Evaluation of tight sandstone reservoirs based on differences in micro-pore structure: Taking Bashijiqike Formation of Zhongqiu 1 Block in Tarim Basin as an example

  • Zhennan ZHANG , 1 ,
  • Xiaobing LIN , 1, 2 ,
  • Hui WANG 3 ,
  • Yanli WANG 3 ,
  • Xue YAN 3 ,
  • Na LIN 3 ,
  • Songbai ZHU 3 ,
  • Jiaqing ZHOU 1
Expand
  • 1. Key Laboratory of Deep⁃time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources,Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China
  • 2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China
  • 3. PetroChina Tarim Oilfield Company,Korla 841000,China

Received date: 2024-04-27

  Revised date: 2024-08-22

  Online published: 2024-09-06

Supported by

The National Natural Science Foundation of China(42172135)

the CNPC Tarim Oilfield Company Project(811024010009)

Abstract

In order to determine the pore structure characteristics of porous tight sandstone reservoirs and establish and improve the criteria for reservoir classification and evaluation, taking the tight sandstone gas reservoir in Bashijiqike Formation of Zhongqiu 1 Block in the Tarim Basin as an example, the pore and throat characteristics and inter-well differences of tight sandstone reservoirs were systematically analyzed by using a variety of test methods, such as ordinary thin section, casting thin section, scanning electron microscope observation and mercury injection experiment. The results show that there is no significant difference in the petrological characteristics of Wells Zhongqiu 101, Zhongqiu 102, and Zhongqiu 2, but there are significant differences in the micro-pore structure between the wells. The Well Zhongqiu 101 has the highest porosity and the best physical properties. The pore throat radius distribution is mainly characterized by a multi-peak and coarse-grained state, and the pore structure conditions are the best. The Wells Zhongqiu 102 and Zhonqgiu 2 are mainly characterized by a bimodal coarse-grained shape. The pore structure of the study area is divided into four types, with the pore structure types of Well Zhongqiu 101 mainly being Class A and Class C; Well Zhongqiu 102 is mainly classified as Class B and C, with local development of Class D; Well Zhongqiu 2 is mainly classified as Class C, with the development of Class B and Class D. It is clear that primary intergranular pores contribute the most to reservoir properties, dissolution pores improve properties, micropores have little impact, and primary intergranular pores, dissolution pores, and micropores have the best properties. The four types of pore structure properties deteriorate in sequence, with sedimentation being the basis for differences in reservoir pore structure and diagenesis being the main factor affecting pore structure differences. Based on the correlation between pore throat characteristic parameters and physical properties, the maximum pore throat radius, average pore throat radius, displacement pressure, and sorting coefficient are selected as the main evaluation indicators for reservoir classification. The reservoirs in the study area are divided into four categories: Class I is high-quality reservoirs, Class II is good reservoirs, Class III is medium-grade reservoirs, and Class IV is poor reservoirs. The high-quality reservoirs are located in the Zhongqiu 101 well area.

Cite this article

Zhennan ZHANG , Xiaobing LIN , Hui WANG , Yanli WANG , Xue YAN , Na LIN , Songbai ZHU , Jiaqing ZHOU . Evaluation of tight sandstone reservoirs based on differences in micro-pore structure: Taking Bashijiqike Formation of Zhongqiu 1 Block in Tarim Basin as an example[J]. Natural Gas Geoscience, 2025 , 36(4) : 637 -652 . DOI: 10.11764/j.issn.1672-1926.2024.08.012

0 引言

致密砂岩气藏是指储集于孔隙度小于10%和空气渗透率小于1×10-3 μm2砂岩中的非常规天然气资源1-3,具有埋藏深度大、成岩强度高、岩性致密、物性差、孔隙结构复杂和非均质强等特点4-5。在开发中,由于致密砂岩气藏中天然气分布的不均匀,影响着不同单井的产能,因此从微观角度解释储层物性差异和产能差异一直是油气藏学者研究的重难点6
前人7-9针对储层微观孔隙结构差异问题已开展了相关的研究工作,并提出了多种孔隙结构分类方案和储层评价标准。毛管压力曲线形态特征、物性特征与孔喉特征参数,是孔隙结构分类的主要参数10-13。并在孔隙结构分类的基础上,从沉积环境和成岩作用等方面,进一步讨论造成储层微观孔喉差异的因素14-19。针对致密砂岩储层,前人结合储层沉积微相、储层发育厚度等宏观特征与储层物性等微观特征,建立储层分类评价标准20-22,目前已有学者运用孔喉特征参数结合数学方法,尝试建立不同的储层分类标准23。总体而言,综合沉积、成岩和微观孔隙结构特征的储层评价标准研究相对较少,使得孔隙型致密砂岩气藏优质储层预测受到制约。
塔里木盆地库车坳陷白垩系发育干旱气候条件下的扇三角洲—辫状河三角洲沉积砂体24-25,其中巴什基奇克组发育典型的致密砂岩储层。近年来,库车坳陷秋里塔格构造带中秋1井测试获得了高产工业气流,发现了该构造带最大的整装气藏26-30。中秋地区开发历程较短,前人研究主要针对构造特征31、成藏过程、油气来源以及有利岩相组合32等方面。但针对中秋1区块井间产能差异大,优质储层预测难等问题的研究及解决方案的提出存在不足,已无法满足气藏精细开发的要求。
中秋1气藏储集空间类型主要为(残余)原生粒间孔,裂缝不发育,孔渗关系强,明确属于孔隙型储层,不同井间储层微观孔隙发育特征差异明显,砂岩储层整体致密,局部存在高渗区带33-34。因此,系统分析中秋1区块致密砂岩储层储集空间特征,阐明井间储层微观孔隙结构特征的差异,对于指导气藏的开发是十分必要和有价值的。基于此,笔者采用铸体薄片、扫描电镜、物性分析和压汞实验等测试手段,对中秋1区砂岩储层微观孔隙结构进行系统研究,在中秋1气藏井间微观孔隙结构特征差异性分析的基础上,建立研究区储层评价分类标准,为该区“甜点”预测及下步井位部署提供新的参考与思路。

1 地质背景

库车坳陷位于塔里木盆地北部,经历晚古生代末期的海西运动、侏罗纪晚期的燕山构造运动、新生代的喜马拉雅运动3个阶段的构造运动,具有“南北分带、东西分段、垂向分层、时间分序”的特点2935。对研究区白垩系巴什基奇克组储层影响最大的是新生代喜马拉雅运动,强烈的南北向挤压作用导致库车地区发生收缩变形,经历多次构造运动叠加改造后,形成现在的“四带三凹一隆”的构造格局27-2935-36。秋里塔格构造带分为4个二级构造单元,分别为西部佳木段、西秋段以及东部的中秋段和东秋段,研究区位于中秋段2628-3035图1(a)]。
图1 研究区地质背景(据文献[37]修改)

(a)研究区构造位置;(b)研究区地层综合柱状图;(c)研究区区域沉积相;(d)中秋1气藏白垩系巴什基奇组顶面构造

Fig.1 Geological background of the study area(modified from Ref.[37])

由于晚白垩世末南天山的隆升,研究区的上白垩统被剥蚀殆尽,仅残留下白垩统,与上覆古新统库姆格列木群呈角度不整合接触,与下伏上侏罗统喀扎拉组呈平行不整合接触35-38。下白垩统自下而上依次沉积亚格列木组(K1 y)、舒善河组(K1 s)、巴西改组(K1 b)和巴什基奇克组(K1 bs)。其中巴什基奇克组岩性以细砂岩为主,与上覆库姆格列木群(E1-2 km)和吉迪克组(N1 j)的膏盐岩地层形成良好的储盖组合[图1(b)]29-3035-38
库车坳陷白垩系巴什基奇克组构造沉降幅度大,受南天山物源、东南物源和温宿凸起物源供给,发育冲积扇—扇三角洲—辫状河三角洲相沉积相[图1(c)]。研究区可识别出辫状河三角洲前缘沉积亚相,沉积水下分流河道微相、河口坝微相的中—细粒砂岩[图1(d)]35-38。研究区已钻井较少,巴什基奇克组埋深相对集中,在6 000 m以上,层厚200 m以上,为典型的深层—超深层致密储层35-36

2 储层岩石学特征及储集空间类型

2.1 储层岩石学特征及差异

根据172个碎屑岩薄片鉴定结果,中秋1区块巴什基奇克组储层岩性主要为岩屑长石砂岩,其中,中秋101井发育少量长石岩屑砂岩(图2)。3口井碎屑成分含量相似,石英含量平均为43.6%,主要分布在40%~45%之间;长石含量平均为32.6%,以钾长石和斜长石为主,主要分布在30%~35%之间;岩屑含量平均为23.8%,以火山岩岩屑和变质岩岩屑为主,主要分布在20%~25%(图3)之间。
图2 中秋1区井间巴什基奇克组储层岩石类型三角图

Ⅰ:石英砂岩;Ⅱ:长石石英砂岩;Ⅲ:岩屑石英砂岩;Ⅳ:长石砂岩;Ⅴ:岩屑长石砂岩;Ⅵ:长石岩屑砂岩;Ⅶ:岩屑砂岩

Fig.2 Triangle diagram of rock types in the Bashijiqike Formation reservoir among wells in Zhongqiu 1 zone

图3 中秋1区井间巴什基奇克组储层砂岩组分含量对比

Fig.3 Comparison of sandstone component content in the Bashijiqike Formation Reservoir among wells in Zhongqiu 1 zone

根据镜下薄片观察和X射线衍射分析结果可知,中秋101井、中秋2井、中秋102井填隙物含量平均分别为16.8%、21.5%、16.5%。其中,胶结物含量分别为7.6%、12.4%、6.6%,以白云石和硬石膏胶结物为主,中秋101井极少量样品中含有铁方解石和硅质胶结物[图4(a),图5(a),图5(b)]。杂基主要为泥质杂基,其平均含量分别为8.8%、9.1%、10.4%[图4(a),图5(c)],黏土矿物以伊利石、伊/蒙混层、绿泥石为主,中秋101井→中秋2井→中秋102井伊利石和高岭石含量依次降低,伊/蒙间层和绿/蒙间层含量依次升高,绿泥石含量较为稳定[图4(b),图5(d),图5(e)]。岩石分选中等,局部分选较差。岩石支撑类型为颗粒支撑,磨圆以次圆状和次棱角状为主;接触方式多以点—线接触为主,凹凸接触次之[图5(f)]。总体呈低成分成熟度、中等结构成熟度的特征。
图4 中秋1区井间巴什基奇克组储层填隙物及黏土矿物组成

(a)填隙物含量统计结果;(b)黏土矿物含量统计结果

Fig.4 Composition of interstitial materials and clay minerals in the Bashijiqike Formation reservoir among wells in Zhongqiu 1 zone

图5 中秋1区巴什基奇克组储层填隙物镜下特征

(a)中秋101井,K1 bs,6 295.5 m,白云石胶结致密,高级白干涉色,未染色,正交偏光;(b)中秋2井,K1 bs,6 337.37 m,硬石膏胶结致密,三级绿干涉色,未染色,正交偏光;(c)中秋2井,K1 bs,6 334.58 m,填隙物主要为黑色泥质杂基,未染色,单偏光;(d)中秋101井,K1 bs,6 283.09 m,片状伊利石(I)和片状伊/蒙混层(I/S),见钠长石(Ab),扫描电镜;(e)中秋101井,K1 bs,6 332.13 m,片状绿泥石(Ch)和片状伊利石(I),扫描电镜;(f)中秋101井,K1 bs,6 291.8 m,分选中等,磨圆次棱—次圆,点—线接触,铸体薄片

Fig.5 Characteristics under the filling objective lens of Bashijiqike Formation reservoir in Zhongqiu 1 zone

2.2 储集空间类型及差异

由铸体薄片和扫描电镜资料分析可知,中秋1气藏巴什基奇克组储集空间可分为孔隙与微裂缝,其中孔隙类型分为原生孔隙和次生孔隙2类。主要发育原生孔隙,渗流通道以片状喉道和缩颈型喉道居多[图6(a),图6(b),图6(c)],发育少量孔隙缩小型和管束状喉道。原生孔隙主要为(残余)原生粒间孔,该类孔隙是原生的粒间孔隙,部分可能被填隙物部分充填。未被充填的原生粒间孔边缘清晰,形状规则,对储层物性贡献最大[图6(d),图6(e),图6(f)]。次生孔隙中粒间溶孔为长石、岩屑边缘和粒间填隙物被溶蚀形成,填隙物主要为泥质杂基溶蚀,孔隙边缘不规则状或锯齿状[图6(g),图6(h),图6(i)]。白云石和石膏胶结物弱溶蚀—不溶蚀,对孔隙贡献度差。研究区沉积初期偏碱性的流体环境促使石膏胶结物在此阶段沉积,之后受大气降水中氢离子影响发生溶蚀,随着埋深的快速增加,沉积环境逐渐由酸性变为碱性,在此阶段白云石胶结物沉积,受油气侵位带来的有机酸影响,导致其被溶蚀30。粒内溶孔为长石与岩屑颗粒内部被溶蚀形成,颗粒溶蚀程度较浅,以中心溶蚀与沿解理溶蚀为主[图6(g)],图6(h),图6(l)]。微裂缝以收缩缝为主[图6(j),图6(k)],可以在很大程度上改善储层的物性和渗流能力。
图6 中秋1区巴什基奇克组储层各类微观孔隙、喉道发育特征

(a)中秋101井,6 297.43 m,缩颈型喉道和片状喉道,单偏光;(b)中秋101井,6 298.19 m,缩颈型喉道和片状喉道,单偏光;(c)中秋102井,6 205.34 m,片状喉道,扫描电镜;(d)中秋101井,6 336.44 m,原生粒间孔,单偏光;(e)中秋2井,6 338.93 m,残余粒间孔,单偏光;(f)中秋101井,6 283.35 m(×45),原生粒间孔与残余粒间孔,扫描电镜;(g)中秋102井,6 391.85 m,粒间溶孔和粒内溶孔,单偏光;(h)中秋101井,6 335.33 m,泥质微孔、粒内溶孔和粒间溶孔,单偏光;(i)中秋102井,6 214.15 m(×840),蜂窝状微孔隙与粒间溶孔,扫描电镜;(j)中秋102井,6 208.17 m,收缩缝,单偏光;(k)中秋2井,6 423.57 m,溶蚀缝,单偏光;(l)中秋2井,6 331.97 m(×2 500),粒内溶蚀孔,扫描电镜

Fig.6 Development characteristics of various micro pores and throats in the Bashijiqike Formation reservoir of Zhongqiu 1 zone

中秋101井、中秋102井和中秋2井面孔率逐渐降低,(残余)原生粒间孔占总面孔率的90%左右[图7(a),图7(b)]。通过箱形图分析中秋区块面孔率数值分布情况发现,中秋101井面孔率分布范围相对较广,平均值与中值较其余两井高,表明其整体面孔率较高,孔隙类型多样,其余两井孔隙类型相对单一[图7(c)]。(残余)原生粒间孔作为研究区储层优质的储集空间,其发育程度高,喉道较粗,孔隙之间的连通性较好,物性较好。
图7 中秋1区井间巴什基奇克组储层面孔率特征对比

(a)储集空间类型面孔率占比图;(b)储集空间类型百分占比图;(c)面孔率箱型图

Fig.7 Comparison of reservoir porosity characteristics in the Bashijiqike Formation among wells in Zhongqiu 1 zone

3 储层孔隙结构特征与分类

3.1 孔喉分布特征及差异

根据高压压汞资料统计可知,研究区储层孔喉分布主要分为4类,分别为多峰偏粗态型、多峰偏细态型、双峰偏粗态型和双峰偏细态型(图8)。
图8 中秋1区巴什基奇克组储层不同类型孔喉半径分布及渗透率贡献对比

(a)多峰偏粗态型孔喉半径及渗透率贡献(中秋101井1号岩心);(b)多峰偏细态型孔喉半径及渗透率贡献(中秋102井50号岩心)

(c)双峰偏粗态型孔喉半径及渗透率贡献(中秋101井50号岩心);(d)双峰偏细态型孔喉半径及渗透率贡献(中秋2井72号岩心)

Fig.8 Comparison of pore throat radius distribution and permeability contribution of different types of Bashijiqike Formation reservoirs in Zhongqiu 1 zone

以4种峰型典型样品为例,多峰孔喉半径分布范围更宽,大喉道比例更大。4种峰型渗透率大部分是由少部分的稍大喉道所贡献,细小喉道渗透率贡献较小甚至没有。研究区主要为多峰型和双峰型,不同程度地反映了研究区储层孔隙类型多样,孔隙结构复杂,非均质强的特点。

3.2 孔喉分选和连通性

巴什基奇克组分选系数在0.02~1.78之间,数值跨度大,平均值为0.29;微观均质系数小,歪度大;排驱压力在0.05~5.96 MPa之间,压力数值范围大,平均值小于1 MPa;中值压力有异常高值(表1)。从以上数据可知,中秋1区块巴什基奇克组储层整体相对致密,孔喉分布集中程度整体中等,均匀程度差,孔喉大小偏粗态,连通性较好。
表1 中秋1区井间巴什基奇克组储层孔喉分选和连通参数统计

Table 1 Statistical of pore throat sorting and connection parameters of the Bashijiqike Formation reservoir in Zhongqiu 1 zone

参数地层 分选系数 微观均质系数 歪度 排驱压力/MPa 中值压力/MPa
巴什基奇克组 平均值 0.29 0.12 1.84 0.92 14.41
最大值 1.78 0.19 2.78 5.96 151.28
最小值 0.02 0.07 0.86 0.05 1.74

3.3 孔隙结构分类

通过以上分析,研究区目的层样品孔喉大小、分选、连通性存在明显差异。在孔喉分布特征的基础上,根据不同的压汞曲线形态与孔喉分布特征,将研究区储层孔隙结构划分为4种类型(表2)。
表2 中秋1区井间巴什基奇克组储层孔隙结构分类统计

Table 2 Classification and statistics of pore structure in the Bashijiqike Formation reservoir among wells in Zhongqiu 1 zone

A类中小孔—中细喉型。该类储层孔喉半径最大,排驱压力最小,分选差,孔喉分布属多峰偏粗态型。储层退汞效率最低,孔喉连通性最差,是研究区内物性最好的一类孔隙结构类型。该类孔隙结构类型样品主要见于中秋101井,是该井主要的孔隙结构类型,占比37%。
B类中小孔—细喉型。该类储层孔喉半径明显小于A类,排驱压力小,分选较好,孔喉分布属多峰偏细态型。退汞效率较低,孔喉连通性较差,是研究区内物性较好的一类孔隙结构类型。孔隙结构类型样品主要见于中秋2井和中秋102井,占比分别为21.7%、20.8%。
C类小孔—细喉型。该类储层孔喉半径较B类小,排驱压力大,分选好,孔喉分布属双峰偏粗态型。储层退汞效率平均为32.5%,孔喉连通性一般,为研究区内最为发育的孔隙结构类型。该类孔隙结构类型样品是中秋101井、中秋2井、中秋102井中主要发育类型,占比分别为41.3%、47.8%、54.2%。
D类微孔—微喉型。储层孔喉半径最小,排驱压力最大,分选最好,孔喉分布属双峰偏细态型。储层退汞效率最高,孔喉连通性最好,为研究区内发育较少的孔隙结构类型。该类孔隙结构类型主要见于中秋2井和中秋102井,占比分别为26.2%、16.7%。

4 不同类型孔隙结构储层物性特征

4.1 储层物性特征

通过巴什基奇克组333个样品物性测试结果,中秋1气藏岩心孔隙度主要分布在10%~16%之间,平均为12.2%;渗透率主要分布在(1~5)×10-3 μm2之间,平均为3.2×10-3 μm2。中秋101井平均岩心孔隙度为11.8%,平均渗透率为3.8×10-3 μm2;中秋2井岩心平均孔隙度为8.1%,平均渗透率为1.1×10-3 μm2;中秋102井平均岩心孔隙度为9.6%,平均渗透率为1.1×10-3 μm2图9图10)。总体而言,研究区巴什基奇克组储层非均质性强,渗透率普遍较差,属于低孔低渗储层。由岩心孔渗数据显示,基于中秋101井孔隙较为发育,其物性要优于中秋2井和中秋102井。
图9 中秋1区巴什基奇克组孔隙度分布特征

Fig.9 Distribution characteristics of porosity in the Bashjiqike Formation of Zhongqiu 1 zone

图10 中秋1区巴什基奇克组渗透率分布特征

Fig.10 Distribution characteristics of permeability in the Bashiqike Formation of Zhongqiu 1 zone

中秋1区块物性统计结果显示,该区块储层孔渗相关性好(R 2=0.605 6),以孔隙型储层为主(图11),裂缝不发育,对渗透率影响整体较小。但在孔隙度相差不大的条件下,不同样品的渗透率相差较大,前已述及,储层的孔隙发育程度、喉道类型和孔隙结构存在差异,这一差异是导致井间物性差异的根本原因。
图11 中秋1区巴什基奇克组储层孔渗相关性

Fig.11 Correlation between porosity and permeability of the Bashijiqike Formation reservoir in Zhongqiu 1 zone

4.2 不同类型孔隙结构储层物性差异

由原生粒间孔面孔率与物性关系可知,原生粒间孔面孔率与孔隙度具有较强正相关,与渗透率也具有正相关关系,但相关性不强(图12)。原生粒间孔主导着孔隙度,其他孔隙类型对孔隙度贡献较小,原生粒间孔与其他孔隙类型共同发育时,对渗透率贡献大。研究区目的层孔隙的组合关系,可分为4类(图13)。致密砂岩中不同孔隙结构类型对应不同孔隙组合类型,其物性差异大。
图12 原生粒间孔面孔率与储层物性关系

Fig.12 Relationship between the porosity of primary intergranular pores and reservoir properties

图13 孔隙组合类型与储层物性关系

(a) 不同孔隙组合类型的面孔率和孔隙度特征;(b) 不同孔隙组合类型的面孔率和渗透率特征

Fig.13 Relationship between pore combination types and reservoir physical properties

A类孔隙结构类型多发育原生粒间孔+溶孔+微孔型,孔喉大,以中小孔—中细喉为主,连通性好,物性好,为最好的孔隙结构类型;B类孔隙结构类型多发育原生粒间孔+粒间溶孔+微孔型,孔喉以中小孔—细喉为主,连通性中等,物性较好;C类孔隙结构类型多发育原生粒间孔+粒间溶孔型,孔喉以小孔—细喉型为主,连通性中—差,物性一般;D类孔隙结构类型多发育原生粒间孔型,原生粒间孔面孔率小,孔喉小,以微孔—微喉为主,连通性差,不利于油气储集和渗流,物性差。

4.3 孔隙结构成因及发育主控因素

研究区巴什基奇克组接受南天山物源供给,以山前近源三角洲沉积环境为主,后续经历超深埋藏阶段,其储层孔隙类型和孔隙结构控制因素多样,包括构造作用、沉积作用、成岩作用,构造作用对研究区储层影响不大,沉积作用和成岩作用是其储集性能差异性的主要因素39-42

4.3.1 沉积作用

中秋1区块主要发育辫状河三角洲前缘亚相,以分流河道、河口坝和分流间湾微相为主,砂体以分流河道砂体和河口坝砂体为主(图14)。
图14 不同沉积微相碎屑颗粒与物性变化柱状图(据文献[37]修改)

Fig.14 Bar chart of changes in sedimentary microfacies debris particles and physical properties (modified from Ref.[37])

分流河道微相沉积正粒序砂体,GR曲线与KTH曲线均以箱形和钟形为主,电阻率曲线处于低值,表明其泥质含量相对较少。石英颗粒含量由底到顶逐渐减少,长石含量逐渐增加,岩屑含量变化不明显,成分成熟度逐渐减小,岩心孔隙度与渗透率先增加后减小,中下部河道砂体由于石英颗粒较大,抗压能力强,使得原生粒间孔损失较少,喉道连通性较好,保存较好孔隙结构类型,物性最好。分流河道微相砂体垂向上砂体粒度逐渐变细,原生粒间孔较少,并且孔隙结构逐渐变差。河口坝微相沉积为逆粒序砂体,GR曲线与KTH曲线以漏斗形为主,电阻率曲线较高。石英颗粒含量逐渐增加,长石含量逐渐降低,成分成熟度逐渐增加,岩心孔隙度先降低后增加,砂体上部发育较好孔隙结构类型,物性相对较好。垂向上河口坝泥质含量整体较分流河道多,粒度整体较细,河口坝孔隙结构较差。
不同沉积微相下砂体发育原生粒间孔数量和孔隙结构类型占比不同,其物性变化不同,优质储层部位也不相同,而辫状河三角洲前缘处于水下环境,河流的下切作用完全消失,以侧向迁移为主,微相变化快,完整的河道砂体与河口坝砂体保存较少,彼此切割叠置频繁,是储层物性差异性分布的基础。

4.3.2 成岩作用

在对沉积作用分析的基础上,为进一步分析不同储层原生粒间孔和微观孔隙结构的成因及主控因素,统计各孔隙结构类型样品进行对比研究。
A类中小孔—中细喉型储层样品岩性以中粒岩屑长石砂岩为主,少部分中粗粒长石岩屑砂岩,主要粒径为0.23~0.56 mm,颗粒以次棱—次圆状为主,分选好—中等,压实作用中等,颗粒间多为点—线接触,胶结作用弱,长石和岩屑发生强烈的溶蚀作用形成次生溶蚀孔隙,面孔率为7.84%。发育大量原生粒间孔、粒间溶孔和粒内溶孔,孔喉大,连通性好[图15(a)]。
图15 中秋1区块成岩作用镜下特征

(a)中秋101井,6 283.35 m,A类中小孔—中细喉型,原生粒间孔、溶孔发育,胶结作用弱;(b)中秋101井,6 291.8 m,B类中小孔—细喉型,原生粒间孔、粒间溶孔发育,白云石、硬石膏胶结;(c)中秋2井,6 335.76 m,C类小孔—细喉型,少量原生粒间孔,粒间溶孔发育,泥质和白云石胶结致密;(d)中秋102井,6 206.42 m,D类微孔—微喉型,孔隙极少发育,大量白云石胶结

Fig.15 Microscopic characteristics of diagenesis in Zhongqiu 1 zone

B类中小孔—细喉型储层样品岩性以中粒岩屑长石砂岩为主,粒径主要在0.23~0.53 mm之间,颗粒磨圆和分选与A类差异小,压实作用较强,颗粒间多为点—线接触,胶结作用中等,以白云石胶结和硬石膏胶结为主,二者为弱溶蚀,而长石和岩屑溶蚀作用较强形成次生溶蚀孔隙,面孔率为4.51%。发育较多原生粒间孔、粒间溶孔,连通性中等[图15(b)]。
C类小孔—细喉型储层样品岩性以中细粒与细中粒岩屑长石砂岩为主,主要粒径为0.16~0.4 mm,颗粒以次棱—次圆状为主,分选好—中等,压实作用较强,颗粒间多为点—线接触,胶结作用较强,以白云石胶结为主,溶蚀作用中等,面孔率为3.85%。发育较少原生粒间孔、粒间溶孔,连通性中等[图15(c)]。
D类微孔—微喉型储层样品岩性以极细粒岩屑长石砂岩为主,粒径主要在0.09~0.28 mm之间,颗粒多为棱角—次棱状,分选好—中等,压实作用强烈,颗粒间多为点接触,胶结作用强烈,大量的白云石胶结物胶结,未溶蚀,面孔率为1.13%。发育极少量原生粒间孔,孔喉连通性差[图15(d)]。
总的来说,在成岩作用中压实作用导致颗粒间紧密接触,是造成研究区原生粒间孔变少和孔隙结构变差的关键;溶蚀作用和胶结作用通过改变孔喉大小及其连通性,影响孔隙结构,为重要因素。4类孔隙结构样品压实、胶结作用依次增强,而长石、岩屑溶蚀作用依次减弱,孔隙发育程度依次变差,因此,成岩作用是影响研究区形成不同孔隙结构储层的主要因素。

5 基于孔隙结构差异性的储层分类及预测

5.1 孔喉特征参数与物性关系

通过储层微观孔喉特征参数与孔渗的相关性(表3),优选相关性大的孔喉特征参数,绘制与物性关系图(图16),结果表明:在相关性低于0.2未统计的情况下,储层物性与最大孔喉半径、平均孔喉半径、相对分选系数、结构系数成正比,与排驱压力、中值压力、退汞饱和度、退汞效率成反比。其中,随着最大孔喉半径参数的增大,物性呈增大趋势,且最大孔喉半径与渗透率的相关性好于与孔隙度的相关性,说明了岩石渗透率主要由大孔喉所贡献。平均孔喉半径增大,大喉道数目增多,物性随之变大。根据排驱压力与物性关系可知,渗透率小于1×10-3 μm2时,排驱压力渗透率的敏感性更强。储层物性与分选系数成正比,分选系数越大,孔喉分布越不均匀,储层渗透性越强。储层物性与退汞效率成反比,退汞效率越大,储层内的孔喉连通程度越高,物性反而越差。说明研究区致密砂岩储层发育复杂的孔喉结构,且物性越好,非均质性越强。
表3 中秋1区巴什基奇克组储层孔喉特征参数与孔渗相关性统计

Table 3 Statistical of correlation between pore throat characteristics and porosity and permeability of Bashijiqike Formation reservoir in Zhongqiu 1 zone

孔喉特征参数 孔隙度相关性 渗透率相关性
孔喉大小特征参数 最大孔喉半径/μm Y=2.824 1Ln(x)+9.139 6 R 2=0.406 5 Y=0.597 2x 1.097 7 R 2=0.764 4
平均孔喉半径/μm Y=2.982 2Ln(x)+14.793 R 2=0.357 8 Y=6.039 7x 1.227 9 R 2=0.755 1
孔喉连通特征参数 排驱压力/MPa Y=-2.824Ln(x)+8.327 2 R 2=0.406 5 Y=0.435 5x -1.098 R 2=0.764 4
中值压力/MPa Y=4.352 5x -0.806 R 2=0.362 5
最大进汞饱和度/%
退汞饱和度/% Y=78.016e-0.086 x R 2=0.424 6 Y=589 264x -4.191 R 2=0.344 3
退汞效率/% Y=13 378x -2.148 R 2=0.531 1 Y=33.316e-0.121 x R 2=0.438 1
孔喉分布特征参数 分选系数 Y=2.618 7Ln(x)+14.304 R 2=0.398 2 Y=4.591 4x 1.036 5 R 2=0.776 5
相对分选系数 Y=0.014 1e3.257 3 x R 2=0.422 6
微观均质系数
结构系数 Y=2.323 4Ln(x)+11.452 R 2=0.417 1
歪度

注:“—”代表无

图16 中秋1区巴什基奇克组储层最大孔喉半径、平均孔喉半径、排驱压力、分选系数与物性关系

(a)最大孔喉半径与物性关系图;(b)平均孔喉半径与物性关系图;(c)排驱压力与物性关系图;(d)分选系数与物性关系图

Fig.16 The relationship between the maximum pore throat radius, average pore throat radius, displacement pressure,sorting coefficient, and physical properties of the Bashijiqike Formation reservoir in the Zhongqiu 1 zone

5.2 储层分类评价及预测

通过上述分析,根据相关性大小,对12个孔喉特征参数进行优选,选定代表着储层孔喉大小的最大孔喉半径和平均孔喉半径、代表孔喉连通性的排驱压力、代表孔喉分选性的分选系数以及代表着储层储集渗流能力的渗透率和孔隙度,作为分类评价的指标,建立了研究区储层类型划分方案,评价研究区储层,将储层分为4类(表4)。
表4 研究区致密储层评价分类

Table 4 Classification for evaluation of tight reservoirs in the study area

划分依据
物性特征 孔隙度(Φ)/% ≥12 12~9 9~6 <6
渗透率(K)/(10-3 μm2 ≥1.5 1.5~0.8 0.8~0.3 <0.3
孔隙特征 面孔率/% >6 6~4 4~1 <1
孔隙组合类型 原生粒间孔为主,次为溶孔,孔隙连通较好 原生粒间孔为主,次为粒间溶孔和微孔,孔隙连通中等 少部分原生粒间孔为主、次为粒间溶孔,孔隙连通性中—差 少量原生粒间孔、孔隙连通性差
孔隙结构特征 最大孔喉半径/μm >2 2~1.4 1.4~0.7 <0.7
平均孔喉半径/μm >0.4 0.4~0.2 0.2~0.1 <0.1
排驱压力(P d)/MPa <0.3 0.3~0.5 0.5~1 >1
分选系数 >0.38 0.38~0.16 0.16~0.08 <0.08
孔喉分级

中小孔—中细喉型

(A类)

中小孔—细喉型

(B类)

小孔—细喉型

(C类)

微孔—微喉型

(D类)

填隙物含量/% <10 10~15 10~20 >20
岩性 粗粉砂岩、细砂岩

粉砂岩、细砂

岩、含砾砂岩

灰质粉砂岩、

含砾砂岩

泥质、灰质粉

砂岩、含泥粉

砂岩、砂砾岩

综合评价 优质储层 较好储层 中等储层 差储层
依据上述储层划分标准,对研究区储层进行划分,Ⅰ类为优质储层,Ⅱ类为较好储层,Ⅲ类和Ⅳ类为中等—差储层。
根据孔隙结构成因及主要控制因素分析,结合研究区沉积相发育特征,以及已钻井试气结果(中秋101井日产气9.07×104 m3,中秋102井日产气4.77×104 m3,中秋2井日产气0.63×104 m3),开展研究区优质储层预测与划分。预测结果表明,巴什基奇克组优质储层主要分布在中秋101井井区(图17)。
图17 中秋1区优质储层预测结果

Fig.17 Prediction results of high-quality reservoirs in Zhongqiu 1 zone

6 结论

(1)塔里木盆地中秋1区块中秋101井、中秋102井和中秋2井储层岩性以岩屑长石砂岩为主,碎屑成分变化不明显,中秋2井填隙物含量最高,面孔率逐渐减低,物性逐渐变差,其中中秋101井物性最好。
(2)根据毛细管压力特征结合孔喉分布特征,将研究区巴什基奇克组致密砂岩孔喉结构划分为4种类型,分别为A类中小孔—中细喉型、B类中小孔—细喉型、C类小孔—细喉型和D类微孔—微喉型。中秋101井孔喉结构类型以A类和C类为主;中秋102井以B类和C类为主,发育D类;中秋2井以C类为主,同时发育B类和D类。
(3)分析研究区储层物性影响因素可知,其中(残余)原生粒间孔对储层物性贡献最大,溶孔改善储层物性,微孔影响不明显,孔隙组合类型中原生粒间孔+溶孔+微孔型物性最好,4种类型孔隙结构类型物性依次变差。沉积作用是影响储层孔隙结构差异的基础,成岩作用是影响孔隙结构差异的主要因素。
(4)优选代表储层储集渗流能力和最大孔喉半径、平均孔喉半径、排驱压力、分选系数等微观孔喉特征参数结合孔隙特征作为储层分类评价的指标,将储层分为4类,Ⅰ类为优质储层。基于中秋1区块井间孔隙结构分布,巴什基奇克组以中秋101井优质储层最为发育,预测最优储层位于研究区东北部中秋101井区。
1
戴金星,倪云燕,吴小奇,等.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,39(3):257-264.

DAI J X, NI Y Y, WU X Q, et al. China's tight sandstone gas and its important significance in exploration and development[J].Petroleum Exploration and Development,2012,39(3):257-264.

2
ZOU C, ZHU R, LIU K, et al. Tight gas sandstone reservoirs in China:Characteristics and recognition criteria[J].Journal of Petroleum Science and Engineering,2012,88-89:82-91.

3
SURDAM R C.A new paradigm for gas exploration in anomalously pressured“tight gas sands”in the rocky mountain lara-mide basins[M]//SURDAM R C.Seals,Traps,and the Petroleum System.AAPG Memoir 67.Tulsa:AAPG,1997:283-298.

4
蔡希源.深层致密砂岩气藏天然气富集规律与勘探关键技术——以四川盆地川西坳陷须家河组天然气勘探为例[J].石油与天然气地质,2010,31(6):707-714.

CAI X Y. Natural gas enrichment patterns and key exploration technologies in deep tight sandstone gas reservoirs:A case study of natural gas exploration in the Xujiahe Formation of the western Sichuan Basin[J].Oil & Gas Geology,2010,31(6):707-714.

5
ISLAM M A. Diagenesis and reservoir quality of Bhuban sandstones (Neogene),Titas Gas Field, Bengal Basin,Bangladesh[J].Journal of Asian Earth Sciences,2009,35(1):89-100.

6
陈欢庆,曹晨,梁淑贤,等.储层孔隙结构研究进展[J].天然气地球科学,2013,24(2):227-237.

CHEN H Q, CAO C, LIANG S X, et al. Research progress on reservoir pore structure[J]. Natural Gas Geoscience,2013,24(2):227-237.

7
王瑞飞,陈明强,孙卫.鄂尔多斯盆地延长组超低渗透砂岩储层微观孔隙结构特征研究[J].地质论评,2008,54(2):270-277,294.

WANG R F, CHEN M Q, SUN W. Study on the microscopic pore structure characteristics of ultra-low permeability sandstone reservoirs in the Yanchang Formation of the Ordos Basin[J]. Geological Review,2008,54(2):270-277,294.

8
王道伸,辛红刚,葸克来,等.致密砂岩储层孔喉结构特征及其对含油性的控制作用——以鄂尔多斯盆地志靖—安塞地区延长组长8段为例[J].天然气地球科学,2024,35(4):625-634.

WANG D S, XIN H G, XI K L, et al. Characteristics of pore throat structure in tight sandstone reservoirs and their control on oil bearing properties:A case study of the Yanchang Formation 8 in the Zhijing Ansai area of the Ordos Basin[J]. Natural Gas Geoscience,2024,35(4):625-634.

9
郑立巍,董书宁,唐胜利,等.哈日凹陷巴音戈壁组碎屑岩储层及微观孔喉特征[J].西安科技大学学报,2020,40(2):304-313.

ZHENG L W, DONG S N, TANG S L, et al. Reservoir and micro pore throat characteristics of the Bayingobi Formation clastic rocks in the Hari Depression[J]. Journal of Xi'an University of Science and Technology,2020,40(2):304-313.

10
柴晓龙,田冷,孟艳,等.鄂尔多斯盆地致密储层微观孔隙结构特征与分类[J].天然气地球科学,2023,34(1):51-59.

CHAI X L,TIAN L,MENG Y,et al. Microscopic pore structure characteristics and classification of tight reservoirs in the Ordos Basin[J]. Natural Gas Geoscience,2023,34(1):51-59.

11
马瑶,李文厚,刘哲,等.低渗透砂岩储层微观孔隙结构特征——以鄂尔多斯盆地志靖—安塞地区延长组长9油层组为例[J].地质通报,2016,35(Z1):398-405.

MA Y,LI W H,LIU Z,et al.Microscopic pore structure chara-cteristics of low-permeability sandstone reservoirs:A case stu-dy of the Yanchang Formation 9 in the Zhijing Ansai area of the Ordos Basin[J].Geological Bulletin of China,2016,35(Z1):398-405.

12
郑忠文,王乾右,葛云锦,等.鄂尔多斯盆地西部延长组长8—长6段致密储层微观孔隙特征差异[J].科学技术与工程,2018,18(15):69-80.

ZHENG Z W, WANG Q Y, GE Y J, et al. Differences in micro pore characteristics of tight reservoirs in the Chang 8-Chang 6 section of the western extension of the Ordos Basin[J]. Science and Technology and Engineering,2018,18(15):69-80.

13
吴浩,郭英海,张春林,等.致密油储层微观孔喉结构特征及分类——以鄂尔多斯盆地陇东地区三叠统延长组长7段为例[J].东北石油大学学报,2013,37(6):12-17,5-6.

WU H, GUO Y H, ZHANG C L, et al. Microscopic pore structure characteristics and classification of tight oil reservoirs:A case study of the 7th member of the Triassic Yanchang Formation in the Longdong area of the Ordos Basin[J]. Journal of Northeast Petroleum University,2013,37(6):12-17,5-6.

14
刘毅,林承焰,林建力,等.东海盆地西湖凹陷深层低渗—致密砂岩孔隙结构特征及成因分析[J].天然气地球科学,2024,35(3):405-422.

LIU Y, LIN C Y, LIN J L, et al. Characteristics and genesis analysis of deep low-permeability tight sandstone pore structure in the West Lake Depression of the East China Sea Basin[J].Natural Gas Geoscience,2024,35(3):405-422.

15
王翠丽,李红波,陈东,等.克深气田巴什基奇克组致密砂岩储层孔隙结构特征及影响因素分析[J].地质科技情报,2018,37(5):70-77.

WANG C L, LI H B, CHEN D, et al. Analysis of pore structure characteristics and influencing factors of tight sandstone reservoirs in Bashiqike Formation of Keshen Gas Field[J]. Geological Science and Technology Information,2018,37(5):70-77.

16
廖明光,郭芸菲,姚泾利,等.鄂尔多斯盆地华池—合水地区长31储层孔喉结构特征[J].岩性油气藏,2018,30(3):17-26.

LIAO M G, GUO Y F, YAO J L, et al. Characteristics of pore throat structure of Chang 31 reservoir in the Huachi Heshui area of the Ordos Basin[J]. Lithologic Reservoir,2018,30(3):17-26.

17
王健伟,吕鹏,曾联波,等.西湖凹陷X气藏花港组H3段储层特征及影响因素[J].断块油气田,2020,27(1):22-27.

WANG J W,LÜ P, ZENG L B, et al. Reservoir characteristics and influencing factors of the H3 section of the Huagang Formation in the X gas reservoir of the West Lake Depression[J]. Fault-Block Oil and Gas Field,2020,27(1):22-27.

18
张晓辉,辛红刚,曹润荣,等.鄂尔多斯盆地南梁—华池地区长8储层微观孔喉结构差异及成藏意义[J].地质与勘探,2023,59(2):418-432.

ZHANG X H, XIN H G, CAO R R, et al. Differences in micro pore throat structure and reservoir formation significance of Chang 8 reservoir in the Nanliang Huachi area of the Ordos Basin[J].Geology and Exploration,2023,59(2):418-432.

19
赖锦,王贵文,孟辰卿,等.致密砂岩气储层孔隙结构特征及其成因机理分析[J].地球物理学进展,2015,30(1):217-227.

LAI J, WANG G W, MENG C Q, et al. Analysis of pore structure characteristics and genesis mechanism of tight sandstone gas reservoirs[J]. Progress in Geophysics,2015,30(1):217-227.

20
仓辉,杜贵超,王聪娥,等.甘泉油田延长组长7致密储层孔喉结构特征及分类评价[J].成都理工大学学报(自然科学版),2023,50(5):525-536.

CANG H, DU G C, WANG C E, et al. Characteristics and classification evaluation of pore throat structure in Yanchang Group 7 tight reservoir of Ganquan Oilfield[J]. Journal ofChengdu University of Technology (Natural Science Edition),2023,50(5):525-536.

21
赵继勇,刘振旺,谢启超,等.鄂尔多斯盆地姬塬油田长7致密油储层微观孔喉结构分类特征[J].中国石油勘探,2014,19(5):73-79.

ZHAO J Y, LIU Z W, XIE Q C, et al.Classification characteristics of micro pore throat structure in the tight oil reservoir of Chang 7 in Jiyuan Oilfield, Ordos Basin[J]. China Petroleum Exploration,2014,19(5):73-79.

22
孙泽飞,连碧鹏,史建儒,等.鄂尔多斯盆地东北缘煤系致密砂岩孔喉结构特征及储层评价[J].地质科技情报,2018,37(6):130-137.

SUN Z F, LIAN B P, SHI J R, et al. Characteristics of pore throat structure and reservoir evaluation of tight sandstone in coal measures at the northeast edge of the Ordos Basin[J]. Geological Science and Technology Information,2018,37(6):130-137.

23
石晓敏,位云生,朱汉卿,等.致密凝灰质砂岩储层孔隙结构特征与储层分类评价——以松辽盆地南部营城组致密凝灰质砂岩为例[J].天然气地球科学,2023,34(10):1828-1841.

SHI X M,WEI Y S,ZHU H Q,et al. Pore structure characteristics and reservoir classification evaluation of tight tuffaceous sandstone reservoirs:A case study of tight tuffaceous sandstone in the Yingcheng Formation of the southern Songliao Basin[J].Natural Gas Geoscience,2023,34(10):1828-1841.

24
高志勇,冯佳睿,周川闽,等.干旱气候环境下季节性河流沉积特征——以库车河剖面下白垩统为例[J].沉积学报,2014,32(6):1060-1071.

GAO Z Y, FENG J R, ZHOU C M, et al. Seasonal river sedimentary characteristics in arid climate environments:A case study of the Lower Cretaceous in the Kuche River Section[J].Acta Sedimentologica Sinica,2014,32(6):1060-1071.

25
王胜军,唐永亮,朱松柏,等.塔里木盆地库车坳陷北部典型露头剖面白垩系巴什基奇克组三段高分辨率层序地层特征[J].石油与天然气地质,2022,43(4):804-822.

WANG S J, TANG Y L, ZHU S B, et al. High resolution sequence stratigraphic characteristics of the third member of Bashiqike Formation of Cretaceous in typical outcrop profile in the north of Kuqa Depression,Tarim Basin[J]. Oil & Gas Geology,2022,43(4):804-822.

26
李剑,李谨,谢增业,等.塔里木盆地秋里塔格构造带中秋1圈闭油气来源与成藏[J].石油勘探与开发, 2020,47(3):512-522.

LI J, LI J, XIE Z Y, et al. Oil and gas source and accumulation of Zhongqiu 1 trap in Qiulitag structural belt,Tarim Basin[J]. Petroleum Exploration and Development,2020,47(3):512-522.

27
谢会文,罗浩渝,章学岐,等.秋里塔格构造带盐下构造层变形特征及油气勘探潜力[J].新疆石油地质, 2020,41(4):388-393.

XIE H W, LUO H Y, ZHANG X Q, et al. Deformation characteristics and oil and gas exploration potential of salt bearing structural layers in the Qiulitag structural belt[J]. Xinjiang Petroleum Geology,2020,41(4):388-393.

28
杜金虎,田军,李国欣,等.库车坳陷秋里塔格构造带的战略突破与前景展望[J].中国石油勘探,2019,24(1):16-23.

DU J H, TIAN J, LI G X, et al. Strategic breakthroughs and prospects of the Qiulitag structural belt in the Kuqa Depression[J]. China Petroleum Exploration,2019,24(1):16-23.

29
段云江,罗浩渝,谢会文,等.塔里木盆地库车坳陷秋里塔格构造带中秋—东秋段盐相关构造特征及变形机理[J].天然气地球科学,2021,32(7):993-1008.

DUAN Y J, LUO H Y, XIE H W, et al. Salt-related structural characteristics and deformation mechanism of the Zhongqiu-Dongqiu section of the Qiulitag structural belt,Tarim Basin[J]. Natural Gas Geoscience,2021,32(7):993-1008.

30
刘春,徐振平,陈戈,等.塔里木盆地中秋1凝析气藏成藏条件及演化过程[J].天然气工业,2019,39(4):8-17

LIU C, XU Z P, CHEN G, et al. Accumulation conditions and evolution process of Zhongqiu1 condensate gas reservoir in Tarim Basin[J]. Natural Gas Industry,2019,39(4):8-17.

31
李世琴,汪新,陈宁华.南天山库车秋里塔格中段构造结变形特征和变形机理[J].地质科学,2009,44(3):945-956.

LI S Q, WANG X, CHEN N H. Deformation characteristics and mechanisms of structural structures in the middle section of Qiulitage,Kuche,Nantian Mountain[J].Chinese Journal of Geology,2009,44(3):945-956.

32
高志勇,吴永平,刘兆龙,等.塔里木盆地库车坳陷中秋1井区白垩系巴什基奇克组砂质辫状河有利岩相组合发育模式与意义[J].石油与天然气地质,2023,44(5):1141-1158.

GAO Z Y,WU Y P,LIU Z L,et al. Development pattern and significance of favorable lithologic facies combination of sandy braided river in Cretaceous Bashijiqike Formation in Zhongqiu 1 well block of Kuqa Depression,Tarim Basin[J].Oil & Gas Geology,2023,44(5):1141-1158.

33
史超群,张慧芳,周思宇,等.塔里木盆地库车坳陷克拉苏构造带—秋里塔格构造带白垩系巴什基奇克组深层、高产储层特征及控制因素[J].天然气地球科学,2020,31(8):1126-1138.

SHI C Q, ZHANG H F, ZHOU S Y, et al. Characteristics and controlling factors of deep and high yielding reservoirs in the Cretaceous Bashijiqike Formation of Kelasu structural belt Qiulitag structural belt in Kuqa Depression,Tarim Basin[J]. Natural Gas Geoscience,2020,31(8):1126-1138.

34
陈戈,赵继龙,杨宪彰,等.塔里木盆地秋里塔格构造带深部碎屑岩储层特征及控制因素[J].天然气工业, 2019,39(4):18-27.

CHEN G,ZHAO J L,YANG X Z,et al. Characteristics and con-trol factors of deep clastic reservoir in Qiulitag structural belt of Tarim Basin[J]. Natural Gas Industry,2019,39(4):18-27.

35
李栋.库车坳陷超深层白垩系沉积微相、地应力测井评价[D].北京:中国石油大学(北京),2021.

LI D. Evaluation of Sedimentary Microfacies and Geostress Logging in the Ultra Deep Cretaceous Strata of the Kuche Depression[D].Beijing:China University of Petroleum(Beijing),2021.

36
徐兆辉,徐振平,张荣虎,等.表腹双复杂构造区深层砂岩有效储层定量预测——以塔里木盆地中秋里塔格地区巴什基奇克组为例[J].石油地球物理勘探,2022,57(1):194-205,11-12.

XU Z H, XU Z P, ZHANG R H, et al. Quantitative prediction of effective deep sandstone reservoirsin the epigastric double complex structural area-taking the Bashijiqike Formation in the Middle Qiulitag area of the Tarim Basin as an example[J]. Oil Geophysical Prospecting,2022,57(1):194-205,11-12.

37
ZHU S,DU Q,DONG C,et al. Reservoir characteristics and controlling factors of large-scale Mono-Block Gas Field developed in delta-front sandstone:A case study from Zhongqiu 1 Gas Field in the Tarim Basin[J].Minerals,2023,13(10):1326.

38
赖锦,王贵文,柴毓,等.库车坳陷白垩系巴什基奇克组成岩层序地层特征[J].沉积学报,2015,33(2):394-407.

LAI J, WANG G W, CHAI Y, et al. Sequence stratigraphic characteristics of the Cretaceous Bashiqike Formation in the Kuche Depression[J]. Acta Sedimentologica Sinica,2015,33(2):394-407.

39
樊爱萍,赵娟,杨仁超,等.苏里格气田东二区山1段、盒8段储层孔隙结构特征[J].天然气地球科学,2011,22(3):482-487.

FAN A P, ZHAO J, YANG R C,et al. Pore structure characteristics of Shan1 and He8 Reservoirs in the east second zone of Sulige Gas Field[J]. Natural Gas Geoscience,2011,22 (3):482-487.

40
陈国俊,吕成福,王琪,等.珠江口盆地深水区白云凹陷储层孔隙特征及影响因素[J].石油学报,2010,31(4): 566-572.

CHEN G J, LÜ C F, WANG Q, et al. Pore characteristics and influencing factors of reservoir in Baiyun Sag in deep-water area of the Pearl River River Mouth Basin[J]. Acta Petrolei Sinica,2010,31(4):566-572.

41
刘翰林,杨友运,王凤琴,等.致密砂岩储集层微观结构特征及成因分析——以鄂尔多斯盆地陇东地区长6段和长8段为例[J].石油勘探与开发,2018,45(2):223-234.

LIU H L,YANG Y Y,WANG F Q,et al.Microstructure characteristics and genesis analysis of tight sandstone reservoirs:A case study of Chang 6 and Chang 8 in the Longdong area of the Ordos Basin[J]. Petroleum Exploration and Development,2018,45(2):223-234.

42
赖锦,王贵文,王书南,等.川中蓬莱地区须二段和须四段储层孔隙结构特征及影响因素[J].中国地质,2013,40(3):927-938.

LAI J, WANG G W, WANG S N, et al. Pore structure characteristics and influencing factors of Xu2 and Xu4 reservoirs in Penglai area,central Sichuan[J]. Geology of China,2013,40(3):927-938.

Outlines

/