Evaluation of controlling factors and favorable zones for coalbed methane enrichment and high production in the mid-deep southern Qinshui Basin

  • Yanhui YANG , 1 ,
  • Mengxi LI 1 ,
  • Hui ZHANG 1 ,
  • Zhongbo MI 1 ,
  • Chuanli PENG 1 ,
  • Ning WANG 1 ,
  • Yuhui CHAN 2
Expand
  • 1. PetroChina Huabei Oilfield Company,Renqiu 062552,China
  • 2. Beijing Aoneng Hengye Energy Technology Company,Beijing 100089,China

Received date: 2023-12-11

  Revised date: 2024-06-25

  Online published: 2024-07-15

Supported by

The PetroChina Huabei Oilfield Company Technology Research and Development Project “Evaluation of Coalbed Methane Potential Target and Integration of Geological Engineering in Qinnan Block of Qinshui Basin”

the PetroChina Forward-looking and Fundamental Technology Research and Development Projects(2021DJ2301)

Abstract

The mid-deep CBM has the characteristics of high gas content, high saturation, and contains free gas. New well seismic calibration and multi-attribute joint tectonic interpretation techniques are adopted to finely understand the tectonics, calibrate the interpreted layers, and accurately identify the faults and trapped columns. The unit water influx in An13 reservoir area of Anze block of the west wing of southern Qinshui Basin is below 4 m3/(m·d) in the area, and the main body is below 1 m3/(m·d), with weak hydrodynamic conditions. The statistical results of the coring data of the evaluation wells show that: (1) The cracks in the study area are relatively developed, the west is more developed than the east, the anisotropy is stronger at each point in the crack development area, the cracks in the direction of near north-south and near east-west are relatively developed, which belongs to the stress mechanism of the strike-slip faults, and the direction of the maximum horizontal principal stress NNE is favorable for the extension of fracturing cracks. (2) The porosity of the 3# coal seam averages 4.48%-4.5%. In the process of tectonic folding, due to the uplift of strata in the dorsal part, the pressure of strata decreases, methane is transported from the low part of the tectonics to the high part of the tectonics through the channels of pore space and fissure, etc., and the water of the coal seam seeps from the high to the low part of the tectonics due to the effect of gravity, and the coal seam gas enrichment mode of “the top of the tectonics is rich in gas and poor in water, the waist gas and water coexist, the bottom of the gas rich in water and poor in gas” is formed step by step. In order to obtain high gas production, it is necessary to find a favorable area in the reservoir where the gas saturation of the coal bed is more than 70% and the gas content is more than 14 m3/t. (3) For the open system of the reservoir with external water recharge, the supply boundary pressure remains unchanged, and the pressure within the drainage range decreases slowly due to external water recharge; when the reservoir is a closed system, the water body of the reservoir is of the stagnant type; when the reservoir is a semi-closed system, the water body of the reservoir is of the weak runoff type. (4) Coalbed methane wells in the Mabidong block of the west wing of southern Qinshui Basin are generally buried at a depth of 800-1 200 m, with an average fracturing fluid volume of 946.5 m3. The single-phase flow period after returning to the drainage adopts a fixed water production volume and a fixed flow pressure rate, and the single-phase flow pressure drop rate is kept at 0.05-0.1 MPa/d, with the average time of the single-phase period of 108 days, the cumulative drainage volume of 560 m3, and an average desorption pressure of 4 MPa, and the drainage curve is of the rising water production type, with a sharp peak before desorption and a long stable production period.

Cite this article

Yanhui YANG , Mengxi LI , Hui ZHANG , Zhongbo MI , Chuanli PENG , Ning WANG , Yuhui CHAN . Evaluation of controlling factors and favorable zones for coalbed methane enrichment and high production in the mid-deep southern Qinshui Basin[J]. Natural Gas Geoscience, 2024 , 35(10) : 1740 -1749 . DOI: 10.11764/j.issn.1672-1926.2024.04.010

0 引言

我国煤层气资源丰富,主要分布在鄂尔多斯、准噶尔、沁水1-5等盆地,埋深1 000~2 000 m的中深层资源量为18.72×1012 m3;埋深大于2 000 m的深层资源量超过40×1012 m3,其中2 000~3 000 m的深层资源量为(18~20)×1012 m3。鄂尔多斯盆地东部6-14、准噶尔盆地东部与沁水盆地马必、郑庄等区块的中深层(埋深800~2 000 m)煤层气勘探开发均取得了一定的成效,形成了 “ 煤层气甜点区” 优选,和以水平井分段压裂为主的增产工艺技术,通过增加压裂排量和施工规模,形成复杂裂缝网络,提高了煤层气单井产量和最终采收率。但对于埋深2 000 m以深的深部煤层,如大宁—吉县深部煤储层,其煤层气多为游离气和吸附气共存的赋存模式,尚未形成针对性开发方案。沁水盆地累计探明储量为2 929×108 m3,已开发1 073×108 m3,90%以上未开发储量位于埋深大于800 m的区域。国内学者已围绕沁水盆地开展了大量研究并取得了多项相关基础理论研究成果15-24,但仍有许多问题尚未完全解决,如:沁水盆地深部煤层气原始气、水赋存状态复杂,吸附气、游离气原始赋存机理不明确;深部煤样的提钻时间长、损失气大,会造成实测含气量小;深层煤层气成藏地质条件复杂,富集规律和评价指标不完善,产气机理和开发特征尚不清楚;深部煤层气储层具有高含气、高饱和、含有游离气特征,气体产出不明显依赖于“排水降压”,可能存在“排气诱导解吸”作用,应优选“甜点区”以支撑深层煤层气储量开发与高效建产。针对上述问题,本文以沁南西安13 井区为研究对象,探讨中深部煤层气富集高产控制因素,评价有利区,明确产气规律,为高效开发中深部煤储层提供理论指导。

1 储层地质及开发概况

安泽区块安13井区地处马必东区块北部,构造上位于沁水盆地南部(一级构造单元)西翼的安泽斜坡(二级构造单元),煤层埋深介于800~1 200 m之间,属于中深部储层,横跨安泽斜坡的中部褶皱带和东部缓坡带(三级构造单元)。在实际工作中,采用新型井震标定和多属性联合构造解释技术,通过优选地震子波,精细认识构造、标定层位,准确识别断层和陷落柱。同时,通过第三代相干算法(本征结构相干算法),提取相干属性作为参照进行断层识别,其分辨能力更高,能识别肉眼不能识别的小断层、小陷落柱。解释精度提高到构造海拔等值线为2 m,断层断距为10 m,陷落柱直径为60 m,断裂认识更加清楚,构造形态认识更加精细,如图1所示。根据区内及临近区48口井煤层厚度统计,3#煤发育稳定,平均为6.1m;15#煤平均厚度为3.1 m。受构造形态控制,西部背斜隆起埋深小于1 000 m,安13井周围埋深小于600 m;东部洼槽埋深大于1 000 m。3#煤和15#煤储层类型相近,主要为半亮煤—光亮煤,利于开发以及后期的改造,研究区3#R O值为2.3%~2.8%,15#R O值为2.4%~2.9%。
图1 安泽区块A13井区3#煤2 m精细构造

Fig.1 Fine tectonic of 2 m of 3# coal in A13 well area of Anze block

水动力条件对煤层气的成藏具有双重效果,水力封闭作用有助于煤层气成藏,水力排驱作用则造成煤层气的逸散。安泽区块处于水动力弱径流区,利于煤层气保存。据地层水资料分析,3#煤层和15#煤层采出水矿物离子以Na+和HCO3 -为主,水型均为NaHCO3型,如表1所示,安泽区块安13井储量区单位涌水量在研究区内为4 m3/(m·d)以下,主体在1 m3/(m·d)以下,水动力条件较弱。
表1 An13井区煤层产出水化验分析

Table 1 Analysis of water production from coal bed in An13 well area

煤层 井号 离子浓度/(mg/L) 总矿化度/(mg/L)
Na+、K+ Mg2+ Ca2+ Cl- SO4 2- HCO3 -
3# An3 493 5 4 141 9 1 089 1 741
An12 637 5 8 230 19 1 318 2 216
平均值 565 5 6 186 14 1 203 1 978
15# An17 735 2 4 141 9 1 719 2 611
An8 746 17 35 389 9 1 490 2 686
An10 703 12 59 301 9 1 576 2 660
平均值 728 10 33 277 9 1 595 2 652
研究区属于走滑断层应力机制,最大水平主应力方向为NNE向,有利于压裂改造产生长缝;根据波形聚类对煤体结构平面预测,对研究区的煤体结构分布规律进行了精细刻画,建立波形聚类煤体结构预测模型,并与钻井取心结构进行对比(图2)。根据评价井取心资料统计结果,3#煤孔隙度为3.61%~5.04%,平均为4.48%;15#煤孔隙度为2.99%~5.92%,平均为4.5%。
图2 安泽区块安13井区波形聚类煤体结构预测结果

Fig.2 The waveform clustering coal body structure prediction results of An13 well area in Anze block

根据评价井微地震裂缝测试,本区最大主应力方向为NE向(约 35°),主要受长治地区NEE向挤压应力影响(表2)。
表2 沁水盆地南部西翼马必东区块裂缝监测方位统计

Table 2 Crack monitoring azimuth statistics in the Mabidong block of the west wing of southern Qinshui Basin

井号 裂缝方位/(°) 裂缝长/m 井号 裂缝方位/(°) 裂缝长/m
Q4-10 9 452 An1-57 317 230
Q7-6 333 193 57 170
Q14-4 317 113 An1-58x 310 380
42 197 An46 38 210
Q14-9 315 190 Q7-15 300 320
31 325 An1-53x 318
Q17-6 8 392 An4-102x 279 280
An1-45x 308 350 An4-103 292 150
An1-49 46 330 302 140
An1-56x 259 320 An15 330 240
46 220 An51 35 250
An3 38 190 37 170
通过电镜观察,区块局部裂隙发育,部分裂隙被矿物充填,主裂隙与次裂隙呈直交及斜交分布,建产区内微观孔隙类型以铸模孔为主,其次为气孔,部分孔隙被充填,碎裂煤孔隙主要表现为塑性变形;原生—碎裂煤孔隙以原生孔为主,裂隙以平行状为主,原生结构煤主要表现为脆性变形,塑性变形孔隙挤压变形和裂隙短/呈曲线状;脆性变形时孔裂隙呈平直状,原生煤孔隙度介于3.5%~4.5%之间,吸附孔贡献率>75%;不同孔径孔隙之间连通性较差,碎裂煤孔隙度介于6%~6.7%之间,渗流空间体积明显增大;孔裂隙之间连通性有所提高(图3)。
图3 安泽区块煤样扫描电镜(SEM)照片

(a)安13井3#煤电镜照片,微孔隙,×1 000;(b)安13井15#煤电镜照片,微孔隙,×600;(c)安68X井3#煤电镜照片,微孔隙,×800;(d)安68X井 15#煤电镜照片,微孔隙,×1 500;(e)安5井3#煤电镜照片,微孔隙,×650;(f)安5井15#煤电镜照片,微孔隙,×800;(g)安14井3#煤电镜照片,微孔隙,×2 000;(h)安14井15#煤电镜照片,微孔隙,×3 000

Fig.3 Scanning electron microscope (SEM) photographs of coal samples from the Anze block

综合分析评价井取心测试结果与试采数据和区内评价井注入/压降试井资料,3#煤层渗透率在(0.01~0.04)×10-3 μm2之间,平均为0.027×10-3 μm2;15#煤层渗透率为0.013×10-3 μm2。3#煤层含气量为12~25 m3/t,平均为19 m3/t,西部由于埋深较浅、热演化程度略低(贫煤),含气量稍低;断层、陷落柱附近含气量低;15#煤层含气量为11~25 m3/t,平均为18 m3/t,通过显微观察,裂缝整体发育,连通性好,如表3所示。
表3 安泽区块区不同井位部分岩心显微裂隙观察

Table 3 Observation of microscopic fractures in core sections at different well positions in Anze block

井号 煤层号 主裂隙

裂隙密度

/(条/cm)

裂隙连通性 裂隙发育情况
长度/cm 高度/cm 宽度/μm 总宽度/cm
An4-103 3# 1.24 0.17 16 104 6.5 发育
An29 3# 0.27 0.4 6 37.8 6.3 中等 发育
An26 3# 0.29 0.27 9 72 8 发育
An7 3# 0.45 0.24 5 55 11 中等 极发育
An14 3# 0.23 0.22 3 24.3 8.1 中等 发育
An1-54 3# 0.24 0.22 7 55.3 7.9 中等 发育
An5 3# 0.28 0.29 5.75 46.9 8.15 中等 发育
An16 15# 0.39 0.34 13.67 64.2 4.7 中等 发育
An1-54 15# 0.16 0.19 7 29.4 4.2 中等 发育
An12 15# 0.59 0.56 23 132.7 5.77 中等 发育
An11 15# 0.25 0.24 9.8 72.1 7.36 较发育
平均 0.40 0.28 9.56 63.06 7.08
依据等温吸附、试井及试采实测结果,3#煤层含气饱和度为75%~99%,平均为86%;15#煤层含气饱和度为72%~95%,平均为84%。3#煤层压力系数为0.61~0.81;15#煤层压力系数为0.89,属低压气藏。
研究区共投产3#煤层稳定排采井20口,平均排水期为67 d,解吸前平均日产水1.7 m3,解吸压力为2.1~8.1 MPa,解地比为0.3~0.8,平均最高日产气量为1 840 m3,稳定日产气量为1 182 m3,其中3口井峰值日产气量达到3 000 m3以上。共投产15#煤评价井6口,排采正常的5口井中,4口峰值日产气量达2 000 m3以上,表现出较强的生产能力。

2 中深部煤层气富集高产因素分析

2.1 中深部煤层气富集条件及成藏模式

国内学者针对深部煤层形成了“沉积控煤、构造控藏、水动力控气、地应力控渗及物性控产”五要素协同理论27,基于此理论进一步构建了“构造控藏、沉积控储、保存控聚和裂缝控产”的深部高阶煤煤层气成藏富集模式,筛选构造、埋深、厚度、含气性、水动力、顶底板、煤体结构及裂缝等为煤层气富集高产主控因素,如图4所示。中深部断裂不同于浅部断裂,煤层气未有大规模逸散,其顶部仍可为较好的“甜点”区,在断裂附近进行压裂时,压裂缝会沟通断裂,使改造效果变差。根据取心测试结果显示,含气量与断裂距离呈较好的对数曲线正相关关系,如图5所示,由于游离气和其他控制因素影响,含气量与断裂距离并非完全正相关。
图4 沁水盆地南部煤层气富集高产模式

Fig.4 Coalbed methane enrichment and high production pattern in the southern Qingshui Basin

图5 已开发区含气量与距断裂距离关系

Fig.5 Plot of gas content in developed areas versus distance from fracture

在褶皱形成过程中,背斜部位由于地层抬升,地层压力下降,发生解吸作用,甲烷等烃类气体受浮力作用,逐步形成“构造顶部富气贫水,腰部气、水共存,底部富水贫气”的煤层气富集模式,东、西两翼宽缓斜坡带有利于形成水力封堵型煤层气藏,构造应力的微观作用主要是通过裂隙的宽度和裂隙间距实现对原始渗透率的控制作用,裂隙宽度越大,裂隙间距越小,渗透率越高。不同煤体结构对渗透率和可改造性影响不同,随着埋藏深度的增加,渗透率呈指数减小,地应力增大。在埋深大于800 m的中深储层,当渗透率小于0.1×10-3 μm2时,闭合应力增加,压裂难度增大,应力作用控制裂缝大小及展布方向,影响压裂和产气效果(表4),向斜部位通常为局部应力场,裂缝垂直向斜长轴方向,受走滑断层应力影响,压裂过程有利于形成长缝,最大主应力为29~40 MPa,水平主应力差系数为0.63~0.85,水势等势面指示储层压力,矿化度反映地下水流动状态。
表4 安泽区块安13井区地应力统计

Table 4 Statistics of geostress in An13 well area of Anze block

井号 顶深/m 最大水平主应力/MPa 最小水平井主应力/MPa 垂向应力/MPa 水平主应力差系数 产能/(m3/d)
An1-43 1 003.5 36.5 21.29 27.09 0.71 418低产型
An1-54 995.5 38.34 22.7 26.88 0.69 200~1 000递减型
An3 863 35.29 21.61 23.30 0.63 /
Q4-10 1 046.5 40.04 24.55 28.26 0.63 1 000波动型
An16 849.56 28.88 17.39 22.94 0.66 /
An13 552.8 29.01 15.7 14.93 0.85 /
对于半封闭储层,水体类型为弱径流型25-26,采出水既包括补给水也包括一定煤层水。通过监测MP54-3-1s井压裂裂缝方向为NNE、NW和近SN向,裂缝延伸方向和距离规律性不强,该区域煤储层表现出非均质性较强的特性。如图6所示。
图6 MP54-3-1S井压裂裂缝监测

Fig.6 Fracture fracture monitoring of Well MP54-3-1S

2.2 中深部煤层有利区评价

产能建设区域优选的目的是寻找地质甜点和工程甜点的结合体,构成地质单元27,确保所选区域在现有工程技术条件下能够实现高效开发。安13井区地质条件东西差异较大,东部处于安泽东部缓坡带,构造简单,煤层产状平缓,以原生煤为主、埋深大、含气量高;西部处于安泽中部褶皱带,褶皱发育,煤层产状变化大,碎裂煤为主、埋深浅、含气量低,以构造单元为基础,综合考虑煤体结构、含气性、埋深等方面,进行精细分区评价。依据高煤阶甜点区优选标准划分有利区,如表5所示。
表5 高煤阶甜点区优选标准

Table 5 Preference criteria for high coal rank dessert area

序号 评价分类 评价要素 衡量指标 甜点区 二类区 三类区
1 富集要素 沉积作用 煤层厚度/m >5.5 3.0~5.5 <3.0
2 顶底板岩性 泥岩 泥质砂岩 砂砾岩
3 含气性 气体生长指数 >0.4 0.31~0.4 0.27~0.31
4 气体逸散系数/% <0.4 0.4~0.6 0.6~0.8
5 含气量/(m3/t) >26 20~26 <20
6 构造作用 断层密度/(条/10 km2 <1 1~5 >5
7 地层倾角/(°) <5 5~10 >10
8 水文地质 矿化度/(mg/L) >2 000 1 000~-2 000 <1 000
9 甲烷碳同位素/‰ >-35 -42~-35 <-42
10 水动力系数/% <2 2~4 >4
11 渗透要素 应力 应力聚集系数 <0.25 0.25~0.4 >0.4
12 裂缝 裂缝密度/(条/cm) >8 3~8 <3
13 裂缝发育指数 >100 50~80 <50
14 煤体结构 煤体结构分类 原生、原生—碎裂 碎裂 碎粒糜棱
15 埋深 埋深/m <1 400 1 400~1 600 >1 600

3 中深部煤层气井产气规律

3.1 中深层煤层气井生产特征

中深部煤层气井产气特征表现为“见套压快、上产速度快、初期产气量高、稳产期短、后期递减快”的特征。
处于同一构造带的马必东产建区东北部开发井表现为高部位产气量高、低部位产气量低。例如马必东M12X、M1-8X和M31X这3个井组位于构造高部位、背斜脊部,产气效果好,单井日产气量为2 000~3 000 m3,稳产气量大于3 000 m3/d,如图7所示。马必东M6X、M1-3X、M1-6X 这3口井位于构造低部位,产气效果差,单井日产气量仅为200~1 000 m3。如图8所示。
图7 M31-10X井排采曲线

Fig.7 Discharge curves of Well M31-10X

图8 MP63-3-3S井排采曲线

Fig.8 Discharge curves of Well MP63-3-3S

3.2 中深层煤层气开发工程技术优化

基于“长距离有效支撑,大规模体积改造”理念28-30,采用地质—工程一体化方法研究储层工艺技术适应性,套管压裂可控水平井是高效开发的主要技术手段,沁南西地区渗透率低,筛管完井不压裂的单支水平井适应性较差。后优选可控水平井作为本地区适用工程技术,在研究区安1大井组3#煤层开展了4种不同压裂工艺试验,分别为传统常规活性水压裂、低前置比压裂、低前置比快速返排压裂、胍胶压裂。低前置比—快速返排压裂技术能有效减少地层压力抬升、微孔隙水锁,改造效果最好。为进一步提高改造效果,在低前置比—快速返排的基础上,对射孔位置与方式、加砂模式、施工排量、压裂设备等因素优化设计,形成包含低前置比—快速返排、优质储层段集中射孔压裂、一体化分段压裂改造等疏导式压裂改造关键技术。经现场试验,增大沁水中深层压裂排量可有效增加裂缝长度,提高单井产量更显著,提高排量到10~12 m3/min以上,水平井日产量由原来的5 000~6 000 m3提升到10 000 m3以上。

4 结论

(1)沁水盆地南部中深部煤层的沉积、构造、水动力、地应力、埋深、煤体结构及裂缝等多种耦合因素对储层含气性和气、水渗流特征影响显著,可采用新型井震标定和多属性联合构造解释技术进行精细分区评价,依据高煤阶甜点区优选标准划分有利区。
--引用第三方内容--

(2)中深部煤层气有利区普遍具有含气量高、低渗特征,气、水产出曲线具有解吸压力高、稳产期短、递减快的特征,可通过各阶段排采指标进行优化控制。

(3)采用地质—工程一体化方法研究储层工艺技术适应性,套管压裂可控水平井是高效开发的主要技术手段,通过低前置比—快速返排工艺及提高压裂排量优化水平井产能,低前置液—快速返排压裂减少了外来液体进入,快速排出高压液体和煤粉,降低外来水及地层压力抬升对煤储层伤害,优质储层段集中射孔压裂技术可造长缝,提高导流能力。
1
李辛子,王运海,姜昭琛,等.深部煤层气勘探开发进展与研究[J].煤炭学报,2016,41(1):24-31.

LI X Z,WANG Y H,JIANG Z C,et al. Progress and study on exploration and production for deep coalbed methane[J].Journal of China Coal Society, 2016,41(1):24-31.

2
秦勇,申建,沈玉林.叠置含气系统共采兼容性——煤系“三气”及深部煤层气开采中的共性地质问题[J]. 煤炭学报,2016,41(1):14-23.

QIN Y,SHEN J,SHEN Y L. Joint mining compatibility of surperposed gas-bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series [J] Journal of China Coal Society,2016,41(1):14-23.

3
王玫珠,王勃,孙粉锦,等.沁水盆地煤层气富集高产定量评价[J].天然气地球科学,2017,28(7):1108-1114.

WANG M Z,WANG B,SUN F J,et al.Quantitative evaluation of CBM enrichment and high yield of Qinshui Basin[J].Natural Gas Geoscience,2017,28(7):1108-1114.

4
孙粉锦,王一兵,王勃,等.华北中高煤阶煤层气富集规律和有利区预测[M].徐州:中国矿业大学出版社,2012:5-39.

SUN F J, WANG Y B, WANG B, et al. Enrichment Patterns and Favorable Area Prediction of Coalbed Methane in Middle-High Rank Coal in North China[M]. Xuzhou: China University of Mining and Technology Press, 2012:5-39.

5
孙钦平,赵群,姜馨淳,等.新形势下中国煤层气勘探开发前景与对策思考[J].煤炭学报,2021,46(1):65-76.

SUN Q P,ZHAO Q,JIANG X C,et al. Prospects and strategies of CBM exploration and development in China under the new situation[J].Journal of China Coal Society, 2021,46(1):65-76.

6
聂志宏,巢海燕,刘莹,等.鄂尔多斯盆地东缘深部煤层气生产特征及开发对策[J].煤炭学报,2018,43(6):1738-1746.

NIE Z H, CHAO H Y, LIU Y.et al. Development strategy and production characteristics of deep coalbed methane in the East Ordos Basin:Taking Daning-Jixian block for example[J]. Journal of China Coal Society,2018,43(6):1738-1746.

7
蔡益栋,高国森,刘大猛,等. 鄂尔多斯盆地东缘临兴中区煤系气富集地质条件及成藏模式[J].天然气工业,2022,42(11):25-36.

CAI Y D,GAO G S, LIU D M, et al. Geological conditions for coal measure gas enrichment and accumulation models[J]. Natural Gas Industry,2022,42(11):25-36.

8
顾娇杨,张兵,郭明强. 临兴区块深部煤层气富集规律与勘探开发前景[J].煤炭学报,2016,41(1):72-79.

GU J Y,ZHANG B,GUO M Q.Deep coalbed methane enrichment rules and its exploration and development prospect in Linxing block[J]. Journal of China Coal Society, 2016,41(1):72-79.

9
张兵,徐文军,徐延勇,等. 鄂尔多斯盆地东缘临兴区块深部关键煤储层参数识别[J].煤炭学报,2016,41(1):87-93.

ZHANG B,XU W J,XU Y Y,et al. Key parameters identification for deep coalbed methane reservoir in Linxing block of eastern Ordos Basin[J].Journal of China Coal Society,2016,41(1):87-93.

10
高玉巧,李鑫,何希鹏,等.延川南深部煤层气高产主控地质因素研究[J].煤田地质与勘探,2021,49(2):21-27.

GAO Y Q,LI X,HE X P,et al. Study on the main cotrolling geological factors of high yield deep CBM in southern Yanchuan Block[J].Coal Geology & Exploration,2021,49(2):21-27.

11
陈贞龙,王烽,陈刚,等. 延川南深部煤层气富集规律及开发特征研究[J].煤炭科学技术,2018, 46(6):80-84.

CHEN Z L,WANG F,CHEN G,et al. Study on enrichment law and development features of deep coalbed methane in South Yanchuan Field[J].Coal Science and Technology,2018,46(6):80-84.

12
陈刚,李五忠.鄂尔多斯盆地深部煤层气吸附能力的影响因素及规律[J].天然气工业,2011,31(10):47-49.

CHEN G, LI W Z.Infuencing factors and patterns of CBM adsorption capacity in the deep Ordos Basin[J].Natural Gas Industry,2011,31(10):47-49.

13
吴聿元,陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策[J]. 油气藏评价与开发,2020,10(4):1-11.

WU Y Y,CHEN Z L. Challenges and countermeasures for exploration and development[J]. Petroleum Reservoir Evaluation and Development,2020,10(4):1-11.

14
陈刚,胡宗全.鄂尔多斯盆地东南缘延川南深层煤层气富集高产模式探讨[J].煤炭学报,2018, 43(6):1572-1579.

CHEN G, HU Z Q. Discussion on the model of enrichment and high yield of deep coalbed methane in Yanchuannan area at southeastern Ordos Basin[J].Journal of China Coal Society,2018,43(6):1572-1579.

15
闫霞,徐凤银,聂志宏,等.深部微构造特征及其对煤层气高产“甜点区”的控制——以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426-2439.

YAN X,XU F Y,NIE Z H,et al. Microstrure characteristics of Daji area in East Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society, 2021,46(8):2426-2439.

16
申建,秦勇,傅学海,等.深部煤层气成藏条件特殊性及其临界深度探讨[J].天然气地球科学,2014,25(9):1470-1476.

SHEN J,QIN Y,FU X H,et al.Properties of deep coalbed methane reservoir forming conditions and critical depth discussion[J].Natural Gas Geoscience, 2014,25(9):1470-1476.

17
秦勇,申建,王宝文,等.深部煤层气成藏效应及其耦合关系[J].石油学报,2012,33(1):48-54.

QIN Y,SHEN J, WANG B W,et al.Accumulation effects and coupling relationship of deep coaled methane[J].Acta Pe-trolei Sinica,2012,33(1):48-54.

18
王延斌,陶传奇,倪小明,等.基于吸附势理论的深部煤储层吸附气研究[J].煤炭学报,2018,43(6):1547-1552.

WANG Y B, TAO C Q, NI X M, et al. Amount of adsorbed gas in deep coal reservoir based on adsorption potential theory[J]. Journal of China Coal Society,2018, 43(6):1547-1552.

19
秦勇,申建.论深部煤层气基本地质问题[J].石油学报,2016,37(1):125-136.

QIN Y, SHEN J. On the fundamental issues of deep coal-bed methane geology[J].Acta Petrolei Sinica,2016,37(1):125-136.

20
赵丽娟,秦勇,申建.深部煤层吸附行为及含气量预测模型[J].高校地质学报,2012,18(3):553-557.

ZHAO L J,QIN Y,SHEN J.Adsorption behavior and abundance predication model of deep coalbed methane[J].Geological Journal of China Universities, 2012,18(3):553-557.

21
刘大猛,李俊乾.我国煤层气分布赋存主控地质因素与富集模式[J].煤炭科学技术,2014,42(6):19-24.

LIU D M,LI J Q.Main geological controls on distribution and occurrence and enrichment patterns of coalbed methane in China[J].Coal Science and Technology, 2014,42(6):19-24.

22
赵丽娟,秦勇,WANG Geoff, 等.高温高压条件下深部煤层气吸附行为[J].高效地质学报,2013,19(4):648-654.

ZHAO L J,QIN Y, WANG G,et al. Adsorption behavior of deep coalbed methane under high temperaturesand pressures[J]. Geological Journal of China Universities,2013,19(4):648-654.

23
宋岩,柳少波,琚宜文,等.含气量和渗透率耦合作用对高丰度煤层气富集区的控制[J].石油学报,2013,34(3):417-426.

SONG Y, LIU S B,JU Y W,et al. Coupling between gas content and permeability controlling enrichment zones of high abundance coalbed methane[J].Acta Petrolei Sinica, 2013,34(3):417-426.

24
赵庆波.煤层气富集规律研究及有利区块预测评价[R].廊坊:中国石油勘探开发研究院廊坊分院,2011.

ZHAO Q B.Coalbed Methane Accumulation and Favorable Area Prediction[R].Langfang: Langfang Branch,PetroChina Research Institute of Petroleum Exploration and Development,2011.

25
徐锐,汤达祯,陶树,等.沁水盆地安泽区块煤层气藏水文地质特征及其控气作用[J].天然气工业,2016,36(2):36-44.

XU R, TANG D Z, TAO S, et al. Hydrogeological characteristics of CBM reservoirs and their controlling effectsin block Anze,Qinshui Basin[J]. Natural Gas Industry,2016,36(2):36-44.

26
叶建平,武强,王子和.水文地质条件对煤层气赋存的控制作用[J].煤炭学报,2001,26(5):459-462.

YE J P,WU Q,WANG Z H. Controlled characteristics of hydrogeological conditions on the coalbed methane migration and accumulation[J].Journal of China Coal Society,2001,26(5):459-462.

27
陈贞龙.延川南深部煤层气田地质单元划分及开发对策[J].煤田地质与勘探,2021,49(2):13-20.

CHEN Z L.Geological unit division and development countermeasures of deep coalbed methane in southern Yanchuan Block[J]. Coal Geology & Exploration, 2021,49(2):13-20.

28
姚红生,陈贞龙,何希鹏,等.深部煤层气“有效支撑”理念及创新实践——以鄂尔多斯盆地延川南煤层气田为例[J].天然气工业,2022,42(6):97-106.

YAO H S,CHEN Z L,HE X P,et al. “Effect support”concept and innovative practice of deep CBM in South Yanchuan Gas Field of the Ordos Basin[J].Natural Gas Industry,2022,42(6):97-106.

29
姚红生,陈贞龙,郭涛,等.延川南深部煤层气地质工程一体化压裂增产实践[J].油气藏评价与开发,2021,11(3):291-296.

YAO H S,CHEN Z L,GUO T,et al. Stimulation practice of geology-engineering intergration fracturing for deep CBM in Yuanchuannan Field[J].Reservoir Evaluation and Development, 2021,11(3):291-296.

30
申鹏磊,吕帅锋,李贵山,等. 深部煤层气水平井水力压裂技术——以沁水盆地长治北地区为例[J].煤炭学报,2021,46(8):2488-2500.

SHEN P L,LÜ S F,LI G S,et al.Hydraulic fracturing technology for deep coalbed methane horizontal wells:A case study in North Changzhi area of Qinshui Basin[J].Journal of China Coal Society, 2021,46(8):2488-2500.

Outlines

/