that the activities of Mg-rich fluid, silica-rich fluid, paleo oil and gas, calcium-rich fluids and mud-rich fluids occurred successively in the Middle-Lower Ordovician in Yubei area. Through the comparative analysis of core and thin-section dolomite-filling fractures, it is proposed that the Mg-rich fluid activity has occurred in the stage of microscopic-fracture development in the early Episode I of the middle Caledonian, which has led to excessive dolomitization. The analysis of elements and isotopes shows that the Mg-rich fluid leading to the excessive dolomitization is of hydrothermal origin, which may be related to the upward permeation and diffusion of high temperature magnesium-rich brine from the Cambrian gypsum strata due to gravity compaction. The occurrence characteristics of the dissolution cavities in the Penglaiba Formation-Yingshan Formation (lower member) in the Yubei area indicate that its formation is earlier than that of dolomitization. The dissolution resulted from subaerial exposure during sea-level fall in the third and fourth sedimentary cycles of the quasi-syngenetic period. The evolution of the Middle-Lower Ordovician reservoir in the Yubei area could be divided into three stages: the quasi-syngenetic dissolution of Penglaiba Formation-Yingshan Formation (lower member), the joint interaction of hydrothermal dolomitization and structural fractures in the middle Caledonian Episode I and the late Hercynian, as well as the reservoir maintenance after the late Hercynian.

Cite this article

Chenjun HUANG , Geyun LIU , Cunli JIAO , Yang LI , Tieyi WANG , Xiaoqun YANG . Fracture-fluid chronology and reservoir evolution in Middle-Lower Ordovician in the Southwest Tarim Basin[J]. Natural Gas Geoscience, 2025 , 36(6) : 1012 -1027 . DOI: 10.11764/j.issn.1672-1926.2025.01.007

0 引言

塔里木盆地位于中国西北部,盆地面积约为56×104 km2,其奥陶系海相碳酸盐岩是当前重要的油气勘探目标层系之一,已经在塔北、塔中古隆起取得了重要勘探突破1-2,建成了塔河及其外围油气田、塔中油气田等。而在面积最大的塔西南和田古隆起之上,尚未取得规模性油气发现。虽然近年在塔西南玉北地区的玉北1断褶带上,YB1井、YB1-2x井等在奥陶系鹰山组—蓬莱坝组获得工业油流,但尚未取得进一步拓展。
碳酸盐岩储层形成与演化机制是油气勘探亟需解决的重要难题之一。溶蚀孔洞是碳酸盐岩储层最重要的储集空间类型,裂缝在碳酸盐岩油气藏中具有十分重要的作用,其通常与溶蚀孔洞叠加在一起形成裂缝—孔洞型储层、孔洞—裂缝型储层,甚至单独形成裂缝型储层3。裂缝在碳酸盐岩的成岩过程中起到流体运移通道的作用,有效地扩大了流体对碳酸盐岩地层改造的深度范围4。碳酸盐岩地层中构造—压力耦合对裂缝发育与流体运移具有控制作用5-6。可见,在裂缝—流体时空耦合框架下,开展裂缝及相关流体活动对碳酸盐岩储层成岩演化研究具有重要意义。
本文以塔里木盆地玉北地区中—下奥陶统为例,利用钻井岩心、岩石薄片、成像测井、常规测井及地球化学数据等,从裂缝—流体时序研究入手,厘定碳酸盐岩储层的成岩演化过程,研究储层发育控制因素。主要包括以下2个方面的研究:①根据对含不同类型充填物裂缝的发育序列与空间分布特征的研究,从裂缝—流体—成岩发展演化的角度,厘定裂缝发育与白云石化、岩溶作用的关系;②通过岩心及薄片观察、测井解释及地球化学分析,明确白云石、溶蚀孔洞的产状类型、成因及控制因素。

1 地质背景

塔里木地块奥陶纪处于赤道热带气候环境,为碳酸盐岩台地发育提供了有利条件7-9。塔西南早奥陶世形成弱退积—加积型镶边台地10-12,中—晚奥陶世以发育镶边台地为主13-16。玉北地区奥陶系先后发育局限台地鲕粒滩—砂屑滩—滩间海沉积(蓬莱坝组—鹰山组下段)、开阔台地砂屑滩—滩间海沉积(鹰山组上段—一间房组)、斜坡—陆棚礁砾屑—灰泥沉积(恰尔巴克组)及混积陆棚泥质碎屑沉积(却尔却克组),地层岩性自下而上为白云岩、灰质云岩、灰岩/泥质灰岩和泥岩[图1(b)]17-19。玉北地区中—下奥陶统碳酸盐岩地层分布于和田古隆起东北缘东南缘,玉北地区中—西部为稳定隆起区,东部受加里东中期盆地东南缘造山挤压影响,处于玛东冲断带内[图1(a)]20-23。玛东冲断带主要由5排近平行排列的NE向叠瓦式逆冲断层组成,主滑脱面位于中寒武统膏盐岩层内24-26。玉北地区东部在晚奥陶世早期形成基底—盖层的低幅褶皱,在晚奥陶世末,形成铲式断层及断弯褶皱27-29。根据构造解析与正演模拟,玉北地区东部主要发育2期构造变形30-32,即:①加里东中期Ⅰ幕,卷入构造变形的地层为下丘里塔格组—恰尔巴克组;上奥陶统却尔却克组沉积于构造变形过程中或略晚;②海西晚期,卷入构造变形的新地层为石炭系—二叠系。古近纪以来地层变形微弱,表明喜马拉雅期玉北地区断裂活动不显著。
图1 塔里木盆地玉北地区加里东晚期—海西早期鹰山组顶面构造(a)及奥陶系地层柱状图(b)(修改自文献[1830])

Fig.1 Map of top structure (a) of the Yingshan Formation in the Late Caledonian to Early Hercynian and stratum column (b) of the Ordovician in Yubei area, Tarim Basin(modified from Refs.[1830])

2 研究方法

2.1 岩心、薄片观察

通过对YB1、YB1-4、YB2、YB3、YB3-1、YB4、YB5、YB6A、YB7、YB8、YB9和YB13等10余口钻井[井位位置见图1(a)]蓬莱坝组—鹰山组总长250余米的岩心进行详细观察,以统计不同产状和充填物的裂缝。对上述钻井岩心进行系统取样,制作多功能薄片173个,铸体薄片50个,用于观察薄片裂缝、白云石类型和溶蚀孔洞等。并基于薄片岩石学分类,选择主量元素、碳氧同位素和锶同位素样品进行测试。

2.2 主量元素分析

利用北京大学造山带与地壳演化教育部重点实验室的激光剥蚀等离子质谱仪(LA-ICP-MS),对玉北地区8口钻井(YB1-1井、YB1-4井、YB3井、YB4井、YB5井、YB7井、YB8井及YB13井)中—下奥陶统30个碳酸盐岩多功能薄片(未盖玻)样品进行原位微区元素测试。仪器为德国Coherent Geolas pro激光剥蚀溶样系统和美国Agilent 7500ce电感耦合等离子质谱仪。射频正向功率1 380 W,束斑30~60 μm。使用NIST 610、612和614玻璃作为校准样品,测试误差小于5%33-34

2.3 碳氧同位素分析

利用中国地质科学院矿产资源研究所自然资源部同位素地质重点实验室稳定同位素质谱仪,对玉北地区8口钻井(YB1-4井、YB2井、YB3井、YB4井、YB5井、YB6A井、YB7井及YB8井)及通古孜布隆剖面[坐标为38°56′27.46″N, 90°55′42.52″E,位置见图1(a)]中—下奥陶统20个碳酸盐岩全岩粉末样品进行了碳氧同位素测试。仪器型号为美国Thermo Fisher公司MAT253,加速电压10 kV,检测质量范围1~150 dalton。取约200 mg粉末样品放入100%的磷酸中溶解,分解得到CO2直接导入质谱系统测试。测试精度为0.2‰,δ13C和δ18O结果均采用V-PDB进行标准化35-36

2.4 锶同位素分析

利用天津地质调查中心实验测试室(获自然资源部华北矿产资源监督检测中心资质)热离子质谱仪(TIMS),对玉北地区钻井中—下奥陶统13个碳酸盐岩全岩粉末样品进行了锶同位素测试。前处理将粉末样品用混合酸(HF+HNO3+HCl)溶解,加入适量稀释剂(87Rb+84Sr),取上清液载入阳离子交换柱中,采用不同浓度的酸洗脱基质元素,将收集的Sr组分采用Sr-Spec树脂进行二次纯化富集。测试仪器为美国Thermo Fisher公司TRITON质谱仪,离子加速电压10 kV,灵敏度≥3 ion/100 μmol 或1/500,内、外标样精度为5×10-6[37-38

3 分析结果

3.1 裂缝—流体时序

根据岩心观察,玉北地区中—下奥陶统常见的裂缝充填物类型有白云石、硅质、沥青、方解石及泥质等,另也常见未充填或缝面含油迹的裂缝(图2)。含不同类型充填物的裂缝及未充填裂缝通常具有固定的先后切割关系,而且同一裂缝中含2种以上的充填物也具有固定的先后叠加顺序。以YB3井鹰山组上段岩心裂缝为例,含不同充填物裂缝的切割关系包括(图3):①未充填缝切割沥青充填缝(2-d)(代表取心回次和裂缝类型,下同)、方解石充填缝(9-a)、沥青—泥质充填缝(9-d)、沥青—方解石—泥质充填缝(9-e);②方解石充填缝切割硅质充填缝(5-b、6-e)、沥青充填缝(6-d);③沥青充填缝切割硅质充填缝(5-a);④泥质充填缝切割硅质充填缝(4-b、5-c);⑤硅质充填缝切割白云岩围岩(2-b)。裂缝充填物组合的叠加序列类型包括(图3):①沥青—方解石(2-c、6-a、9-b);②沥青—泥质(4-a、8-c、9-d);③方解石—泥质(9-c);④沥青—方解石—泥质(9-e)。所有裂缝充填物总的叠加序列为:白云石、硅质、沥青、方解石、泥质及末期裂缝不含充填物。
图2 YB3井鹰山组上段岩心裂缝充填物类型及其切割与叠加关系典型照片与素描图

(a)围岩为白云岩(dol),发育2条相交的垂向裂缝,充填白云石(dol-vein);(b)围岩为白云岩,发育2条低角度裂缝,充填硅质(Si);(c)围岩为灰岩,发育一条高角度裂缝,充填沥青(bit);(d)围岩为灰岩,发育一条高角度裂缝,沿缝壁充填沥青,其上叠加泥质(mud);(e)围岩为灰岩,发育2组高角度裂缝,一组充填沥青,另一组充填方解石(cal),后者切割前者;(f)围岩为灰岩,发育一组低角度宽裂缝,充填硅质,另发育高角度细裂缝,充填方解石,后者切割前者;(g)围岩为灰岩,发育一条高角度裂缝,沿缝壁充填方解石,其上叠加泥质;(h)围岩为灰岩,发育共轭网状缝,充填沥青,另发育一条高角度裂缝,无充填(null frac),后者切割前者

Fig.2 Typical photos and sketches of filling types of drilling core fractures and their cutting or stacking relationships in the upper member of Yingshan Formation, Well YB3

图3 YB3井鹰山组上段岩心裂缝充填物类型及其切割与叠加关系示意

Fig.3 Schematic diagram of filling types of drilling core fractures and their cutting or stacking relationships in the upper member of Yingshan Formation, Well YB3

可见,玉北地区中—下奥陶统含不同充填物裂缝的发育序列为(图2):Ⅰ为白云石充填缝(与围岩白云石化同期)、Ⅱ为硅质充填缝、Ⅲ为沥青充填缝、Ⅳ为方解石充填缝、Ⅴ为泥质充填缝、Ⅵ为未充填缝。裂缝中充填物的发育序列与相应流体活动的先后顺序有关。因此,玉北地区中—下奥陶统先后发生了富镁流体、富硅流体、古油气、富钙流体和富泥流体的活动。

3.2 裂缝与白云石化

玉北地区中—下奥陶统白云岩主要分布在蓬莱坝组—鹰山组下段,根据岩屑元素录井结果,蓬莱坝组的白云石含量一般大于75%,鹰山组下段的白云石含量一般大于25%;鹰山组上段以灰岩为主,白云石含量一般小于5%,仅在玉北地区东部的YB2井和YB3井的部分井段中,白云石含量可达75%以上。从玉北地区中—下奥陶统岩心薄片中白云石的产状来看,可见白云石充填缝切割灰质颗粒及颗粒间粒状方解石胶结物[图4(a)]。粒状方解石胶结物是浅埋藏胶结作用形成的,这说明白云石化发生在浅埋藏胶结以后。还可见粗晶白云石交代颗粒及粒间方解石胶结物,以及白云石沿裂缝分布并交代裂缝灰岩基质,且白云石具有晶体粗大、紧密堆积的特征[图4(b)]。这表明引起白云石化的流体性质可能是高温的富镁流体,其沿微观裂缝向周围基质扩散,并快速结晶形成紧密堆积的粗晶白云石。少量白云岩样品为自形—他形白云石,可见发育一定数量的白云石晶间孔[图4(c)],但绝大多数白云岩样品都是紧密堆积的中粗晶他形白云石,不发育白云石晶间孔[图4(d)]。
图4 玉北地区中—下奥陶统岩心薄片白云石产状类型显微照片

(a)YB7井,O1 p,白云石充填缝切割灰质砂屑颗粒及粒间方解石胶结物;(b)YB6A井,O1-2 y ,粗晶白云石交代灰岩砂屑颗粒及粒间方解石胶结物,白云石具有沿裂缝分布并交代裂缝周围灰岩基质的特征,白云石晶体粗大,紧密堆积;(c) YB7井,O1 p,灰岩基质发生完全白云石化,形成自形—他形中晶白云石,发育一定量的晶间孔;(d)YB6A井,O1-2 y ,灰岩基质发生过渡白云石化,形成紧密堆积的他形中晶白云石,不发育晶间孔

Fig.4 Micrographs of dolomite occurrence types in thin sections of drilling cores of Middle-Lower Ordovician in Yubei area

薄片中同一构造期微观裂缝方解石脉的流体包裹体均一温度跨度较大39-40,表明微观裂缝发育可以跨越较长地质时期;而宏观裂缝发育则伴随主要构造活动期。当流体活动恰好发生在裂缝发育的某个阶段时,即会在该阶段形成的裂缝中发生显著的成岩作用。根据前文厘定的玉北地区中—下奥陶统裂缝发育序列,白云石充填缝发育最早,且成岩后未见多期白云石化现象。因此,白云石充填的微观裂缝和宏观裂缝应形成于同一构造期的不同应力阶段,即微观裂缝形成于构造初期弱应力阶段,宏观裂缝形成于构造中后期强应力阶段41。根据岩心裂缝统计(图5),只在YB3井和YB6A井可见白云石充填缝,且白云石充填缝数量极少,仅占岩心裂缝总数的1%。根据薄片裂缝统计(图5),在YB1-2x井、YB3井、YB1-4井、YB5井、YB6A井、YB7井和YD4井等大多数井均可见到白云石充填缝,且数量众多,占薄片裂缝总数的24%。玉北地区中—下奥陶统岩心裂缝与薄片裂缝中白云石充填缝比例的巨大差异,表明引起玉北地区蓬莱坝组—鹰山组下段白云石化的富镁流体活动可能发生在微观裂缝发育期,且在宏观裂缝大规模形成之前即停止活动。玉北地区中—下奥陶统沉积埋藏后的首次构造活动发生于加里东中期Ⅰ幕30-32,即为裂缝的最早发育时期。因此,可以推断玉北地区中—下奥陶统富镁流体活动发生在加里东中期Ⅰ幕初期的微观裂缝发育阶段。
图5 玉北地区中—下奥陶统含不同类型充填物的岩心、薄片裂缝统计柱状图

Fig.5 Statistical histogram of drilling core and thin section fractures with different types of fillings in Middle-Lower Ordovician in Yubei area

3.3 白云石化成因

3.3.1 Fe—Mn—Al元素分析

利用样品主量元素测试结果绘制成FeMnAl元素三角图(表1图6),用于研究白云石的成因。YAMAMOTO42提出的FeMnAl三角图版是基于大洋钻探取得的硅质(cherts)、页岩(shales)、绿脱石(nontronites)及现代海洋沉积物等大量样品测试数据绘制的。这些样品都不是热液特有矿物或沉积物,其FeMnAl含量差异完全是对沉积成岩环境的响应。因此,将该图版应用于碳酸盐岩样品成因分析是一次合理的尝试,有助于丰富热液成因碳酸盐矿物的鉴别方法。
表1 玉北地区钻井中—下奥陶统碳酸盐岩样品铁、锰、铝元素含量测试结果

Table 1 Element content test results of iron, manganese and aluminum of Middle-Lower Ordovician carbonate samples from drillings in Yubei area

样品编号 井号 层位 岩性 Fe/10-6 Mn/10-6 Al/10-6
No.1 YB8 O1-2 y 泥晶灰岩 310.68 8.5 375.43
No.2 YB4 O1-2 y 泥晶灰岩 510 11.1 1 293.20
No.3 YB8 O1-2 y 孔洞方解石 83.42 29.67 0.40
No.4 YB4 O1-2 y 孔洞方解石 72.17 14.43 0.56
No.5 YB5 O2 yj 孔洞方解石 70.67 7.18 0.09
No.6 YB13 O1-2 y 方解石脉 76.35 16.42 0.11
No.7 YB7 O1 p 方解石脉 94.43 16.66 0.19
No.8 YB1-1 O1-2 y 方解石脉 111.98 18.59 0.46
No.9 YB1-4 O1-2 y 方解石脉 243.62 186.18 3.07
No.10 YB5 O1 p 白云石脉 59.85 28.99 89.66
No.11 YB5 O1 p 白云石脉 135.77 64.17 79.65
No.12 YB4 O1-2 y 片状白云石 383.58 29.5 123.89
No.13 YB4 O1-2 y 片状白云石 706.73 73.88 480.79
No.14 YB1-4 O1-2 y 片状白云石 140.33 35.56 97.45
No.15 YB3 O1-2 y 粗晶白云石 161.92 20.69 49.62
No.16 YB1-4 O1-2 y 粗晶白云石 266.43 30.82 39.63
No.17 YB1-4 O1-2 y 中晶白云石 152.27 17.29 152.08
No.18 YB5 O1 p 中晶白云石 688.65 33.25 899.54
No.19 YB5 O1 p 中晶白云石 478.43 29.53 158.42
No.20 YB4 O1-2 y 中晶白云石 272.35 22.49 32.61
No.21 YB4 O1-2 y 中晶白云石 278.63 58.59 42.16
No.22 YB4 O1-2 y 中晶白云石 348.48 31.36 141.90
No.23 YB4 O1-2 y 中晶白云石 207.1 32.81 72.75
No.24 YB5 O1 p 中晶白云石 223.08 32.04 43.99
No.25 YB1-4 O1-2 y 细晶白云石 378.28 23.99 52.18
No.26 YB1-4 O1-2 y 细晶白云石 797.95 75.52 63.66
No.27 YB1-4 O1-2 y 细晶白云石 282.25 193.32 401.54
No.28 YB1-4 O1-2 y 细晶白云石 1 664.97 216.46 170.71
No.29 YB1-4 O1-2 y 粉晶白云石 1 623.17 168.03 2 972.51
No.30 YB5 O1 p 粉晶白云石 857.91 30.63 842.64
图6 玉北地区钻井中—下奥陶统碳酸盐岩样品Fe—Mn—Al元素含量分布图(底图据文献[37])

Fig.6 Distribution map of Fe-Mn-Al contents of Middle-Lower Ordovician carbonate samples from drillings in Yubei area (base map is cite from Ref.[37])

根据样品在FeMnAl元素三元图版中的分布,其中7个样品落在图版中正常沉积的范围,21个样品落在图版中热液成因的范围,2个样品落在正常沉积和热液成因范围之外(图6)。
正常沉积范围的7个样品中有2个泥晶灰岩(样品编号为No.1、No.12,下同),可以代表原始沉积的方解石;2个粉晶白云石(No.29、No.30)因其铁、锰、铝含量倶高,可能代表蒸发咸化环境准同生白云石;2个中晶白云石(No.17、No.18),它们可能说明原始灰岩或白云岩经历了较弱的热液蚀变;而1个白云石脉(No.10)可能是早期方解石脉发生了较弱的热液蚀变。
热液成因范围的21个样品包括3个细晶白云石(No.25、No.26、No.28)、6个中晶白云石(No.19~ No.24)、2个粗晶白云石(No.15、No.16)和3个片状白云石(No.12~No.14),它们是原始灰岩或白云岩发生了强烈的热液蚀变形成的;还有4个方解石脉(No.6~No.9)和3个孔洞充填方解石(No.3~No.5),它们是热液沉淀的产物。
另外,有1个细晶白云石样品(No.27)投在正常沉积范围以外,但偏离边界不远,也可能是原始灰岩或白云岩发生较弱的热液蚀变形成的;有1个白云石脉样品投在热液沉积范围之外,但偏离边界不远,可能是早期方解石脉发生较强的热液蚀变形成。

3.3.2 碳氧同位素分析

将碳氧同位素测试结果(表2)绘制成碳氧同位素交会图(图7),根据样品在碳氧同位素交会图版中的分布,其中有15个样品集中分布在13CV-PDB:-2‰~-0.5‰,18OV-PDB:-10‰~-2‰的交会范围(Ⅰ区),3个样品分布在13CV-PDB:-3‰~-2.5‰,18OV-PDB:-14‰~-12‰的交会范围(Ⅱ区),2个样品分布在13CV-PDB:0‰~0.5‰,18OV-PDB:-6‰~-4‰的交会范围(Ⅲ区)。
表2 玉北地区钻井及塔西北野外露头中—下奥陶统样品碳、氧、锶同位素测试结果

Table 2 Isotope test results of carbon, oxygen and strontium of Middle-Lower Ordovician samples from drillings in Yubei area and field outcrops in northwestern Tarim Basin

样品编号 井号/剖面 层位 岩性 δ18OVPDB /‰ δ13CVPDB /‰ 87Sr/ 86Sr 87Sr/ 86Sr 误差
No.1 YB4 O1-2 y 泥晶灰岩 -6.44 -1.39 0.709 374 0.000 005
No.2 YB8 O1-2 y 泥晶灰岩 -6.63 -1.72 0.710 052 0.000 013
No.3 YB2 O1-2 y 方解石脉 -12.81 -2.84 0.709 318 0.000 001
No.4 通古孜布隆 O1 p 方解石脉 -12.55 -2.83 / /
No.5 通古孜布隆 O1 p 洞穴方解石 -12.68 -2.59 / /
No.6 YB1-4 O1-2 y 片状白云石 -5.91 -1.40 0.708 974 0.000 002
No.7 YB3 O1-2 y 片状白云石 -5.14 -1.36 0.708 979 0.000 001
No.8 YB2 O1-2 y 粗晶白云石 -2.50 -1.06 / /
No.9 YB6A O1-2 y 粗晶白云石 -6.06 -1.52 0.709 183 0.000 017
No.10 YB1-4 O1-2 y 粗晶白云石 -5.32 -0.58 0.709 061 0.000 001
No.11 YB3 O1-2 y 粗晶白云石 -6.52 -0.99 0.709 312 0.000 021
No.12 YB8 O1-2 y 中晶白云石 -3.69 -1.55 0.709 350 0.000 011
No.13 YB5 O1 p 中晶白云石 -8.91 -1.05 0.709 401 0.000 001
No.14 YB7 O1 p 中晶白云石 -5.54 -1.10 / /
No.15 YB6A O1-2 y 细晶白云石 -7.69 -1.61 0.710 159 0.000 026
No.16 YB3 O1-2 y 细晶白云石 -7.84 -1.44 0.709 799 0.000 001
No.17 YB1-4 O1-2 y 细晶白云石 -7.63 -1.38 / /
No.18 通古孜布隆 O1 p 细晶白云石 -4.27 0.31 / /
No.19 YB1-4 O1-2 y 细晶白云石 -9.99 -1.30 / /
No.20 YB5 O1 p 粉晶白云石 -5.41 0.13 0.709 211 0.000 023
图7 玉北地区钻井及塔西北露头中—下奥陶统碳酸盐岩样品碳、氧同位素交会图

Fig.7 Cross plot of carbon and oxygen isotopes of Middle-Lower Ordovician carbonate samples from drillings in Yubei area and outcrops in northwestern Tarim Basin

分布在Ⅰ区的2个样品(No.1、No.2)为泥晶灰岩,它们可以代表原始沉积的灰岩。Ⅰ区内其他13个样品包括:4个细晶白云石(No.15~No.17、No.19)、3个中晶白云石(No.12~No.14)、4个粗晶白云石(No.8~No.11)和2个片状白云石(No.6、No.7)。根据对Fe—Mn—Al元素的分析,它们是经过热液蚀变形成的白云石,其碳氧同位素与原始沉积的泥晶灰岩一致,表明在热液蚀变白云石化过程中,流体与基质之间只发生了Mg2+与Ca2+的交换,而没有发生C和O元素的交换,即热液白云石化对碳酸盐岩的碳氧同位素不产生显著影响43-45
分布在Ⅱ区的3个样品包括2个方解石脉(No.3、No.4)和1个洞穴方解石充填物(No.5),其碳氧同位素显著低于原始沉积泥晶灰岩及热液蚀变白云石,显示出热液来源特征46-47。较轻碳同位素的CO3 2-可能是热液溶解携带的早期干酪根成熟分解的CO2 48-50。这些方解石是在热液蚀变白云石化过程中,由交换出来的Ca2+与热液中的CO3 2-结合沉淀形成。
分布在Ⅲ区的2个样品包括1个细晶白云石(No.18)和1个粉晶白云石(No.20),其碳同位素值大于零,相较于其他样品偏正,显示出蒸发咸化环境成因特征51-53。这与上文提到的2个粉、细晶白云石(No.28,No.29)样品的铁、锰、铝含量俱高的成因一致。

3.3.3 锶同位素分析

锶同位素测试样品包括:2个泥晶灰岩(No.1、No.2),1个方解石脉(No.3),1个粉晶白云石(No.20),2个细晶白云石(No.15、No.16),2个中晶白云石(No.12、No.13),3个粗晶白云石(No.9~ No.11)和2个片状白云石(No.6、No.7)(表2)。
从锶同位素值柱状图(图8)可见,除粉晶白云石样品(No.20)外,从细晶白云石到片状白云石,白云石的锶同位素值呈现随晶体增大而降低的显著趋势,这表明在白云石晶体生长过程中可能会选择性排斥87Sr。粉晶白云石样品(No.20)锶同位素值较低,与上述白云石晶体生长排斥规律不协调,这与蒸发浓缩海水促进白云石沉淀速率提高而引起锶同位素分馏变轻的机制相吻合54,进一步证实了粉晶白云石形成于蒸发咸化沉积环境。2个泥晶灰岩的锶同位素值(No.1、No.2)界定了中—下奥陶统同期海水的锶同位素值范围,方解石脉(No.3)的锶同位素值代表了导致碳酸盐岩白云石化的热液(见本文3.3.2节碳氧同位素分析)的锶同位素值,可见热液与海水的锶同位素值非常接近。另外,细晶—片状白云石(No.6~No.7、No.9~No.13、No.15~ No.16)的锶同位素值范围也与泥晶灰岩及方解石脉的同位素值范围接近,这表明引起白云石化的热液与海水具有同源性,很可能是来自寒武系蒸发盐岩地层中的富镁卤水5355-56
图8 玉北地区钻井中—下奥陶统碳酸盐岩样品锶同位素柱状图

Fig.8 Bar chart of Strontium isotope of the Middle-Lower Ordovician carbonate samples from drillings in Yubei area

铁锰铝元素、碳氧同位素和锶同位素的综合分析表明,玉北地区中—下奥陶统白云岩是由来自深部海相地层的高温地层水蚀变(交代作用)形成的。玉北地区中—下奥陶统白云石晶体粗大、紧密堆积,而且蓬莱坝组—鹰山组下段白云石含量具有自下而上逐渐降低的趋势,这综合表明玉北地区中—下奥陶统白云岩属于热液白云石化成因,可能是在地层压实作用下由寒武系蒸发盐岩地层的高温富镁卤水向上渗透扩散引起。富镁卤水活动主要发生在加里东中期Ⅰ幕初期的微观裂缝发育阶段,所以普遍发育白云石充填的微观裂缝。特殊地,玉北地区东部YB2、YB3等井鹰山组上段的白云岩可能形成于加里东中期Ⅰ幕断层发育期,是由沿断层上升的次幕富镁卤水活动引起的白云石化形成。其与受断层控制的局部热液白云石化57-59,以及与断层相关热液对储层局部改造作用60-61相吻合。

4 讨论

4.1 溶蚀孔洞成因

根据U-Pb同位素定年数据,塔东古城地区蓬莱坝组—鹰山组白云岩形成年龄介于474(±11)~464(±12) Ma之间62,这与加里东中期Ⅰ幕构造运动发生的时间[467.3(±1.1) Ma]大致吻合。这个定年结果说明塔东古城地区蓬莱坝组—鹰山组发生白云石化的时期与塔西南玉北地区相同。这与本文研究结果一致,表明该期白云石化在塔里木盆地是广泛分布的。
在玉北地区蓬莱坝组—鹰山组下段的白云石样品中保存有残余溶孔,白云岩基质为细—粗晶他形白云石。残余溶孔周围的白云石晶体具有较为自形的菱形形态,且没有被溶蚀的特征(图9)。这表明白云石化发生在溶孔形成之后,尽管围岩基质因发生过度白云石化而形成他形白云石,由于溶孔内部自由空间大,有利于在溶孔周围形成自形的菱形白云石。当白云石没有完全充满溶孔空间时,即形成残余溶孔。
图9 玉北地区中—下奥陶统岩心薄片残余溶孔显微照片

(a)YB5井,O1 p,细晶白云石中的残余溶孔,溶孔周围为自形的菱形白云石;(b)YB8井,O1-2 y ,粗晶白云石中的残余溶孔,溶孔周围为自形的菱形白云石;(c)YB6A井,O1-2 y ,中晶白云石中的残余溶孔,溶孔周围为自形的菱形白云石;(d)YB8井,O1-2 y ,粗晶白云石中的残余溶孔,溶孔周围为自形的菱形白云石

Fig.9 Micrographs of residual dissolution pores in thin sections of drilling cores of Middle-Lower Ordovician in Yubei area

根据中子—密度测井交会孔隙度曲线[图10(a)],玉北地区YB5井蓬莱坝组—鹰山组孔隙度范围主要介于1%~9%之间,垂向上具有高孔隙度段(孔隙度一般≥2.5%)与低孔隙度段(孔隙度一般<2.5%)相间分布的特征。其中,蓬莱坝组自下而上发育3个高孔隙度段,其深度分别为6 769.6~6 815.1 m(厚为45.5 m)、6 568.6~6 661.9 m(厚为93.3 m)、6 469~6 530.5 m(厚为61.5 m);鹰山组下段的上部发育1段高孔隙度段,其深度段为6 276~6 371.5 m(厚为95.5 m);鹰山组上段不发育高孔隙度段。
图10 YB5井蓬莱坝组—鹰山组沉积旋回控制准同生岩溶柱状图(a)与溶蚀孔洞FMI图像及其素描图(b)

Fig.10 Column diagram of quasi-syngenetic karst controlled by sedimentary cycles of Penglaiba Formation-Yingshan Formation (a) and FMI images and their sketches of dissolution cavities (b) in Well YB5

从成像测井图像可以看出,玉北地区蓬莱坝组—鹰山组下段的高孔隙度段普遍发育溶蚀孔洞[图10(b)],具有一定的表生岩溶特征63-66。根据溶蚀孔洞的形态特征,蓬莱坝组下部的2个高孔隙度段自上而下可以划分出垂向渗流带和水平潜流带;蓬莱坝组上部及鹰山组下段上部的2个高孔隙度段可以划分为地表径流带、垂向渗流带和水平潜流带。地表径流带的溶蚀孔洞多为蜂窝状的小孔洞,垂向渗流带的溶蚀孔洞多为垂向延伸的大孔洞,水平潜流带的溶蚀孔洞多为水平延伸的大孔洞。
根据对YB5井、YB8井、YB1-2x井、YB6A井和YB9井蓬莱坝组—鹰山组中子—密度测井交会孔隙度曲线的连井对比,在各井鹰山组下段的上部均可见厚度不等的高孔隙度段。在YB1-2x井蓬莱坝组中部发育一段可与YB5井中部对比的高孔隙度段,但在YB1-2x井蓬莱坝组上部不发育高孔隙度段。与蓬莱坝组溶蚀孔洞相比,鹰山组下段上部溶蚀孔洞发育的范围更广,连片性更好,可以在横向上很好地对比。
由于玉北地区蓬莱坝组—鹰山组为连续沉积,不存在明显的地层缺失,其内部发育的溶蚀孔洞显然不属于表生暴露期淡水溶蚀成因,且溶蚀孔洞的规模与表生暴露岩溶也不相符。玉北地区蓬莱坝组—鹰山组内部溶蚀孔洞的小规模、多旋回的特征表明其发育可能与三、四级沉积旋回海平面下降期的短期暴露溶蚀有关67-69图10(a)]。塔西北柯坪—巴楚露头区蓬莱组及塔东古城地区鹰山组白云岩储层也表现出相似的特征4770-71。YB5井蓬莱坝组的3个高孔隙度段可能分别发育于蓬莱坝组沉积期的3个四级沉积旋回的海平面下降期,鹰山组下段上部的高孔隙度段可能发育于鹰山组下段沉积期的三级沉积旋回的海平面下降期。玉北地区蓬莱坝组—鹰山组下段发育的溶蚀孔洞在横向上的可对比性,以及在纵向上的多层叠加性,表明其可以形成规模较大的溶蚀孔洞型储层。

4.2 储层成岩演化

玉北地区中—下奥陶统蓬莱组—鹰山组下段以局限台地中高能砂屑滩—鲕粒滩沉积为主,沉积厚度大,分布面积广,是大规模优质储层发育的潜在层段。其先后经历的重要成岩和构造作用包括:蓬莱坝组—鹰山组下段准同生期的旋回性暴露溶蚀、加里东中期Ⅰ幕初期微观裂缝发育阶段的过度白云石化,以及加里东中期Ⅰ幕和海西晚期构造裂缝的发育30-32
在蓬莱坝组同沉积期发育3个四级沉积旋回,自下而上分别命名为O1 p sq1、O1 p sq2 和O1 p sq3;在鹰山组下段同沉积期发育1个三级沉积旋回,命名为O1-2 y 。在每个沉积旋回初期,新形成的沉积物处于海底成岩期,主要在砂屑沉积物周围形成等厚薄层纤状方解石胶结物。发生海底胶结后的沉积物保留有大量粒间孔,孔隙度约为40%72-73。在每个沉积旋回的中期,已发生海底胶结的沉积物开始进入浅埋藏成岩期,主要在砂屑沉积物之间形成紧密排列的粒状方解石胶结物。发生埋藏胶结后的岩石可能只保留极低的粒状方解石晶间孔,孔隙度约为2%。在每个沉积旋回的后期,已发生浅埋藏胶结的岩层因海平面短期下降而出露地表并接受大气淡水的淋滤溶蚀,形成厚数十米至近百米的小型溶蚀孔洞发育层,溶蚀后岩层的孔隙度可达12%(图11)。玉北地区蓬莱坝组—鹰山组下段同沉积期的沉积—成岩过程可以概括为“沉积—浅埋藏胶结—短旋回暴露溶蚀阶段”。
图11 玉北地区中—下奥陶统蓬莱坝组—鹰山组下段(O1 p—O1 - 2 y )成岩史与孔隙演化史

Fig.11 Map of diagenetic history and pore evolution history of Middle-Lower Ordovician Penglaiba Formation-lower member of Yingshan Formation (O1 p -O1 - 2 y L) in Yubei area

加里东中期Ⅰ幕构造活动期间,以构造裂缝发育及外来流体成岩改造为特征。加里东中期Ⅰ幕初期,在蓬莱坝组—鹰山组下段的刚性地层中发育广泛分布的构造微观裂缝,微观裂缝与溶蚀孔洞发生叠加的岩层总孔隙度可达16%。同时,中寒武统蒸发盐岩地层内部的高温富镁卤水因重力压实作用而发生向上至蓬莱坝组—鹰山组下段的渗透扩散作用。微观裂缝的发育促进了富镁流体向灰岩基质内部渗透,在蓬莱坝组—鹰山组下段发生了广泛的过度白云石化。该期形成的微观裂缝多被白云石全充填,早期形成的溶蚀孔洞被白云石晶体不同程度充填,残余溶孔孔隙度约为8%。白云石化之后,加里东中期Ⅰ幕构造活动继续加强,在蓬莱坝组—鹰山组下段刚性地层中形成较为发育的宏观裂缝,以及产生不同规模的断层。同时,伴有局部硅质流体活动74及古油气藏破坏39-40,在该期裂缝中形成硅质、沥青充填物。随着地层埋深的增大,由白云石化、硅化等交代出的钙质流体开始结晶析出,在裂缝中形成方解石充填物。海西晚期构造活动期间,玉北地区中—下奥陶统进入中深埋藏期,该期构造活动在蓬莱坝组—鹰山组下段刚性地层中产生新的裂缝。由于没有外来流体进入,形成未充填的裂缝。此时,主要的储集空间为残余孔洞、半充填及未充填的裂缝,总孔隙度约为12%(图11)。玉北地区中—下奥陶统加里东中期Ⅰ幕—海西晚期的储层发育过程可以概括为“热液白云石化—构造裂缝发育阶段”。
海西晚期以后,玉北地区中—下奥陶统埋深继续增大,没有再发生显著的构造及成岩改造作用,此前形成的储集空间得以维持并保存下来。这个阶段可以概括为“储层保持阶段”(图11)。

5 结论

塔西南玉北地区蓬莱坝组—鹰山组下段的储层发育分为3个阶段,即:蓬莱坝组—鹰山组下段准同生期沉积—浅埋藏胶结—短旋回暴露溶蚀阶段,加里东中期Ⅰ幕和海西晚期热液白云石化—构造裂缝发育阶段,以及海西晚期之后储层保持阶段。储层建设作用主要为溶蚀作用和白云石化作用,蓬莱坝组—鹰山组下段4个的溶蚀孔洞段具有地表径流带、垂向渗流带和水平潜流带特征,其发育受三、四级沉积旋回海平面下降期暴露溶蚀控制。岩心裂缝充填物发育时序及宏、微观裂缝特征表明白云石化发生在加里东中期Ⅰ幕初期的微观裂缝发育阶段。白云石化可能与寒武系蒸发盐岩地层的高温富镁卤水因地层压实作用而向上渗透扩散有关。
1
翟光明,何文渊.塔里木盆地石油勘探实现突破的重要方向[J].石油学报,2004,25(1):1-7.

ZHAI G M, HE W Y. An important petroleum exploration region in Tarim Basin[J]. Acta Petrolei Sinica,2004,25(1):1-7.

2
梁狄刚.塔里木盆地轮南—塔河奥陶系油田发现史的回顾与展望[J].石油学报,2008,29(1):153-158.

LIANG D G. Review and expectation on the discovery of Ordovician Lunnan-Tahe Oilfield, Tarim Basin[J]. Acta Petrolei Sinica,2008,29(1):153-158.

3
康玉柱.塔里木盆地古生代海相碳酸盐岩储集岩特征[J].石油实验地质,2007,29(3):217-223.

KANG Y Z. Reservoir rock characteristics of Paleozoic marine facies carbonate rock in the Tarim Basin[J]. Petroleum Geology & Experiment,2007,29(3):217-223.

4
顾家裕.塔里木盆地轮南地区下奥陶统碳酸盐岩岩溶储层特征及形成模式[J].古地理学报,1999,1(1):54-60.

GU J Y.Characteristics and evolutional model of karst reservoirs of Lower Ordovician carbonate rocks in Lunnan area of Tarim Basin[J].Journal of Palaeogeography,1999,1(1):54-60.

5
马永生,何治亮,赵培荣,等.深层—超深层碳酸盐岩储层形成机理新进展[J].石油学报,2019,40(12):1415-1425.

MA Y S, HE Z L, ZHAO P R, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica,2019,40(12):1415-1425.

6
马永生,蔡勋育,赵培荣,等.深层超深层碳酸盐岩优质储层发育机理和“三元控储”模式——以四川普光气田为例[J].地质学报,2010,84(8):1087-1094.

MA Y S, CAI X Y, ZHAO P R, et al. Formation mechanism of deep-buried carbonate reservoir and its model of three-element controlling reservoir: A case study from the Puguang Oilfield in Sichuan[J]. Acta Geologica Sinica,2010,84(8):1087-1094.

7
方大钧,沈忠悦.塔里木地块各时代视磁极及板块漂移[J].浙江大学学报(理学版),2001,28(1):100-106.

FANG D J, SHEN Z Y. Phanerozoic apparent polar-wander paths of Tarim and plate motion[J]. Journal of Zhejiang University(Science Edition),2001,28(1):100-106.

8
HUANG B C, YAN Y G, PIPER J, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J]. Earth-Science Reviews,2018,186:8-36.

9
郑和荣,田景春,胡宗全,等.塔里木盆地奥陶系岩相古地理演化及沉积模式[J].石油与天然气地质,2022,43(4):733-745.

ZHENG H R, TIAN J C, HU Z Q, et al. Lithofacies palaeogeographic evolution and sedimentary model of the Ordovician in the Tarim Basin[J]. Oil & Gas Geology,2022,43(4):733-745.

10
张丽娟,李勇,周成刚,等.塔里木盆地奥陶纪岩相古地理特征及礁滩分布[J].石油与天然气地质,2007,28(6):731-737.

ZHANG L J, LI Y, ZHOU C G, et al. Lithofacies paleogeographical characteristics and reef-shoal distribution during the Ordovician in the Tarim Basin[J]. Oil & Gas Geology,2007,28(6):731-737.

11
林畅松,李思田,刘景彦,等.塔里木盆地古生代重要演化阶段的古构造格局与古地理演化[J].岩石学报,2011,27(1):210-218.

LIN C S, LI S T, LIU J Y, et al. Tectonic framework and paleogeographic evolution of the Tarim Basin during the Paleozoic major evolutionary stages[J]. Acta Petrologica Sinica,2011,27(1):210-218.

12
GAO Z Q, FAN T L. Carbonate platform-margin architecture and its influence on Cambrian-Ordovician reef-shoal development, Tarim Basin, NW China[J]. Marine and Petroleum Geology,2015,68:291-306.

13
顾家裕,张兴阳,罗平,等.塔里木盆地奥陶系台地边缘生物礁、滩发育特征[J].石油与天然气地质,2005,26(3):277-283.

GU J Y, ZHANG X Y, LUO P, et al. Development characteristics of organic reef-bank complex on Ordovician carbonate platform margin in Tarim Basin[J]. Oil & Gas Geology,2005,26(3):277-283.

14
赵宗举,吴兴宁,潘文庆,等.塔里木盆地奥陶纪层序岩相古地理[J].沉积学报,2009,27(5):939-955.

ZHAO Z J, WU X N, PAN W Q, et al. Sequence lithofacies paleogeography of Ordovician in Tarim Basin[J]. Acta Sedimentologica Sinica,2009,27(5):939-955.

15
高志前,樊太亮,杨伟红,等.塔里木盆地下古生界碳酸盐岩台缘结构特征及其演化[J].吉林大学学报(地球科学版),2012,42(3):657-665.

GAO Z Q, FAN T L, YANG W H, et al. Structure characteristics and evolution of the eopaleozoic carbonate platform in Tarim Basin[J]. Journal of Jilin University(Earth Science Edition),2012,42(3):657-665.

16
赵明胜.塔里木盆地奥陶系不同台地边缘礁滩体类型、迁移及储集体差异性研究[D].成都:成都理工大学,2014.

ZHAO M S. The Research about Differences on Type, Migration and Reservoir of Reef Flat Body in Platform Edge during the Ordovician in Tarim Basin[D]. Chengdu: Chengdu University of Technology,2014.

17
罗少辉,李九梅,张旭光,等.塔里木盆地玉北地区奥陶系沉积相与沉积演化模式[J].海相油气地质,2017,22(3):23-29.

LUO S H, LI J M, ZHANG X G, et al. Depositional facies and sedimentary evolution model of Ordovician in Yubei area, Tarim Basin[J]. Marine Origin Petroleum Geology,2017,22(3):23-29.

18
黄臣军,刘格云,刘红光,等.标准微相类型在碳酸盐岩微相及沉积环境研究中的应用——以塔西南玉北地区奥陶系为例[J].沉积学报,2017,35(6):1166-1176.

HUANG C J, LIU G Y, LIU H G, et al. The application of standard microfacies types to the study of carbonate microfacies and depositional environments:A case study from the Ordovician in the Yubei area,southwestern Tarim Basin[J].Acta Sedimentologica Sinica,2017,35(6):1166-1176.

19
HUANG C J, LIU G Y, MA Y S, et al. New insights into the depositional environments of Ordovician carbonate formations in the Yubei area of Tarim Basin based on standard microfacies types[J]. Acta Geologica Sinica(English Edition),2017,91(2):755-756.

20
丁文龙,漆立新,云露,等.塔里木盆地巴楚-麦盖提地区古构造演化及其对奥陶系储层发育的控制作用[J].岩石学报,2012,28(8):2542-2556.

DING W L, QI L X, YUN L, et al. The tectonic evolution and its controlling effects on the development of Ordovician reservoir in Bachu-Markit Tarim Basin[J]. Acta Petrologica Sinica,2012,28(8):2542-2556.

21
陈刚,汤良杰,余腾孝,等.塔里木盆地玉北冲断带分期活动特征及其控油气作用[J].中国矿业大学学报,2014,43(5):870-879.

CHEN G, TANG L J, YU T X, et al. Poly-phase fault activities and the control on hydrocarbon accumulation of Yubei thrust belt, Tarim Basin[J]. Journal of China University of Mining & Technology,2014,43(5):870-879.

22
陈刚,汤良杰,余腾孝,等.塔里木盆地玉北地区断裂构造差异变形及其控制因素[J].地球科学与环境学报,2015,37(3):42-54.

CHEN G, TANG L J, YU T X, et al. Differential deformation and control mechanism of fault structures in Yubei area of Tarim Basin[J]. Journal of Earch Sciences and Environment,2015,37(3):42-54.

23
谢会文,陈新伟,朱民,等.塔里木盆地玛扎塔格断裂带变形特征、演化及对深层油气成藏的控制[J]. 地球科学,2017,42(9):1578-1589.

XIE H W, CHEN X W, ZHU M, et al. Deformation characteristics, tectonic evolution and their controlon deep petroleum accumulation of Mazhatage fault belt in Tarim Basin[J]. Earth Science,2017,42(9):1578-1589.

24
汤良杰,漆立新,邱海峻,等.塔里木盆地断裂构造分期差异活动及其变形机理[J].岩石学报,2012,28(8):2569-2583.

TANG L J, QI L X, QIU H J, et al. Poly-phase differential fault movement and hydrocarbon accumulation of the Tarim Basin, NW China[J]. Acta Petrologica Sinica,2012,28(8):2569-2583.

25
杨海军,李曰俊,李勇,等.塔里木盆地南部玛东早古生代褶皱—冲断带[J].岩石学报,2016,32(3):815-824.

YANG H J, LI Y J, LI Y, et al. Madong Early Paleozoic fold-thrust belt in the southern Tarim Basin[J]. Acta Petrologica Sinica,2016,32(3):815-824.

26
郭颖,汤良杰,余腾孝,等.塔里木盆地塘古巴斯坳陷玛东构造带断裂特征及成因探讨[J].大地构造与成矿学,2016,40(4):643-653.

GUO Y, TANG L J, YU T X, et al. Fault features and formation mechanism of Madong structural belt in Tanggubasi Depression,Tarim Basin[J].Geotectonica et Metallogenia,2016,40(4):643-653.

27
倪斌,汤良杰,郭颖,等.塔里木盆地玉北地区埋藏史及热史分析[J].现代地质,2017,31(2):357-366.

NI B, TANG L J, GUO Y, et al. Analysis of burial history and thermal history in Yubei area, Tarim Basin[J]. Geoscience,2017,31(2):357-366.

28
田亚杰,汤良杰,余腾孝,等.塔里木盆地玉东—玛东构造带断层相关褶皱样式及演化[J].地质科学,2017,52(1):15-33.

TIAN Y J, TANG L J, YU T X, et al. Structural style and evolution of fault-related folds in Yudong-Madong structural belt, Tarim Basin[J]. Chinese Journal of Geology,2017,52(1):15-33.

29
ZHANG Y Q, HE D F, WU B, et al. Kinematic evolution of fold-and-thrust belts in the Yubei-Tangbei area: Implications for tectonic events in the southern Tarim Basin[J]. Geoscience Frontiers,2021,12(6):101233.

30
黄臣军.塔里木盆地玉北地区奥陶系构造裂缝发育机制与控储作用研究[D].北京:北京大学,2018.

HUANG C J. Study on Genetic Mechanisms and Reservoir Control of Structural Fractures in the Ordovician of Yubei Area, Tarim Basin[D]. Beijing: Peking University,2018.

31
邱华标,谭广辉,曹自成,等.塔里木盆地玉北地区构造演化与油气聚集关系[J].新疆地质,2013,31(S1):28-33.

QIU H B,TAN G H,CAO Z C, et al. Tectonic evolution and its relation to hydrocarbon accumulation in Yubei area,Tarim Basin[J]. Xinjiang Geology,2013,31(S1):28-33.

32
张艺琼.塔里木盆地玉北—塘北地区构造变形研究[D].北京:中国地质大学(北京),2016.

ZHANG Y Q. Tectonic Deformation of Yubei-Tangbei Area in Tarim Craton[D]. Beijing: China University of Geosciences(Beijing),2016.

33
XU C, KYNICKÝ J, SONG W L, et al. Cold deep subduction recorded by remnants of a paleoproterozoic carbonated slab[J]. Nature Communications,2018,9:2790.

34
SONG S W, MAO J W, XIE G Q, et al. In-situ La-ICP-MS U-Pb geochronology and trace element analysis of hydrothermal titanite from the giant Zhuxi W (Cu) skarn deposit, South China[J]. Mineralium Deposita,2019,54(4):569-590.

35
吕凤琳,刘成林,焦鹏程,等.罗布泊中更新世以来盐湖碳酸盐碳氧同位素组成及其古环境意义[J].地质学报,2018,92(8):1589-1604.

LÜ F L, LIU C L, JIAO P C, et al. Carbon and oxygen isotopic compositions of the lacustrine carbonate in Lop Nur since the Mid-Pleistocene and their paleoenvironment significance[J]. Acta Geologica Sinica,2018,92(8):1589-1604.

36
郭瑾,闫小兵,李自红,等.汶川地震断层带中碳酸盐岩碳氧同位素分异——对断层愈合机制的启示[J].地质通报,2019,38(6):959-966.

GUO J, YAN X B, LI Z H, et al. Carbon and oxygen isotope fractionation of carbonate rocks in the fault zone of Wenchuan earthquake: Implications for the mechanism of fault healing[J]. Geological Bulletin of China,2019,38(6):959-966.

37
施泽进,张瑾,李文杰,等.四川盆地Guadalupian统碳酸盐岩稀土元素和碳—锶同位素特征及地质意义[J].岩石学报,2019,35(4):1095-1106.

SHI Z J, ZHANG J, LI W J, et al. Characteristics of rare earth element and carbon-strontium isotope and their geological significance of Guadalupian carbonate in Sichuan Basin[J]. Acta Petrologica Sinica,2019,35(4):1095-1106.

38
DI Y K, KRESTIANINOV E, ZINK S, et al. High-precision multidynamic Sr isotope analysis using thermal ionization mass spectrometer (TIMS) with correction of fractionation drift[J]. Chemical Geology,2021,582:120411.

39
谭广辉,邱华标,余腾孝,等.塔里木盆地玉北地区奥陶系鹰山组油藏成藏特征及主控因素[J].石油与天然气地质,2014,35(1):26-32.

TAN G H, QIU H B, YU T X, et al. Characteristics and main controlling factors of hydrocarbon accumulation in Ordovician Yingshan Formation in Yubei area, Tarim Basin[J]. Oil & Gas Geology,2014,35(1):26-32.

40
郝建龙,余腾孝,曹自成,等.塔里木盆地玉北地区成藏主控因素与油气富集规律[J].新疆地质,2014,32(3):344-350.

HAO J L, YU T X, CAO Z C, et al. Study of the main factors controlling hydrocarbon accumulation and the regularity of hydrocarbon enrichment in Yubei area of Tarim Basin[J]. Xinjiang Geology,2014,32(3):344-350.

41
LOCKNER D A, BYERLEE J D, KUKSENKO V S, et al. Quasi-static fault growth and shear fracture energy in granite[J].Nature,1991,350(6313):39-42.

42
YAMAMOTO K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes[J]. Sedimentary Geology,1987,52(1-2):65-108.

43
SMITH JR. LANGHORNE B. Origin and reservoir characteristics of Upper Ordovician Trenton-black river hydrothermal dolomite reservoirs in New York[J]. AAPG Bulletin,2006,90(11):1691-1718.

44
刘红光,刘波,吴双林,等.塔里木盆地玉北地区蓬莱坝组白云岩类型及成因[J].岩石学报,2017,33(4):1233-1242.

LIU H G, LIU B, WU S L, et al. The types and origin of the Penglaiba Formation dolomite in the Yubei area, Tarim Basin[J]. Acta Petrologica Sinica,2017,33(4):1233-1242.

45
LU Z Y, LI Y T, LIU M M, et al. Non-hydrothermal saddle dolomite in Upper Cambrian dolostones of Tarim Basin: Evidence from C-O-Sr isotopic and in-situ trace elemental studies[J]. Carbonates and Evaporites,2022,37(3):1-17.

46
张哨楠.塔里木盆地玉北地区奥陶系储层成因研究[J].沉积与特提斯地质,2020,40(3):72-86.

ZHANG S N. Formation of the Ordovician reservoir in Yubei area, Tarim Basin[J]. Sedimentary Geology and Tethyan Geology,2020,40(3):72-86.

47
王珊,曹颖辉,杜德道,等.塔里木盆地古城地区奥陶系鹰山组白云岩特征及孔隙成因[J].岩石学报,2020,36(11):3477-3492.

WANG S, CAO Y H, DU D D, et al. Characteristics and pore genesis of dolomite in Ordovician Yingshan Formation in Gucheng area,Tarim Basin[J]. Acta Petrologica Sinica,2020,36(11):3477-3492.

48
金之钧,朱东亚,孟庆强,等.塔里木盆地热液流体活动及其对油气运移的影响[J].岩石学报,2013,29(3):1048-1058.

JIN Z J, ZHU D Y, MENG Q Q, et al. Hydrothermal activites and influences on migration of oil and gas in Tarim Basin[J]. Acta Petrologica Sinica,2013,29(3):1048-1058.

49
尚培,陈红汉,鲁子野,等.塔里木盆地玉北地区奥陶系成岩流体演化与油气成藏时期的耦合关系[J]. 地球科学,2020,45(2):569-582.

SHANG P, CHEN H H, LU Z Y, et al. The coupling relationship between diagenetic fluid evolution and hydrocarbon accumulation in the Ordovician of Yubei area, Tarim Basin[J]. Earth Science,2020,45(2):569-582.

50
马安来,林会喜,云露,等.塔里木盆地顺北地区奥陶系超深层原油金刚烷化合物分布及意义[J].天然气地球科学,2021,32(3):334-346.

MA A L, LIN H X, YUN L, et al. Characteristics of diamondoids in oils from the ultra-deep Ordovician in the North Shuntuoguole area in Tarim Basin, NW China[J]. Natural Gas Geoscience,2021,32(3):334-346.

51
关平,王颖嘉.全球古元古代碳同位素正异常的数据分析与成因评述[J].北京大学学报(自然科学版),2009,45(5):906-914.

GUAN P, WANG Y J. A review on the global palaeoproterozoic positive δ13C excursion: Data analysis and matter comment[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2009,45(5):906-914.

52
杜洋,樊太亮,高志前.塔里木盆地中下奥陶统碳酸盐岩地球化学特征及其对成岩环境的指示——以巴楚大板塔格剖面和阿克苏蓬莱坝剖面为例[J].天然气地球科学,2016,27(8):1509-1523.

DU Y, FAN T L, GAO Z Q. Geochemical characteristics and their implications to diagenetic environment of Lower-Middle Ordovician carbonate rocks,Tarim Basin,China:A case study of Bachu Dabantage outcrop and Aksu Penglaiba outcrop[J]. Natural Gas Geoscience,2016,27(8):1509-1523.

53
陈郭平,朱光有,阮壮,等.准同生白云石化作用及其对储层的影响——以塔里木盆地寒武系白云岩为例[J].天然气地球科学,2023,34(2):285-295.

CHEN G P, ZHU G Y, RUAN Z, et al. Pseudocontemporaneous dolomitization and its impact on reservoirs:Case study of Cambrian dolomite in the Tarim Basin[J]. Natural Gas Geoscience,2023,34(2):285-295.

54
WANG J Y, TARHAN L G., JACOBSON A D, et al. The evolution of the marine carbonate factory[J]. Nature,2023,615:265-269.

55
乔占峰,张哨楠,沈安江,等.基于激光U-Pb定年的埋藏白云岩形成过程——以塔里木盆地永安坝剖面下奥陶统蓬莱坝组为例[J].岩石学报,2020,36(11):3493-3509.

QIAO Z F, ZHANG S N, SHEN A J, et al. Laser ablated U-Pb dating-based determination of burial dolomitization process: A case study of Lower Ordovician Penglaiba Formation of Yonganba outcrop in Tarim Basin[J]. Acta Petrologica Sinica,2020,36(11):3493-3509.

56
LIU Y N, NGIA N, HU M Y, et al. Evaluation of the properties of dolomitization fluids and diagenetic alterations of Mg/Ca ratios in carbonate rocks in the Cambrian Series-2 to Miaolingian strata in central uplift belt, Tarim Basin: Constraints from halogens, rees and isotope geochemistry[J]. Marine and Petroleum Geology,2022,144:105838.

57
孙福宁,胡文瑄,胡忠亚,等.断裂—层序双控机制下的热液活动及成储效应——以塔里木盆地塔河、玉北地区下奥陶统为例[J].石油与天然气地质,2020,41(3):558-575.

SUN F N, HU W X, HU Z Y, et al. Impact of hydrothermal activities on reservoir formation controlled by both faults and sequences boundaries: A case study from the Lower Ordovician in Tahe and Yubei areas, Tarim Basin[J]. Oil & Gas Geology,2020,41(3):558-575.

58
JIU B, HUANG W H, MU N N, et al. Effect of hydrothermal fluids on the ultra-deep Ordovician carbonate rocks in Tarim Basin, China[J]. Journal of Petroleum Science and Engineering,2020,194:107445.

59
JIU B,HUANG W H,MU N N,et al.Petrology,mineralogy and geochemistry of Ordovician rocks in the Southwest of Tarim Basin: Implications for genetic mechanism and evolution model of the hydrothermal reformed-paleokarst carbonate reservoir[J].Marine and Petroleum Geology,2022,140:105687.

60
朱东亚,金之钧,胡文瑄.塔中地区热液改造型白云岩储层[J].石油学报,2009,30(5):698-704.

ZHU D Y, JIN Z J, HU W X. Hydrothermal alteration dolomite reservoir in Tazhong area[J]. Acta Petrolei Sinica,2009,30(5):698-704.

61
王坤,胡素云,胡再元,等.塔里木盆地古城地区寒武系热液作用及其对储层发育的影响[J].石油学报,2016,37(4): 439-453.

WANG K,HU S Y,HU Z Y,et al. Cambrian hydrothermal action in Gucheng area,Tarim Basin and its influences on reservoir development[J].Acta Petrolei Sinica,2016,37(4):439-453.

62
刘红,冯子辉,邵红梅,等.U-Pb同位素定年分析在热液对白云岩储层改造研究中的应用——以塔里木盆地古城地区下奥陶统鹰三段为例[J].岩石学报,2022,38(3):765-776.

LIU H, FENG Z H, SHAO H M, et al. Application of U-Pb dating technique in the study of hydrothermal activities of dolomite reservoir: A case study on 3rd Member of Yingshan Formation in Gucheng area, Tarim Basin, NW China[J]. Acta Petrologica Sinica,2022,38(3):765-776.

63
刘忠宝,吴仕强,刘士林,等.塔里木盆地玉北地区奥陶系储层类型及主控因素[J].石油学报,2013,34(4):638-646.

LIU Z B, WU S Q, LIU S L, et al. Types and main controlling factors of Ordovician reservoirs in Yubei area, Tarim Basin[J]. Acta Petrolei Sinica,2013,34(4):638-646.

64
乔桂林,钱一雄,曹自成,等.塔里木盆地玉北地区奥陶系鹰山组储层特征及岩溶模式[J].石油实验地质,2014,36(4):416-421.

QIAO G L, QIAN Y X, CAO Z C, et al. Reservoir haracteristics and karst model of Ordovician Yingshan Formation in Yubei area, Tarim Basin[J]. Petroleum Geology & Experiment,2014,36(4):416-421.

65
吴仕强,高晓鹏,蔡习尧,等.塔里木盆地玉北地区中下奥陶统鹰山组溶洞充填物稀土元素特征及其意义[J].古地理学报,2017,19(3):469-479.

WU S Q, GAO X P, CAI X Y, et al. REE characteristics and their significance of cave fillings of the Lower-Middle Ordovician Yingshan Formation in Yubei area, Tarim Basin[J]. Journal of Palaeogeography,2017,19(3):469-479.

66
林新,龚伟,余腾孝,等.塔里木盆地玉北地区奥陶系储层成因及分布[J].海相油气地质,2018,23(3):11-20.

LIN X, GONG W, YU T X, et al. Origin and distribution of the Ordovician carbonate reservoir in Yubei area, Tarim Basin[J]. Marine Origin Petroleum Geology,2018,23(3):11-20.

67
SHI P Z, TANG H M, WANG Z Y, et al. Carbonate diagenesis in fourth-order sequences: A case study of Yingshan Formation (Lower Ordovician) from the Yubei area-Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering,2020,195:107756.

68
康婷婷,赵凤全,刘鑫,等.塔里木盆地塔中北斜坡奥陶系鹰山组三段—四段油气富集主控因素及有利区带[J].天然气地球科学,2021,32(4):577-588.

KANG T T, ZHAO F Q, LIU X, et al. Main controlling factors of oil and gas enrichment and favorable zones: Case study of 3rd and 4th members of Ordovician Yingshan Formation, northern slope of Tazhong Uplift, Tarim Basin[J]. Natural Gas Geoscience,2021,32(4):577-588.

69
李斌,张鑫,吕海涛,等.基于盆地模拟的断盖配置研究——以塔里木盆地玉北地区奥陶系油气藏为例[J].天然气地球科学,2023,34(5):749-762.

LI B, ZHANG X, LÜ H T, et al. Study on fault-cap coupling based on basin simulation: Case study of Ordovician reservoirs in Yubei area,Tarim Basin[J].Natural Gas Geoscience,2023,34(5):749-762.

70
郑剑锋,沈安江,乔占峰,等.柯坪—巴楚露头区蓬莱坝组白云岩特征及孔隙成因[J].石油学报,2014,35(4):664-672.

ZHENG J F, SHEN A J, QIAO Z F, et al. Characteristics and pore genesis of dolomite in the Penglaiba Formation in Keping-Bachu outcrop area[J]. Acta Petrolei Sinica,2014,35(4):664-672.

71
QIAO Z F, ZHANG S N, SHEN A J, et al. Features and origins of massive dolomite of Lower Ordovician Penglaiba Formation in the Northwest Tarim Basin: Evidence from petrography and geochemistry[J]. Petroleum Science,2021,18(5):1323-1341.

72
GOODNER H M, RANKEY E C, ZHANG C, et al. Rock fabric controls on pore evolution and porosity-permeability trends in oolitic grainstone reservoirs and reservoir analogs[J]. AAPG Bulletin,2020,104(7):1501-1530.

73
HARRIS P M, PURKIS S. Impact of facies and diagenetic variability on permeability and fluid flow in an oolitic grainstone-Pleistocene Miami oolite[J]. The Depositional Record,2020,6(2):459-470.

74
李映涛,袁晓宇,叶宁,等.塔里木盆地玉北地区中—下奥陶统储集体断裂与裂缝特征[J].石油与天然气地质,2014,35(6):893-902.

LI Y T, YUAN X Y, YE N, et al. Fault and fracture characteristics of the Middle-Lower Ordovician in Yubei area, Tarim Basin[J]. Oil & Gas Geology,2014,35(6):893-902.

Outlines

/