Quantitative assessment of natural gas geochemical characteristics and mixed source contributions in the Qixia Formation, central Sichuan Basin

  • Yangui CHEN , 1 ,
  • Yongfei JIAO , 2 ,
  • Xiao CHEN 1 ,
  • Pingping LI 2 ,
  • Qian YUAN 1 ,
  • Shijie HE 2 ,
  • Jiayi ZHONG 1 ,
  • Guiping SU 1 ,
  • Ya LI 1 ,
  • Wei WANG 1
Expand
  • 1. Exploration and Development Research Institute,PetroChina Southwest Oil & Gasfield Company,Chengdu 610041,China
  • 2. College of Geosciences,China University of Petroleum ( Beijing),Beijing 102249,China

Received date: 2024-07-15

  Revised date: 2024-09-09

  Online published: 2024-11-01

Supported by

The Science and Technology Project of PetroChina Southwest Oil & Gasfield Company(20230301-04)

Abstract

In recent years, the Qixia Formation in central Sichuan Basin has become a hotspot for natural gas exploration in the Sichuan Basin due to its high-yield industrial gas flow. Research indicates that the natural gas in the Qixia Formation exhibits the characteristics of multi-source hydrocarbon supply and mixed-source characteristics, exhibiting distinct geochemical signatures across different tectonic blocks due to variations in the proportion of hydrocarbon source rocks. However, there is currently limited research on the contribution proportions of source rocks from various formations to mixed-source gas reservoirs, and quantifying these contributions is an urgent issue. Through an analysis of the geochemical characteristics of natural gas and the application of a mixed-source contribution model, a comparative analysis was performed on the geochemical signatures of natural gas in the Gaoshiti, Moxi, and Longnvsi tectonic blocks within the Qixia Formation in central Sichuan Basin. This analysis clarified the specific contributions of source rocks from different formations to the gas reservoirs in these three blocks. The results indicate that: (1) The Gaoshiti block has the highest average C2H6 content and the lowest δ13C2, with isotope reversal observed; the Moxi block shows the highest average CH4 content and the lowest δ13C1, with no isotope reversal; the Longnvsi block presents average values between the other two, with the highest δ13C1 and δ13C2, and no isotope reversal. (2) In the Gaoshiti block, natural gas is sourced from both the Qiongzhusi Formation (with a contribution ratio of 18%-98%) and the Longmaxi Formation, with the latter’s contribution decreasing as wells approach the pinch-out line. In the Longnvsi block, natural gas originates from both the Qiongzhusi Formation (with a contribution ratio of 55%-92%) and Middle Permian source rocks, with the latter’s contribution increasing as wells move northward. The Moxi block's natural gas is entirely derived from the Qiongzhusi Formation source rocks. Comprehensive analysis indicates that the variations in mixed-source contributions are the primary factor contributing to the differences in geochemical characteristics across the three blocks. This variation in source contribution also explains the significant differences in individual well production and the complex gas-water distribution observed in the Qixia Formation in the central Sichuan.

Cite this article

Yangui CHEN , Yongfei JIAO , Xiao CHEN , Pingping LI , Qian YUAN , Shijie HE , Jiayi ZHONG , Guiping SU , Ya LI , Wei WANG . Quantitative assessment of natural gas geochemical characteristics and mixed source contributions in the Qixia Formation, central Sichuan Basin[J]. Natural Gas Geoscience, 2025 , 36(4) : 677 -688 . DOI: 10.11764/j.issn.1672-1926.2024.09.004

0 引言

四川盆地是我国重要的含油气盆地之一1-3。近年来,川中地区中二叠统栖霞组MX42、MX31X1、GS18、GS001-X45、GS045-H2等井持续获得高产工业气流4-8,标志着川中栖霞组成为四川盆地目前天然气勘探和研究的热门层系。前人分析这些高产井的天然气地球化学特征发现,川中地区不同构造区块的天然气特征存在差异,并由此揭示了气源的多样性79,一些区块的气源并非由单一层系的烃源岩提供10-11,表现出混源气的特征。关于这些不同构造区块天然气地球化学特征存在差异的原因,目前尚无系统的对比研究。此外,对于川中地区的混源气藏,目前还缺乏关于不同层系烃源岩对这些气藏贡献比例的定量计算。天然气混源通常指同一套烃源岩不同时期生成的油气在圈闭中混合,也包括不同层系的烃源岩生成的油气混合成藏12。对混源气藏中天然气来源的定量评价,国内外学者12-18普遍认为不同来源的天然气混合是一个物理过程,其化学成分在混合过程中保持恒定。因此,根据质量守恒原理,混源气藏中某一天然气组分的同位素值,取决于天然气在混合前后各自的组成及混合后所占的量。王杰等17通过人工配比实验验证了这一理论,并提出在一定条件下可以用相应的理论模型替代模拟实验,实现对混源气混合比例的定量分析。
本文基于前人的研究成果和大量气井的天然气地球化学特征,系统分析了川中栖霞组不同区块天然气地球化学特征的差异,并利用混源比例模型17计算了筇竹寺组、龙马溪组和中二叠统自身烃源岩在川中栖霞组混源气藏中的贡献比例,明确了不同构造区块各混源气藏的主力烃源,揭示了各典型气藏天然气来源的差异,以期为下一步成藏过程的研究提供参考。

1 油气成藏地质条件

四川盆地是一个复合型含油气盆地,经历了多期的大型构造活动和多旋回沉积演化过程19。中二叠统栖霞组沉积期,四川盆地经历了沉降和大规模海侵20,在川中环古隆起周缘发育了环带状台内滩[图1(a)],滩体规模大,分布范围广,白云岩储层发育21。川中平缓褶皱带的高石梯、磨溪、龙女寺地区[图1(b)],发育构造背景下的岩性圈闭群,具有“一滩一藏”的特征。四川盆地不同层位发育多套不同类型的烃源岩1-222-23图1(c)]。盆地在震旦纪末形成了德阳—安岳拉张槽24-25,并在寒武纪初期槽内沉积了数百米厚的筇竹寺组烃源岩,其厚度由拉张槽向川中高磨地区逐渐减薄26。加里东期盆地遭受挤压抬升,全盆仅在川东—川南沉积了厚层龙马溪组烃源岩227,川中地区仅高石梯南部可见该套烃源岩11。随后在中二叠统栖霞组沉积期,盆地再次因拉张作用引发了大规模海泛,茅一段沉积期海泛加剧且持续时间更长,在全盆范围内沉积了一套比栖一段范围更广,更厚的泥灰岩28-29。前人研究表明,筇竹寺组烃源岩30在川中地区厚度介于100~350 m之间,生气强度介于(40~45)×108 m3/km2之间9,等效镜质体反射率约为4.0%。龙马溪组烃源岩11在川中地区发生了尖灭,仅在高石梯南部沉积了该套烃源岩,且往南沉积厚度递增,最大厚度可达200 m,生气强度介于(10~40)×108 m3/km2之间。下二叠统梁山组在川中地区厚度极薄28,仅为2~10 m。栖霞组烃源岩1026在川中地区厚度介于10~20 m之间,生气强度介于(2~10)×108 m3/km2之间。茅口组烃源岩2831在川中地区厚度介于80~120 m之间,生气强度介于(10~20)×108 m3/km2之间。各烃源岩目前均处于热演化过成熟阶段。总体来看,研究区内发育的多套烃源岩为栖霞组天然气藏提供了接力供烃的物质基础,其中筇竹寺组烃源岩品质最优,龙马溪组次之,栖霞组与茅口组为差—中等品质的烃源岩,但茅口组优于栖霞组32。此外,由于下二叠统梁山组和栖霞组烃源岩地层厚度薄,生气强度低,其供烃能力较其他烃源岩几乎可以忽略。结合研究区内各层系烃源岩的展布特征(图2)、生气强度和气藏的分布位置等,发现川中地区不同区块的烃源岩的分布具有显著差异:高石梯区块主要发育筇竹寺组和龙马溪组烃源岩,龙女寺区块主要发育筇竹寺组烃源岩、少量中二叠统品质较好的烃源岩;磨溪区块则主要发育筇竹寺组烃源岩。川中地区栖霞组多口钻井的岩心分析资料表明,该组储层主要由多层叠置的中—粗晶白云岩组成,储层空间类型主要包括粒内溶孔、晶间孔、溶蚀孔洞及裂缝等,孔隙度平均值为4%,渗透率平均为0.35×10-3 µm2[4,各区块的储层特征基本相似。该地区广泛发育的走滑断裂及其多期阶段性活动33,有效连接了栖霞组储层与深部的多套烃源岩34图3),为油气的长距离运移提供了良好的输导条件35-36。志留系龙马溪组与栖霞组之间的不整合面,也为油气的侧向长距离运移提供了通道。总体而言,川中栖霞组的源、储、断时空配置关系优越,具备良好的油气成藏条件。
图1 四川盆地川中栖霞组研究区概况

(a)栖霞组沉积相图;(b)气藏分布;(c)地层和生储盖组合特征

Fig.1 Overview of the research area of the Qixia Formation in the Central Sichuan Basin

图2 川中栖霞组气藏主力烃源岩厚度及构造区块气藏平面分布[(a)—(c)据文献[28]修改]

(a)下寒武统筇竹寺组;(b)下志留统龙马溪组;(c)中二叠统茅口组;(d)研究区各构造区块气藏分布

Fig.2 Thickness of main hydrocarbon source rocks in the Qixia Formation reservoir and the planar distribution of gas reservoirs in structural blocks in central Sichuan Basin[(a)-(c) according to the Ref.[28])

图3 川中栖霞组天然气成藏模式(剖面位置见图2)

Fig.3 Reservoir formation model of the Qixia Formation gas in Central Sichuan Basin(the cross-sectional location is shown in Fig. 2)

2 天然气成因及来源

2.1 天然气组分特征

基于大量气井的天然气地球化学特征分析(表1),川中栖霞组天然气主要以烃类气体为主,具有高CH4含量、低非烃气体含量的特点。其中,CH4平均含量大于90%;C2H6平均含量小于0.2%;仅部分井含有微量的C3H8,介于0.01%~0.07%之间37。天然气干燥系数大于0.99, δ D C H 4值介于-137‰~-123.5‰之间,表现出高演化程度的海相热成因干气特征。根据Ln(C1/C2)与Ln(C2/C3)交会38-39特征(图4),川中栖霞组的天然气均来源于原油裂解气。鉴于川中栖霞组不同构造区块的气源存在差异79,本文主要对不同构造区块的天然气地球化学特征进行对比分析。
表1 川中栖霞组典型井的天然气组分、同位素特征

Table 1 Characteristics of natural gas composition and isotopes in typical wells of the Qixia Formation in central Sichuan

井号 主要组分/% δ13C/‰ δ D C H 4/‰ 干燥系数 区块
CH4 C2H6 H2S CO2 N2 δ13C1 δ13C2
GS19 94.07 0.51 2.12 2.67 0.45 -33.4 -36.3 -137 0.99 高石梯区块
GS129 88.76 0.11 0.98 9.81 0.20 -32.4 -33.7 -129 0.99
GS18 93.02 0.16 3.06 3.49 0.24 -31.8 -32.5 -124 0.99
GS045-H1 91.04 0.14 1.27 7.11 0.43 -31.5 -32.0 -129 0.99
GS045-H2 94.47 0.18 1.60 3.42 0.32 -31.7 -32.1 -134 0.99
MX103 92.33 0.15 2.60 4.38 0.35 -32.9 -32.9 -131 0.99 磨溪区块
MX42 95.00 0.10 1.72 2.64 0.38 -32.4 -31.9 -131 0.99
MX41 95.32 0.11 1.83 1.0 0.34 -33.0 -32.5 -126 0.99
MX131 95.48 0.11 1.75 0.8 0.40 -32.3 -30.8 -124 0.99 龙女寺区块
MX31X1 94.44 0.08 1.60 3.52 0.34 -31.1 -29.8 -124 0.99
MX150 90.39 0.11 1.72 7.70 0.07 -30.1 -29.6 -133 0.99
图4 川中栖霞组不同演化阶段干酪根降解气与原油裂解气判识图(数据引自文献[39])

Fig.4 Identification diagram of kerogen degradation gas and oil cracking gas at different evolutionary stages in the Qixia Formation,Central Sichuan Basin (data sourced from Ref.[39])

川中栖霞组天然气组分特征显示,高石梯区块C2H6和CO2的平均含量最高,磨溪区块CH4、H2S及N2的平均含量最高;龙女寺区块各组分的平均含量介于二者之间(图5)。3个构造区块的气藏在天然气组分方面存在显著差异。
图5 川中栖霞组天然气组分特征(相对含量为各区块的平均值)

Fig.5 Composition characteristics of natural gas in the Qixia Formation in Central Sichuan Basin (relative abundance is the average value across all blocks)

2.2 天然气成因类型

川中栖霞组天然气δ13C1值介于-33.4‰~-29.6‰之间(表1);δ13C2值介于-36.3‰~-29.6‰之间;整体表现为过成熟的油型气(图6)。分析川中栖霞组天然气碳同位素的组成特征(图7),磨溪区块的δ13C1平均值最低、高石梯区块的δ13C1平均值居中、龙女寺区块的δ13C1平均值最高。在δ13C2组成方面,高石梯区块的δ13C2平均值最低、磨溪区块的δ13C2平均值居中、龙女寺区块的δ13C2平均值最高。前人研究表明,寒武系龙王庙组天然气主要来源于筇竹寺组烃源岩40,石炭系黄龙组天然气来源于志留系龙马溪组烃源岩41。此外,董才源等9研究发现川中栖霞组龙女寺地区的MX31X1井、NC1井和MX39井的天然气特征相似,并指出NC1井的天然气部分来源于茅口组烃源岩,进而推测龙女寺地区的天然气可能存在来自中二叠统自身烃源岩的供烃。本文通过对四川盆地寒武系龙王庙组、石炭系黄龙组、二叠系茅一段吸附气与栖霞组天然气的δ13C2与δ13C2—δ13C1的特征进行交会分析[图8(a)],发现磨溪区块的天然气特征与龙王庙组天然气特征高度相似,高石梯区块的天然气特征介于寒武系龙王庙组和石炭系黄龙组之间,龙女寺区块的天然气特征介于龙王庙组与茅一段吸附气之间,表现出混合气特征。通过稀有气体同位素测试发现,GS18井和MX31X1井的40Ar/36Ar同位素比值差异较大:GS18井的40Ar/36Ar值为1 266,而MX31X1井 40Ar/ 36Ar值为999。根据前人提出的源岩Ar年代学经验公式42-43估算的GS18井的气源年代约为323 Ma,MX31X1井对应的气源年代约为269 Ma,进一步证明栖霞组不同区块的气源存在差异,各区块气源并非单一来源。
图6 川中栖霞组天然气成因与成熟度判识

Fig.6 Genetic and maturity identification diagram of natural gas in the Qixia Formation,Central Sichuan Basin

图7 川中栖霞组天然气碳同位素特征(相对值为各区块的平均值)

Fig.7 Compositional characteristics of carbon isotopes in natural gas from the Qixia Formation in Central Sichuan Basin(relative values represent the mean for each block)

图8 四川盆地龙王庙组、黄龙组、茅口组与栖霞组天然气碳同位素组成关系

(a)不同层系天然气烷烃δ13C2—δ13C1与δ13C2交会图;(b)川中栖霞组天然气烷烃δ13C1与δ13C2交会图

Fig.8 The relationship of carbon isotope composition of natural gas from Longwangmiao, Huanglong, Maokou, and Qixia formations in Sichuan Basin

川中栖霞组天然气的δ13C1与δ13C2交会特征显示[图8(b)],高石梯区块δ13C1值大于δ13C2值,碳同位素序列发生倒转,为负碳同位素序列;而磨溪区块和龙女寺区块的δ13C1值均小于δ13C2值,为正碳同位素序列。前人44-45研究表明,如不同来源天然气的混合、细菌氧化、气体扩散、高温作用及TSR(热化学硫酸盐还原)反应等次生过程均可能导致烷烃气的碳同位素出现倒转现象。考虑到细菌活动主要发生在75 ℃以下环境,栖霞组的埋深普遍超过4 000 m,因此可以排除细菌生物降解作用的影响。TSR过程通常伴随高浓度H2S生成(>5%)46,但在栖霞组3个区块的气藏中H2S浓度很低,因此TSR作用也可忽略。栖霞组3个区块的气藏经历了类似的扩散和高温演化过程,但仅在高石梯区块出现碳同位素序列的倒转现象,其他2个区块保持正碳同位素序列。根据川中栖霞组天然气成藏地质条件分析,3个区块的烃源岩分布存在显著差异,图8(a)所示的天然气碳同位素对比分析进一步验证了这些构造区块的气藏确实存在来自不同烃源岩的混合供烃现象:磨溪区块的天然气主要来源于筇竹寺组烃源岩,高石梯区块的天然气来源于筇竹寺组和龙马溪组烃源岩的生烃贡献,龙女寺区块的天然气来源于筇竹寺组烃源岩和中二叠统自身烃源岩的生烃贡献。因此,综合地质条件、气—气对比及稀有气体同位素的测试结果认为,川中栖霞组不同构造区块的气藏因来自不同烃源岩供烃的混合作用,表现出不同的天然气甲烷及其同系物之间碳同位素的分布模式。

3 川中栖霞组天然气混源比例计算

3.1 气藏混源比例的估算方法

天然气混合过程通常被认为是一个化学成分保持恒定的物理过程12-18。根据质量守恒原理,混源气藏中各组分的同位素值主要受到其在混合前后的组成和混合比例的影响。特定组分在混合后的同位素值可通过以下加权平均计算公式[式(1)]描述:
δ 13 C i = α × N i A × δ 13 C i A + ( 100 - α ) × N i B × δ 13 C i B α × N i A + ( 100 - α ) × N i B
式(1)中:A和B分别为A端元气和B端元气;i表示某一特定组分(如CH4、C2H6等);α、100-α分别为A端元气和B端元气的比例;N i A为A端元气中组分i在天然气中的含量,%;δ13C i A为A端元气中组分i的碳同位素值,‰。
当混源天然气与端元气的成熟度相近且端元气间存在差异时,可利用上述理论模型代替模拟实验,以实现对混源气比例的定量分析17。然而,该模型计算混源比例时可能存在多解性,选择不同参数(如δ13C1、δ13C2)可能导致不同的混源比结果。因此,需结合实际地质背景分析参数的适用条件。前人47研究表明,δ13C1受热演化影响较大,适用于判断同源不同阶的天然气混源;而δ13C2具有更强的原始母质继承性45,能更好地反映母质来源特征,适用于分析端元气成熟度相近的不同来源的天然气混源比例。

3.2 栖霞组气藏混源比例估算图版

综合川中栖霞组的地质条件、各区块天然气的地球化学特征以及稀有气体的同位素证据表明,该研究区主要存在筇竹寺组和龙马溪组(主要在高石梯区块)、筇竹寺组和中二叠统自身烃源岩(主要在龙女寺区块、磨溪区块)的双源供烃模式。根据混源比例模型计算公式,首先需明确这3种烃源岩作为单源供烃时生成天然气的CH4、C2H6含量及δ13C1、δ13C2值。基于前人940-41的研究成果,本文选取了3个具有代表性的端元气样本(表2):龙王庙组天然气(代表筇竹寺组烃源岩)、黄龙组天然气(代表龙马溪组烃源岩)和茅一段吸附气(代表中二叠统自身烃源岩)。对比发现川中栖霞组混源天然气与端元气的成熟度基本相近(R O值均在2.5%左右)且端元间具有明显的差异。
表2 端元气的组成和碳同位素特征(龙王庙组数据引自文献[40];黄龙组数据引自文献[41];茅一段数据引自文献[48];R O值数据引自文献[28,49])

Table 2 Composition and carbon isotope characteristics of end-member gas(The Longwangmiao Formation data are sourced from Ref.[40]; the Huanglong Formation data are from Ref.[41]; the first member of the Maokou Formation data are from Ref.[48]; and the Ro values are sourced from Refs.[28,49])

端元气 CH 4 /% C 2 H 6 /% N 2 /% CO 2 /% δ13C1/‰ δ13C2/‰ R O/%

寒武系龙王庙组

(筇竹寺组)

95.96 0.15 0.77 2.53 -32.9 -31.4 2.6

石炭系黄龙组

(龙马溪组)

96.55 0.70 0.10 1.32 -32.7 -36.5 2.4

茅一段吸附气

(中二叠统自身烃源岩)

99.41 0.57 -30.8 -28.9 2.5

注:“—”为没有数据

因此,可以利用上述混源比例模型,以端元气样本的CH4、C2H6含量及δ13C1、δ13C2值(均取平均值)为输入参数,计算混源天然气中不同烃源岩的混合比例(表3)。最后,根据δ13C2值建立该区混源比例的估算图版(图9)。
表3 不同比例端元气混合后的碳同位素含量

Table 3 Carbon isotope content of mixed gases from end-member gas ratio simulation experiments

混合比例

筇竹寺组烃源岩∶

龙马溪组烃源岩

筇竹寺组烃源岩∶

中二叠统烃源岩

δ13C1/‰ δ13C2/‰ δ13C1/‰ δ13C2/‰
0∶100 -32.7 -36.6 -30.8 -28.8
10∶90 -32.7 -36.4 -31.0 -28.9
20∶80 -32.7 -36.3 -31.2 -29.0
30∶70 -32.8 -36.1 -31.4 -29.1
40∶60 -32.8 -35.9 -31.6 -29.3
50∶50 -32.8 -35.6 -31.8 -29.6
60∶40 -32.8 -35.3 -32.0 -29.8
70∶30 -32.8 -34.8 -32.2 -30.2
80∶20 -32.8 -34.2 -32.5 -30.2
90∶10 -32.9 -33.2 -32.7 -30.6
100∶0 -32.9 -31.4 -32.9 -31.4
图9 不同比例混源气的乙烷碳同位素特征及混源比例分析

(a)高石梯区块气井混源比; (b)磨溪与龙女寺区块气井混源比

Fig.9 Carbon isotope characteristics of ethane in gases from different source mixtures and analysis of the mixing ratios

3.3 栖霞组气藏混源比例估算结果

将川中栖霞组气藏的δ13C2实测值投入图版中(图9),可以定量估算筇竹寺组、龙马溪组、中二叠统烃源岩各自对川中栖霞组气井的供烃贡献比例(表4)。高石梯区块的天然气来源于筇竹寺组烃源岩(贡献比例为18%~98%)和龙马溪组烃源岩(贡献比例为2%~82%),且龙马溪组烃源岩的贡献随井位靠近尖灭线而逐渐减小[图2(d)];龙女寺区块的天然气来源于筇竹寺组烃源岩(贡献比例为55%~92%)和中二叠统烃源岩(贡献比例为8%~45%),且中二叠统烃源岩的贡献随井位北移逐渐增加[图2(d)];磨溪区块的天然气主要源自筇竹寺组烃源岩。
表4 川中栖霞组典型井天然气的混源比例

Table 4 Mixed source proportions of natural gas in typical wells of the Qixia Formation in Central Sichuan Basin

井号 层位 寒武系筇竹寺组烃源岩贡献/% 志留系龙马溪组烃源岩贡献/% 中二叠统自身烃源岩贡献/% 区块
GS19 栖霞组 18 82 高石梯区块
GS129 栖霞组 85 15
GS18 栖霞组 94 6
GS045-H2 栖霞组 96 4
GS045-H1 栖霞组 98 2
MX103 栖霞组 100 磨溪区块
MX41 栖霞组 100
MX42 栖霞组 100
MX131 栖霞组 92 8 龙女寺区块
MX31X1 栖霞组 68 32
MX150 栖霞组 55 45

注:“—”表示没有数据

需要指出的是,天然气的混合过程复杂,在生成至聚集的各个阶段,都会受到多种分馏作用的影响3350。本文在应用混源比例模型计算时,并未考虑同位素分馏效应,这可能导致混源比例的估算结果存在偏差。尽管存在这一局限性,但估算结果与研究区的实际地质条件基本符合,初步实现了对混源气藏中不同烃源岩混合比例的定量描述。今后的研究需更加深入地考虑运移和聚集过程中可能出现的同位素分馏效应,并对模型进行修正,以便更加准确地判定混源气的混合比例。

3.4 结果与讨论

川中栖霞组的各构造区块表现出显著的烃源岩分布差异,多套烃源岩为栖霞组天然气藏提供了持续的供烃基础。走滑断裂的发育有效地连接了多套烃源岩与栖霞组储层,断裂破碎带中的裂缝为油气的长距离运移提供了优越的通道,且断层的多期活动为多套烃源岩生成的油气在栖霞组储层中混合提供了条件。总体而言,川中栖霞组的源、储、断时空配置优越,多套烃源岩为气藏提供了持续的混合供烃条件。气源对比研究结果进一步验证了川中栖霞组各区块多层系烃源岩混合供烃的成藏模式。利用混源比例模型对栖霞组气藏的混源比例进行了定量评估表明,高石梯区块的天然气来源于筇竹寺组烃源岩(贡献比例为18%~98%)和龙马溪组烃源岩(贡献比例为2%~82%);龙女寺区块的天然气来源于筇竹寺组烃源岩(贡献比例为55%~92%)和中二叠统烃源岩(贡献比例为8%~45%);磨溪区块的天然气全部源自筇竹寺组烃源岩。
结合上述分析及川中栖霞组现今的气水分布特征8——北部水活跃,南部气更纯,笔者得出以下结论:高石梯与龙女寺区块因双源供烃的优势,确保了天然气的持续充注,从而实现了相对高产;而磨溪区块由于单源供烃的局限性,可能因气源供给不足而导致产水。这一发现从气源供给的角度,揭示了川中栖霞组单井产量差异大及气水分布关系复杂的原因。

4 结论

(1)川中栖霞组天然气整体以烃类气体为主、高CH4含量、低非烃气体含量。高石梯区块C2H6含量最高,δ13C2值最轻;磨溪区块CH4含量最高,δ13C1值最低;龙女寺区块的各组分含量均介于前两者之间,δ13C1和δ13C2值均最高。此外,碳同位素序列分析显示,高石梯区块为负序,发生了碳同位素倒转,而磨溪区块和龙女寺区块均为正序,未发生碳同位素倒转。
(2)高石梯区块的天然气为筇竹寺组和龙马溪组供烃,其中以筇竹寺组烃源岩供烃为主(贡献比例为18%~98%),龙马溪组烃源岩的贡献随井位靠近尖灭线而逐渐减小。龙女寺区块的天然气为筇竹寺组和中二叠统烃源岩供烃,并以筇竹寺组烃源岩供烃为主(贡献比例为55%~92%),中二叠统烃源岩的贡献随井位北移而逐渐增加。磨溪区块的天然气完全来源于筇竹寺组烃源岩的单源供烃。
(3)川中栖霞组3个区块的气藏在天然气组分和碳同位素方面存在显著差异。不同层系烃源岩对气藏的贡献比例的不同是造成这3个区块天然气地球化学特征存在差异的主要原因,这也进一步导致了川中栖霞组单井产量差异大,气水分布关系复杂。
1
何登发,李德生,张国伟,等.四川多旋回叠合盆地的形成与演化[J].地质科学,2011,46(3):589-606.

HE D F,LI D S,ZHANG G W,et al.Formation and evolution of the multi-cycle superposed Sichuan Basin,China[J].Chinese Journal of Geology, 2011, 46(3): 589-606.

2
张本健,赵立可,陈骁,等.四川盆地西部早古生代坳陷演化过程及其油气地质意义[J].天然气工业,2021,41(10):20-28.

ZHANG B J, ZHAO L K, CHEN X, et al. Evolution process of the Early Paleozoic Depression in the western Sichuan Basin and its petroleum geological implications[J].Natural Gas Industry, 2021, 41(10): 20-28.

3
DAI J X, NI Y Y, LIU Q Y, et al. Sichuan super gas basin in Southwest China[J].Petroleum Exploration and Development,2021,48(6):1251-1259.

4
杨跃明,杨雨,文龙,等.四川盆地中二叠统天然气勘探新进展与前景展望[J].天然气工业,2020,40(7):10-22.

YANG Y M,YANG Y,WEN L,et al. New exploration progress and prospect of Middle Permian natural gas in the Sichuan Basin[J]. Natural Gas Industry,2020,40(7):10-22.

5
段军茂,郑剑锋,沈安江,等.川中地区下二叠统栖霞组白云岩储层特征和成因[J].海相油气地质,2021,26(4):345-356.

DUAN J M, ZHENG J F, SHEN A J, et al. Characteristics and genesis of dolomite reservoir of the Lower Permian Qixia Formation in central Sichuan Basin[J].Marine Oil & Gas Geology, 2021, 26(4): 345-356.

6
XIE Z Y, WEI G Q, LI J, et al. Geochemical characteristics and accumulation pattern of gas reservoirs of the Sinian-Permian in central Sichuan uplift zone, Sichuan Basin[J]. China Petroleum Exploration, 2021, 26(6): 50.

7
白晓亮,陈燕萍,彭思桥,等.川中高磨地区中二叠统栖霞组天然气成藏条件及过程[J].天然气勘探与开发,2023,46(4):80-90.

BAI X L, CHEN Y P, PENG S Q, et al. Geological Conditions and process of gas accumulation in Middle Permian Qixia Formation,Gaoshiti-Moxi area,central Sichuan Basin[J].Natural Gas Exploration and Development, 2023, 46(4): 80-90.

8
任丽梅,唐松,王伟,等.川中高石梯—磨溪地区中二叠统栖霞组气水分布特征及主控因素[J].天然气勘探与开发,2022,45(3):24-33.

REN L M, TANG S, WANG W, et al. Gas-water distribution and its controlling Factors in the Middle Permian Qixia Formation,Gaoshiti-Moxi area,central Sichuan Basin[J]. Natural Gas Exploration and Development, 2022, 45(3): 24-33.

9
董才源,谢增业,朱华,等.川中地区中二叠统气源新认识及成藏模式[J].西安石油大学学报(自然科学版),2017,32(4):18-23.

DONG C Y,XIE Z Y,ZHU H,et al.New insight for gas sou-rce and gas accumulation modes of the Middle Permian in central Sichuan Basin[J].Journal of Xi'an Shiyou University(Natural Science Edition),2017,32(4):18-23.

10
王伟,任丽梅,梁家驹,等.川中地区中二叠统海相烃源岩特征及生烃潜力评价[J].天然气地球科学,2022,33(3):369-380.

WANG W,REN L M,LIANG J L,et al. Characteristics and hy-drocarbon generation potential of evaluation of Middle Permian Marine source rocks in central Sichuan Basin[J].Natural Gas Geoscience, 2022, 33(3): 369-380.

11
何文渊,蒙启安,印长海,等.四川盆地合川—潼南地区栖霞组白云岩天然气地质特征及有利勘探区带[J].大庆石油地质与开发,2022,41(4):1-11.

HE W Y, MENG Q A, YIN C H, et al. Geological characteristics and and favorable exploration plays of gas in the Qixia Formation dolomite in Hechuan-Tongnan area of Sichuan Basin[J]. Petroleum Geology and Oilfield Development in Daqing, 2022, 41(4): 1-11.

12
WANG Y,LI J,CHEN J,et al. Quantitative identification and research of mixed-source natural gas-example of natural gas in Jingbian Gas Field[J].World Journal of Engineering,2014,11(2):147-156.

13
SCHOELL M. Genetic characterization of natural gases[J]. AAPG Bulletin, 1983, 67(12): 2225-2238.

14
高先志.利用甲烷碳同位素研究混合气的混合体积[J].沉积学报,1997,15(2):63-65.

GAO X Z. Volume evalution of the gas mixed with other gases using carbon isotopes compositions[J].Acta Sedimentologica Sinica, 1997,15(2): 63-65.

15
王顺玉,戴鸿鸣,王海清.混源天然气定量计算方法——以川西地区白马庙气田为例[J].天然气地球科学,2003,14(5):351-353.

WANG S Y, DAI H M, WANG H Q. Method of quantity calculation of mixed source natural gas:Study of Baimamiao Gas field of western in Sichuan Basin[J].Natural Gas Geoscience,2003,14(5):351-353.

16
金强,程付启,刘文汇.混源气藏及混源比例研究[J].天然气工业,2004,24(2):22-24.

JIN Q, CHENG F Q, LIU W H. Study on source-mixed gas reservoirs and source-mixed ratios[J].Natural Gas Industry, 2004,24(2): 22-24.

17
王杰,刘文汇,陶成,等.天然气藏二元混源比例定量判识探讨及气源岩—40Ar年龄模型[J].天然气地球科学,2010,21(1):125-131.

WANG J, LIU W H, TAO C, et al. 40Ar dating model of gas source rocks and the quantitative identification of mixture ratios for daulity sourced gases in gas reservoirs[J]. Natural Gas Geoscience, 2010, 21(1): 125-131.

18
陶国亮,王杰,秦建中,等.天然气混源比例定量计算的多元数理分析方法[J].天然气地球科学,2016,27(2):341-345.

TAO G L, WANG J, QIN J Z, et al. The multivariate data analysis method of quantitative calculation of mixed proportion of natural gas[J]. Natural Gas Geoscience, 2016, 27(2): 341-345.

19
汪泽成, 施亦做, 文龙, 等.用超级盆地思维挖掘四川盆地油气资源潜力的探讨[J]. 石油勘探与开发, 2022, 49(5): 847-858.

WANG Z C,SHI Y Z,WEN L, et al. Exploring the potential of oil and gas resources in Sichuan Basin with super basin thinking[J].Petroleum Exploration and Development,2022,49(5): 847-858.

20
黄涵宇,何登发,李英强,等.四川盆地及邻区二叠纪梁山—栖霞组沉积盆地原型及其演化[J].岩石学报,2017,33(4):1317-1337.

HUANG H Y, HE D F, LI Y Q, et al. The prototype and its evolution of the Sichuan sedimentary basin and adjacent areas during Liangshan and Qixia stages in Permain[J]. Acta Petrologica Sinica, 2017, 33(4): 1317-1337.

21
徐会林,罗文军,杨东凡,等.川中地区中二叠统栖霞组优质白云岩储层特征及发育模式[J].天然气勘探与开发,2024,47(1):12-23.

XU H L, LUO W J, YANG D F, et al. Characteristics and development models of high-quality dolomite reservoirs in Middle Permian Qixia Formation, central Sichuan Basin[J]. Natural Gas Exploration and Development, 2024,47(1): 12-23.

22
朱光有,张水昌,梁英波,等.四川盆地天然气特征及气源[J].地学前缘,2006,13(2):234-248.

ZHU G Y, ZHANG S C, LIANG Y B, et al. The characteristics of natural gas in Sichuan Basin and its sources[J]. Earth Science Frontiers, 2006,13(2): 234-248.

23
HU M Y, HU Z G, WEI G Q, et al. Sequence lithofacies paleogeography and reservoir potential of the Maokou Formation in Sichuan Basin[J].Petroleum Exploration and Development, 2012, 39(1): 51-61.

24
魏国齐,杨威,杜金虎,等.四川盆地震旦纪—早寒武世克拉通内裂陷地质特征[J].天然气工业,2015,35(1):24-35.

WEI G Q, YANG W, DU J H, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift,Sichuan Basin[J]. Natural Gas Industry, 2015, 2(1): 24-35.

25
ZOU C N, DU J H, XU C C, et al. Formation, distribution, resource potential, and discovery of Sinian-Cambrian giant gas field,Sichuan Basin,SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 306-325.

26
MA X H, YANG Y, WEN L, et al. Distribution and exploration direction of medium-and large-sized marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1): 1-15.

27
郭英海,李壮福,李大华,等.四川地区早志留世岩相古地理[J].古地理学报,2004,6(1):20-29.

GUO Y H, LI Z F, LI D H, et al. Lithofacies paleogeography of the Early Silurian in Sichuan area[J].Journal of Palaeogeography, 2004, 6(1): 20-29.

28
谢增业,杨春龙,董才源,等.四川盆地中泥盆统和中二叠统天然气地球化学特征及成因[J].天然气地球科学,2020,31(4):447-461.

XIE Z Y,YANG C L,DONG C Y,et al. Geochemical characteristics and genesis of Middle Devonian and Middle Permian natural gas in Sichuan Basin,China[J].Natural Gas Geoscience, 2020, 31(4): 447-461.

29
宋金民,刘树根,李智武,等.四川盆地中二叠统油气成藏模式与有利勘探区分布[J].天然气工业,2023,43(11):54-71.

SONG J M, LIU S G, LI Z W, et al. Accumulation model and favorable exploration area distribution of the Middle Permian oil and gas in the Sichuan Basin[J]. Natural Gas Industry, 2023, 10(11): 54-71.

30
YANG Y M,WEN L,LUO B,et al.Hydrocarbon accumulation of Sinian natural gas reservoirs,Leshan-Longnüsi paleohigh, Sichuan Basin,SW China[J].Petroleum Exploration and Development, 2016, 43(2): 197-207.

31
谢武仁,文龙,汪泽成,等.四川盆地二叠系—中三叠统海相非常规资源类型及有利勘探方向[J].天然气地球科学,2024,35(6):961-971.

XIE W R, WEN L, WANG Z C, et al. Types of unconventional marine resources and favorable exploration directions in the Permian-Middle Triassic of the Sichuan Basin[J].Natural Gas Geoscience, 2024, 35(6): 961-971.

32
何骁,梁峰,李海,等.四川盆地下寒武统筇竹寺组海相页岩气高产井突破与富集模式[J].中国石油勘探,2024,29(1):142-155.

HE X, LIANG F, LI H, et al. Breakthrough and enrichment mode of marine shale gas in the Lower Cambrian Qiongzhusi Formation in high-yield wells in Sichuan Basin[J]. China Petroleum Exploration, 2024, 29(1): 142-155.

33
鲁雪松,桂丽黎,汪泽成,等.四川盆地中部走滑断裂活动时间与控藏作用——来自断裂带胶结物U-Pb定年和流体包裹体的证据[J].石油学报,2024,45(4):642-658.

LU X S, GUI L L, WANG Z C, et al. Activity time of strike-slip faults and their controlling effects on hydrocarbon accumulation in central Sichuan Basin:Evidence from U-Pb dating and fluid inclusions of cements in fault zone[J]. Acta Petrolei Sinica, 2024, 45(4): 642-658.

34
WEI G Q,YANG W,DU J H, et al. Tectonic features of Gaoshiti-Moxi Paleo-Uplift and its controls on the formation of a giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(3): 283-292.

35
MA D B, WANG Z C, DUAN S F, et al. Strike-slip faults and their significance for hydrocarbon accumulation in Gaoshiti-Moxi area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(5): 851-861.

36
焦方正,杨雨,冉崎,等.四川盆地中部地区走滑断层的分布与天然气勘探[J].天然气工业,2021,41(8):92-101.

JIAO F Z,YANG Y, RAN Q, et al. Distribution and gas exploration of the strike-slip faults in the central Sichuan Basin[J]. Natural Gas Industry, 2021, 41(8): 92-101.

37
LIU Y F,QIU N S,XIE Z Y,et al. Overpressure compartments in the central Paleo-Uplift, Sichuan Basin,Southwest China[J]. AAPG Bulletin, 2016, 100(5): 867-888.

38
谢增业,李志生,魏国齐,等.腐泥型干酪根热降解成气潜力及裂解气判识的实验研究[J].天然气地球科学,2016,27(6):1057-1066.

XIE Z Y, LI Z S, WEI G Q, et al. Experimental research on the potential of sapropelic kerogen cracking gas and discrimination of oil cracking gas[J]. Natural Gas Geoscience, 2016, 27(6): 1057-1066.

39
文龙,汪华,徐亮,等.四川盆地西部中二叠统栖霞组天然气成藏特征及主控因素[J].中国石油勘探,2021,26(6):68-81.

WEN L, WANG H, XU L, et al. Characteristics and main controlling factors of gas accumulation of the Middle Permian Qixia Formation in western Sichuan Basin[J].China Petroleum Exploration, 2021,26(6):68-81.

40
WEI G Q, XIE Z Y, SONG J R, et al. Features and origin of natural gas in the Sinian-Cambrian of central Sichuan paleo-uplift, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(6): 768-777.

41
戴金星,倪云燕,黄士鹏.四川盆地黄龙组烷烃气碳同位素倒转成因的探讨[J].石油学报,2010,31(5):710-717.

DAI J X, NI Y Y, HUANG S P. Discussion on the carbon isotopic reversal of alkane gases from the Hunaglong Formation in the Sichuan Basin[J].Acta Petrolei Sinica,2010,31(5):710-717.

42
沈平,徐永昌,刘文汇,等.天然气研究中的稀有气体地球化学应用模式[J].沉积学报,1995,13(2):48-58.

SHEN P, XU Y C,LIU W H, et al. Applied models of rare gas geochemistry in the research of natural gases[J]. Acta Sedimentologica Sinica, 1995,13(2): 48-58.

43
ZHAO W Z, XIE Z Y, WANG X M, et al. Sinian gas sources and effectiveness of primary gas-bearing system in Sichuan Basin,SW China[J].Petroleum Exploration and Development,2021, 48(6): 1260-1270.

44
DAI J, XIA X, QIN S, et al. Origins of partially reversed alkane δ13C values for biogenic gases in China[J].Organic Geochemistry, 2004, 35(4): 405-411.

45
谢增业,李剑,杨春龙,等.川中古隆起震旦系—寒武系天然气地球化学特征与太和气区的勘探潜力[J].天然气工业,2021,41(7):1-14.

XIE Z Y, LI J, YANG C L, et al. Geochemical characteristics of Sinian-Cambrian natural gas in the central Sichuan Paleo-Uplift and exploration potential in the Taihe Gas Field[J]. Natural Gas Industry, 2021,41(7):1-14.

46
蔡春芳,赵龙.热化学硫酸盐还原作用及其对油气与储集层的改造作用:进展与问题[J].矿物岩石地球化学通报,2016,35(5):851-859,806.

CAI C F, ZHAO L. Thermochemical sulfate reduction and its effects on petroleum composition and reservoir quality: Advances and problems[J].Bulletin of Mineralogy,Petrology and Geochemistry,2016,35(5):851-859,806.

47
李友川,孙玉梅,兰蕾.用乙烷碳同位素判别天然气成因类型存在问题探讨[J].天然气地球科学,2016,27(4):654-664.

LI Y, SUN Y M, LAN L. Discussion on the recognition of gas origin by using ethane carbon isotope[J]. Natural Gas Geoscience, 2016, 27(4): 654-664.

48
姚威,许锦,夏文谦,等.四川盆地涪陵地区茅一段酸解气、吸附气特征及气源对比[J].天然气工业,2019,39(6):45-50.

YAO W, XU J, XIA W Q, et al. A characteristic analysis gas and adsorbed gas and its application to gas-source correlation in Mao 1 Member,Fuling area,Sichuan Basin[J].Natural Gas Industry, 2019, 39(6): 45-50.

49
谢增业,魏国齐,李剑,等.四川盆地川中隆起带震旦系—二叠系天然气地球化学特征及成藏模式[J].中国石油勘探,2021,26(06):50-67.

XIE Z Y, WEI G Q, LI J, et al. Geochemical characteristics and accumulation pattern of gas reservoirs of the Sinian-Permian in central Sichuan Uplift Zone,Sichuan Basin[J].China Petroleum Exploration, 2021,26(6):50-67.

50
戴金星,倪云燕,黄士鹏,等.次生型负碳同位素系列成因[J].天然气地球科学,2016,27(1):1-7.

DAI J X NI Y Y, HUANG S P, et al. Origins of secondary negative carbon isotopic series in natural gas[J].Natural Gas Geoscience, 2016, 27(1): 1-7.

Outlines

/