Geochemical characteristics and genesis of Paleozoic natural gas in the southern Ordos Basin

  • Tao ZHANG , 1 ,
  • Xiaofeng WANG , 2 ,
  • Xiaohui JIN 1 ,
  • Qingqiang MENG 1 ,
  • Yiran WANG 2 ,
  • Xiaoyan CHEN 2 ,
  • Wen ZHANG 2 ,
  • Juan ZHANG 1
Expand
  • 1. Petroleum Exploration and Production Research Institute,SINOPEC,Beijing 100083,China
  • 2. State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University,Xi'an 710069,China

Received date: 2023-10-10

  Revised date: 2023-11-01

  Online published: 2023-11-24

Supported by

The Joint Fund of National Natural Science Foundation(U224420046)

the SINOPEC Technology Department Project(P22071)

Abstract

The geochemical characteristics of Paleozoic natural gas in the southern part of the Ordos Basin are significantly different from those in the northern part. In addition to the increase in dryness coefficient caused by the increase in organic matter maturity of the source rocks and the heavier carbon isotope composition of methane, the CO2 gas content in the natural gas in the upper Paleozoic in the southern part of the basin is higher, and there is a common phenomenon of methane and ethane carbon isotope composition inversion. This article takes gas geochemistry as the main research method, and based on a systematic comparison of the north-south differences of natural gas in the Paleozoic Basin, discusses the origin and source of natural gas. The natural gas of the Upper Paleozoic in the southern part of the basin is mainly composed of high over mature coal type gas, and some sample gas geochemical indicators in some areas reflect the characteristics of lower paleomarine hydrocarbon sources. The overall inversion of methane and ethane carbon isotope composition in the Upper Paleozoic natural gas in the southern part of the basin is related to the mixing of different types of natural gas. The varying degrees of mixing of Lower Paleozoic oil type gas with relatively high ethane content and lighter ethane carbon isotope composition are the main reasons for the inversion of carbon isotope composition of Upper Paleozoic natural gas in the southern part of the basin. The geochemical indicators of natural gas in the Lower Paleozoic in the southern part of the basin reflect typical marine hydrocarbon source characteristics, and the possibility of a small amount of Upper Paleozoic coal type gas mixing cannot be ruled out.

Cite this article

Tao ZHANG , Xiaofeng WANG , Xiaohui JIN , Qingqiang MENG , Yiran WANG , Xiaoyan CHEN , Wen ZHANG , Juan ZHANG . Geochemical characteristics and genesis of Paleozoic natural gas in the southern Ordos Basin[J]. Natural Gas Geoscience, 2024 , 35(9) : 1616 -1625 . DOI: 10.11764/j.issn.1672-1926.2023.11.005

0 引言

鄂尔多斯盆地处于华北克拉通西部,目前已经成为我国最大的天然气产区1-2。已发现的大型天然气气田主要分布在鄂尔多斯盆地北部,其中苏里格气田探明天然气储量达3.5×1012 m3,靖边、榆林、神木、乌审旗、大牛地及子洲等气田的累计探明天然气储量均超过1 000×108 m3[3-4。盆地主要的天然气产出层位包括上古生界石炭系—二叠系碎屑岩地层和下古生界奥陶系的海相碳酸盐岩层系。上古生界石炭系—二叠系煤系烃源岩有机质丰度相对较高、分布范围非常广泛,烃源岩累积厚度达到80~150 m,具有生烃潜力较高,生烃范围较广的特点,其天然气成藏主要以“下生上储或自生自储”为主5-7。盆地北部上古生界天然气成藏过程主要受平缓的西倾单斜与广覆性复合叠置的砂岩控制。近年来,鄂尔多斯盆地中东部地区,多口探井在马家沟组盐下获得了工业气流,特别是米探1井在马家沟组四段获得高产气流,坚定了下古生界奥陶系盐下天然气勘探的信心8-9
鄂尔多斯盆地南部和北部在古生界地质条件上存在显著差异,油气勘探程度和勘探成果也相距较远,因此形成了“南油北气”的宏观认识10-14。近年来,在鄂尔多斯盆地南部地区的天然气勘探也取得了重要成果,发现了庆阳气田、延安气田、富县气田、宜川—黄龙气田等814-18。鄂尔多斯盆地南部古生界天然气地球化学特征与北部存在较大差异,除了由于烃源岩有机质成熟度升高造成的天然气干燥系数升高、甲烷碳同位素组成逐渐变重之外,盆地南部上古生界天然气中非烃气体含量更高,普遍出现甲、乙烷碳同位素组成倒转等现象。这些特殊现象与天然气的成因与来源有着密切联系。本文以气体地球化学为主要研究手段,在系统对比盆地古生界天然气南北差异基础上,讨论了盆地南部天然气成因与来源,为盆地南部的天然气勘探提供参考。

1 地质背景

鄂尔多斯盆地南部处在秦岭造山带与华北地块的接合部位,经历了多期次的构造运动,在构造应力的作用下,盆地南部断裂构造发育程度明显强于盆地北部19。从天然气成藏条件上讲,鄂尔多斯盆地南部地区与北部相比具有较为一致的生、储、盖条件和含气组合,优质储层条件在盆地南部同样分布广泛,也显示出良好的试气结果14
鄂尔多斯盆地南部地区上古生界煤系烃源岩包括暗色泥岩和煤岩,总体发育程度一般,煤层相对较薄,累计厚度一般分布在4~8 m之间,暗色泥岩一般分布在30~50 m之间20。盆地南部上古生界烃源岩有机质热演化成熟度已达过成熟阶段,镜质体反射率R O值分布在2.2%~3.0%之间,且由北向南逐渐升高21图1)。
图1 鄂尔多斯盆地主要气田位置分布(据文献[1521]修改)

Fig.1 Location distribution map of gas fields in the Ordos Basin (modified from Refs.[1521])

鄂尔多斯盆地奥陶系马家沟组发育了巨厚的碳酸盐岩与膏盐岩交互的沉积体系,嗜盐细菌和浮游藻类等成烃生物是这些层段有机质的主要贡献者,这些有机质中可溶有机质和酸溶有机质较为丰富,有机质类型相对较好,生烃转化率比较高,是鄂尔多斯盆地中东部地区下古生界奥陶系盐下重要的烃源类型22-23。该套烃源岩主要分布在马一段—马五段盐湖周缘的桃利庙洼陷、吴起—富县洼陷及斜坡区,具有层薄、层多、累计厚度大的特征824。盆地南部下古生界烃源岩有机质热演化成熟度同样已达过成熟阶段,镜质体反射率R O值大于3.0%25

2 盆地南部天然气地球化学特征

此文研究共收集和分析鄂尔多斯盆地南部天然气地球化学数据116组,主要分布在延安气田、宜川—黄龙气田、富县地区、志丹—甘泉地区、庆阳气田等。

2.1 天然气组分特征

鄂尔多斯盆地南部上古生界天然气化学组成以烃类为主,其中CH4含量分布在75.8%~97.9%之间(图2),平均为93.97%;C2H6含量分布在0.16%~4.98%之间,平均为0.892%;C3H8含量分布在0.02%~2.19%之间,平均为0.184%;干燥系数(C1/C1-5)分布在0.937~0.997之间,平均为0.988,以干气为主。鄂尔多斯盆地南部上古生界天然气化学组成中的非烃气体以N2和CO2为主,不含H2S气体。N2含量分布在0.06%~23.20%之间,平均为2.15%;CO2含量分布在0.14%~9.08%之间,平均为2.78%(图3)。
图2 鄂尔多斯盆地古生界天然气甲、乙烷含量分布特征(部分数据来自文献[41726-37])

Fig.2 Distribution characteristics of methane content in Paleozoic natural gas in the Ordos Basin (part of the data comes from Refs. [41726-37])

图3 鄂尔多斯盆地古生界天然气CO2含量分布特征(部分数据来自文献[41726-37])

Fig.3 Distribution characteristics of CO2 content in Paleozoic natural gas in the Ordos Basin (part of the data comes from Refs. [41726-37])

鄂尔多斯盆地南部下古生界天然气样品全部分布在马五段,天然气化学组成同样以烃类为主,其中CH4含量分布在77.7%~98.2%之间(图2),平均为90.35%,略低于南部上古生界天然气。C2H6含量分布在0.18%~8.36%之间,平均为1.11%;C3H8含量分布在0.01%~2.17%之间,平均为0.367%,乙丙烷含量明显高于盆地南部上古生界天然气。干燥系数(C1/C1-5)分布在0.947~0.998之间,平均为0.986,同样以干气为主。鄂尔多斯盆地南部下古生界天然气中N2含量分布在0.01%~8.76%之间,平均为2.41%;CO2含量分布在0.04%~16.98%之间,平均为4.95%,显著高于盆地南部上古生界天然气(图3)。盆地南部下古生界天然气中多个样品检测到H2S,主要集中在延安气田马五段,含量分布在0.01%~2.66%之间,平均为0.742%41726-37

2.2 天然气稳定同位素组成特征

鄂尔多斯盆地南部地区上古生界天然气的甲烷碳同位素(δ13C1)值分布在-38.0‰~-25.4‰之间,平均为-29.6‰,相对较高;乙烷碳同位素(δ13C2)值分布在-37.6‰~-20.9‰之间,平均为-32.7‰,相对较低,大部分样品出现了甲、乙烷碳同位素组成倒转;丙烷碳同位素(δ13C3)值分布在-37.3‰~-19.6‰之间,平均为-30.9‰。甲烷氢同位素( δ D C H 4)值分布在-175‰~-146‰之间,平均为-166%;乙烷氢同位素( δ D C 2 H 6)值分布在-197‰~-118‰之间,平均为-180‰,大部分样品同样出现了甲、乙烷氢同位素组成倒转。
盆地南部下古生界天然气δ13C1值分布在-38.3‰~-27.5‰之间,平均为-32.8‰,δ13C2值分布在-39.6‰~-24.7‰之间,平均为-34.3‰,下古生界甲、乙烷碳同位素值明显轻于上古天然气,样品出现了甲、乙烷碳同位素组成倒转;δ13C3值分布在-37.3‰~-25.9‰之间,平均为-30.9‰。 δ D C H 4值分布在-174‰~-155‰之间,平均为-165%。

3 盆地南部上古生界天然气成因类型

鄂尔多斯盆地古生界天然气勘探取得巨大成功,先后发现了上古生界石炭系—二叠系致密砂岩气藏、下古生界奥陶系风化壳气藏以及下古生界奥陶系盐下白云岩气藏238。盆地北部上古生界致密砂岩气藏的烃源岩以石炭系—二叠系煤系为主,目前对该套烃源的空间分布、有机质类型、热演化程度等研究较为成熟,盆地南部上古生界天然气地球化学特征存在异常,对其成因认识仍不清晰。
天然气烷烃气体碳同位素组成是研究天然气成因的主要手段,在相同热演化阶段,原生的煤型气与油型气相比具有相对较重的甲、乙烷碳同位素组成39-42。其中,乙烷碳同位素组成(δ13C2)具有很好的区分煤型气与油型气的作用,一般情况下煤型气δ13C2值高于-28‰,而油型气的该参数低于这一数值43-44。另外,天然气形成之后的次生改造作用,例如生物氧化、TSR、混合作用等,会改变天然气烷烃气体原有的化学组成与同位素组成特征,增加天然气成因研究的难度45-47。前人研究显示,鄂尔多斯盆地下古生界天然气发生了明显的TSR作用,TSR作用会使天然气烷烃气体的碳同位素组成显著变重,这种特征在 C 2 +组分上更为显著4648-49
鄂尔多斯盆地上古生界天然气甲、乙烷碳同位素组成特征显示(图4),盆地北部天然气的δ13C2值主体高于-28‰,甲烷碳同位素组成随C—P煤系烃源岩热演化成熟度升高而逐渐变重,体现了典型煤型气特征。盆地南部天然气δ13C2值整体低于-28‰,同时出现了甲、乙烷碳同位素组成的倒转现象(δ13C113C2)。从甲、乙烷碳同位素组成特征来看,盆地南部上古生界天然气与盆地北部天然气差异显著,不是典型煤型气特征,可能经历次生改造作用。
图4 鄂尔多斯盆地古生界天然气甲、乙烷碳同位素组成特征(部分数据来自文献[41726-37])

Fig.4 Carbon isotope composition characteristics of methane and ethane in Paleozoic natural gas from the Ordos Basin (part of the data comes from Refs. [41726-37])

天然气常见的次生改造作用包括混合作用、微生物氧化作用和热化学硫酸盐热还原作用(TSR)等4548-49。前人4648-49研究显示,天然气中的重烃气体(C2—C5)更容易发生微生物氧化和TSR作用,这些作用会造成剩余天然气干燥系数升高,C2—C5碳同位素组成变重。盆地南部天然气乙烷碳同位素组成显著变轻,除了微生物氧化作用和热化学硫酸盐热还原作用等因素的影响之外,不同类型天然气混合作用有关。
甲烷是天然气的主要化学组成,甲烷的碳、氢同位素组成是研究天然气成因最直接的指标50。同时甲烷碳、氢同位素组成受厌氧微生物氧化和TSR作用的影响相对较小,可靠程度较高。前人4250研究显示,煤型气具有相对较低的 δ D C H 4值和相对较高的δ13C1值,而典型海相油型气恰恰相反,具有相对较高的 δ D C H 4值和相对较低的δ13C1值。图5为古生界不同地区天然气的甲烷碳、氢同位素组成分布图,从图5中可以看到,盆地南部上古生界天然气主体依然与盆地北部天然气一致,体现了煤型气特征。
图5 鄂尔多斯盆地古生界天然气甲烷碳、氢同位素组成特征(部分数据来自文献[41726-37])

Fig.5 Characteristics of methane carbon isotope and hydrogen isotope composition of Paleozoic natural gas in the Ordos Basin (part of the data comes from Refs.[41726-37])

甲烷碳、氢同位素组成明显重于盆地北部,这主要与盆地南部烃源岩热演化成熟相对较高有关21。甲烷是天然气的主体,从天然气甲烷地球化学特征来看,盆地南部上古生界天然气属于高过成熟煤型气。宜川与富县地区部分天然气样品(Y11,Y14等)体现了海相烃源的特征,同时这些样品具有相对较轻的甲、乙烷碳同位素组成特征(图3),可能与下古生界海相烃源岩有关。
盆地南部下古生界天然气的甲、乙烷碳同位素组成体现了典型海相油型气特征,具有相对较轻的甲、乙烷碳同位素组成(图4),同时出现了δ13C2值的“反转”。对于海相烃源岩形成天然气出现δ13C2值“反转”的机理存在多种学说51-54,争议较大,但是这种现象在多个盆地被证实55。盆地南部下古生界天然气的甲烷碳、氢同位素组成也体现了海相油型气特征(图5),具有相对较高的 δ D C H 4值和相对较低的δ13C1值,但是与四川和塔里木盆地海相天然气相比,与煤型气的地球化学差别并不显著,可能与存在少量上古生界煤型气的混合有关。盆地南部下古生界发育巨厚的碳酸盐岩与膏盐岩交互的沉积体系,具有发生TSR作用的条件,天然气中具有相对较高的CO2和H2S气体是TSR作用的结果。

4 盆地南部天然气混合机制

盆地南部天然气δ13C2值显著降低是造成南部天然气甲、乙烷同位素倒转的主要原因,同时这些样品具有相对较低的乙烷含量(图6)。盆地北部上古生界煤型气乙烷含量主要分布在1%~8%之间,盆地南部天然气乙烷含量主体小于1%。
图6 鄂尔多斯盆地古生界不同地区天然气乙烷含量与乙烷碳同位素组成特征(部分数据来自文献[41726-37])

Fig.6 Characteristics of ethane content and ethane carbon isotope composition in Paleozoic natural gas from the Ordos Basin (part of the data in comes from Refs.[41726-37])

鄂尔多斯盆地上古生界烃源岩热演化成熟度整体分布特征为,盆地东北部R O值相对较低,盆地北部由东向西逐渐升高,其中神木地区R O值约为1.2%,苏里格地区R O值约为1.6%。盆地南部上古生界烃源岩热演化成熟度整体较高,其中延安地区R O值达到2.6%左右,富县地区达3.0%21。对于有机热成因天然气而言,一方面,成熟度越高,天然气的C2—C5含量越低,干燥系数越高;另一方面,在相同热演化阶段,油型气的干燥系数显著低于煤型气,这是由于腐殖型干酪根和腐泥型干酪根的结构差异造成的41。盆地南部上古生界烃源岩热演化成熟度整体较高,形成的煤型天然气干燥系数整体较高。塔里木盆地库车坳陷克拉2气田的烃源岩为三叠系—侏罗系煤系烃源岩,热演化程度R O值超过2.8%,与鄂尔多斯盆地南部气田的烃源岩地质背景具有一定相似性,克拉2气田天然气乙烷含量分布在0.31%~0.53%之间,δ13C1值平均为-27.3‰,δ13C2值平均为-18.6‰56-58。因此,鄂尔多斯盆地南部地区上古生界煤系烃源岩生成天然气,其原始地球化学特征应该具有相对较重的乙烷碳同位素组成和更低的乙烷含量。盆地南部上古生界天然气乙烷同位素组成变轻与其他来源天然气的混合有关。
近几年来,鄂尔多斯盆地中东部地区,多口探井在马家沟组盐下地层中获得了工业气流8,同时盐下天然气地球化学证据表明,马家沟组盐下碳酸盐岩是奥陶系盐下天然气的主要气源岩59-61。特别是米探1井在马家沟组四段获得高产气流,坚定了下古生界存在有效烃源的认识8-962
盆地南部宜川—黄龙地区的Y11、Y14样品气体地球化学特征体现了典型海相烃源岩,与盆地南部地区下古生界储层天然气的乙烷特征一致,具有相对较高的乙烷含量和相对较轻的乙烷碳同位素组成(图6)。盆地南部上古生界天然气属于高过成熟煤型气与下古生界油型气混合的结果。由于南部上古生界煤系烃源岩成熟度较高,形成的煤型气干燥系数较高,乙烷含量极低,相反,下古生界海相烃源岩有机质类型好,生成的天然气具有相对较高的乙烷含量,少部分的下古生界油型气贡献即可导致混合后的天然气乙烷体现出油型气的特征。这种混合作用对甲烷碳同位素组成影响相对较小,但是仍然有明显的体现。盆地南部天然气δ13C1值与源岩R O之间的关系异常。宜川—黄龙地区具有明显较高的热演化成熟度(R O>2.8%,图1),然而该地区天然气的甲烷碳同位素组成相对较轻(图4)。相反,志丹—甘泉地区烃源岩热演化成熟度明显较低(R O=2.4%~2.6%),但其甲烷碳同位素组成却相对较重。这种差异与不同的混合比例有关。
鄂尔多斯盆地南部上古生界天然气与北部相比具有明显较高的CO2含量,这些CO2的来源也与下古生界天然气的混合作用有关。鄂尔多斯盆地下古生界天然气整体具有相对较高的CO2和H2S含量,其成因主要与硫酸盐热化学还原反应(TSR)有关61。H2S在后期演化过程中更容易被消耗或转化为黄铁矿等形式。CO2可以作为下古生界来源天然气贡献的重要证据之一。

5 结论

(1)鄂尔多斯盆地南部地区上古生界天然气与盆地北部相比,具有相对较高的C1/C1-5值和CO2气体含量。盆地南部下古生界天然气重烃气体含量明显高于上古生界,下古生界天然气非烃中除CO2含量较高之外,同时含有较高的H2S含量,高含量的CO2和H2S气体与TSR有关。
(2)甲烷碳、氢同位素组成特征显示,盆地南部上古生界天然气主体以高过成熟煤型气为主,宜川—黄龙地区的部分样品气体地球化学特征体现了典型海相烃源特征。盆地南部下古生界天然气具有相对较高的 δ D C H 4值和相对较低的δ13C1、δ13C2值,体现了典型海相烃源特征。
(3)鄂尔多斯盆地南部上古生界天然气整体出现甲、乙烷碳同位素组成倒转现象,这与不同类型天然气的混合作用有关。具有相对较高的乙烷含量和较轻乙烷碳同位素组成的下古生界油型气不同程度的混合是造成盆地南部上古生界天然气整体出现甲、乙烷碳同位素组成倒转的主要原因。盆地南部下古生界天然气可能存在少量上古生界煤型气的混合。
1
何江川,余浩杰,何光怀,等. 鄂尔多斯盆地长庆气区天然气开发前景[J].天然气工业,2021,41(8):23-33.

HE J C, YU H J, HE G H, et al. Natural gas development prospect in Changqing gas province of the Ordos Basin[J]. Na-tural Gas Industry, 2021, 41(8): 23-33.

2
付金华,刘新社,魏柳斌,等.鄂尔多斯盆地奥陶系盐下马家沟组四段天然气勘探突破及意义[J].中国石油勘探,2022,27(2):47-58.

FU J H, LIU X S, WEI L B, et al. Breakthrough and significance of natural gas exploration in the fourth member of Majiagou Formation of subsalt Ordovician in Ordos Basin[J]. China Petroleum Exploration, 2022, 27(2): 47-58.

3
付金华,魏新善,任军峰,等.鄂尔多斯盆地天然气勘探形势与发展前景[J]. 石油学报,2006,27(6):1-4.

FU J H,WEI X S, REN J F, et al. Gas exploration and developing prospect in Ordos Basin[J]. Acta Petrolei Sinica, 2006, 27(6): 1-4.

4
杨华,刘新社,闫小雄,等. 鄂尔多斯盆地神木气田的发现与天然气成藏地质特征[J]. 天然气工业,2015,35(6):1-13.

YANG H, LIU X S, YAN X X, et al. The Shenmu Gas Field in the Ordos Basin: Its discovery and reservoir-forming geological characteristics[J].Natural Gas Industry,2015,35(6): 1-13.

5
杨华,付金华,刘新社,等.鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J]. 石油勘探与开发,2012,39(3):295-303.

YANG H, FU J H, LIU X S, et al. Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin[J]. Petroleum Exploration and Development, 2012, 39(3): 295-303.

6
姚泾利,胡新友,范立勇,等.鄂尔多斯盆地天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学,2018,29(10):1465-1474.

YAO J L, HU X Y, FAN L Y, et al. The geological conditions,source potential and exploration direction of natural gas in Ordos Basin[J].Natural Gas Geoscience,2018,29(10):1465-1474.

7
郭旭升,周德华,赵培荣,等. 鄂尔多斯盆地石炭系—二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质,2022,43(5):1013-1023.

GUO X S, ZHOU D H, ZHAO P R, et al. Progresses and directions of unconventional natural gas exploration and development in the Carboniferous-Permian coal measure strata, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5):1013-1023.

8
付金华,于洲,李程善,等. 鄂尔多斯盆地东部米探1井奥陶系马四段天然气勘探新发现及勘探方向[J].天然气工业,2021,41(12):17-27.

FU J H, YU Z, LI C S, et al. New discovery and favorable areas of natural gas exploration in the 4th Member of Ordovician Majiagou Formation by Well Mitan 1 in the eastern Ordos Basin[J]. Natural Gas Industry, 2021, 41(12): 17-27.

9
包洪平,王前平,闫伟,等. 鄂尔多斯盆地中东部奥陶系碳酸盐岩膏盐岩体系沉积特征与天然气成藏潜力[J]. 地学前缘,2023,30(1):30-44.

BAO H P, WANG Q P, YAN W, et al. Sedimentary characteristics and gas accumulation potential of the Ordvician carbonate-evaporite paragenesis system in central and eastern Ordos Basin[J]. Earth Science Frontiers, 2023, 30(1):30-44.

10
尤欢曾,李良. 鄂北上古生界天然气成藏地质特征[J]. 天然气工业,2001,21(S1):14-17.

YOU H Z, LI L. Trend of gas reservoirs in Upper Paleozoic in north Ordos Basin[J]. Natural Gas Industry,2001,21(S1):14-17.

11
李剑,罗霞,单秀琴,等. 鄂尔多斯盆地上古生界天然气成藏特征[J]. 石油勘探与开发,2005,32(4):54-59.

LI J, LUO X, SHAN X Q, et al. Characteristics of natural gas accumulation in the Upper Paleozoic of the Ordos Basin[J]. Petroleum Exploration and Development, 2005, 32(4): 54-59.

12
杨华,席胜利,魏新善,等. 鄂尔多斯多旋回叠合盆地演化与天然气富集[J]. 中国石油勘探,2006,11(1):17-24,6.

YANG H, XI S L, WEI X S, et al. Evolution and natural gas enrichment of multicycle superimposed basin in Ordos Basin[J]. China Petroleum Exploration, 2006, 11(1):17-24,6.

13
陈孟晋,汪泽成,郭彦如,等. 鄂尔多斯盆地南部晚古生代沉积特征与天然气勘探潜力[J]. 石油勘探与开发,2006,33(1):1-5.

CHEN M J, WANG Z C, GUO Y R, et al. Late Paleozoic sedimentary systems and gas potential in the South Ordos Basin[J]. Petroleum Exploration and Development, 2006, 33(1): 1-5.

14
杨伟利,王毅,孙宜朴,等. 鄂尔多斯盆地南部上古生界天然气勘探潜力[J]. 天然气工业,2009,29(12):13-16,136-137.

YANG W L, WANG Y, SUN Y P, et al. Gas potential of the Upper Paleozoic in the southern Ordos Basin[J].Natural Gas Industry, 2009, 29(12): 13-16,136-137.

15
付金华,范立勇,刘新社,等. 鄂尔多斯盆地天然气勘探新进展、前景展望和对策措施[J]. 中国石油勘探,2019,24(4):418-430.

FU J H, FAN L Y, LIU X S, et al. New progresses, prospects and countermeasures of natural gas exploration in the Ordos Basin[J]. China Petroleum Exploration,2019,24(4):418-430.

16
齐荣,何发岐,王付斌,等. 鄂尔多斯盆地南部长探1井上古生界勘探突破及意义[J]. 中国石油勘探,2021,26(3):68-78.

QI R, HE F Q, WANG F B, et al. Exploration breakthrough of Upper Paleozoic of Well Changtan 1 in southern Ordos Basin and its significance[J].China Petroleum Exploration,2021, 26(3): 68-78.

17
王杰,贾会冲,孙晓,等.鄂尔多斯盆地富县古生界天然气成因及气源综合识别[J].天然气地球科学,2022,33(9):1476-1484.

WANG J, JIA H C, SUN X, et al. Comprehensive evaluation on origin and source of natural gas in the Paleozoic in Fuxian area,Ordos Basin[J].Natural Gas Geoscience,2022,33(9): 1476-1484.

18
单俊峰,吴炳伟,金科,等. 鄂尔多斯盆地宜川—黄龙地区上古生界储层特征及其对天然气成藏的影响[J]. 特种油气藏,2022,29(6):29-38.

SHAN J F, WU B W, JIN K, et al. Characteristics of Upper Paleozoic reservoirs and its influence on natural gas accumulation in Yichuan-Huanglong area,Ordos Basin[J].Special Oil & Gas Reservoirs, 2022, 29(6): 29-38.

19
任战利,崔军平,李进步,等.鄂尔多斯盆地渭北隆起奥陶系构造-热演化史恢复[J].地质学报,2014,88(11):2044-2056.

REN Z L, CUI J P, LI J B, et al. Tectonic-thermal history reconstruction of Ordovician in the Weibei Uplift of Ordos Basin[J]. Acta Geologica Sinica, 2014, 88(11): 2044-2056.

20
张文正,杨华,昝川莉,等. 鄂尔多斯盆地伊陕斜坡中南部高热演化地区古生界天然气地球化学研究[J]. 地球化学,2016,45(6):614-622.

ZHANG W Z, YANG H, ZAN C L, et al. Geochemical study of Paleozoic gas reservoirs in a highly mature area on the south-central Yishan Slope,Ordos Basin[J]. Geochimica,2016, 45(6): 614-622.

21
李剑,张春林,姜福杰,等. 鄂尔多斯盆地上石炭统本溪组致密气富集主控因素[J]. 天然气工业,2021,41(4):30-40.

LI J, ZHANG C L, JIANG F J, et al. Main factors controlling the enrichment of Upper Carboniferous Benxi Formation tight gas in the Ordos Basin[J]. Natural Gas Industry,2021,41(4): 30-40.

22
刘文汇,腾格尔,王晓锋,等.中国海相碳酸盐岩层系有机质生烃理论新解[J].石油勘探与开发,2017,44(1):155-164.

LIU W H,TENG G R,WANG X F,et al.New knowledge of hydrocarbon generating theory of organic matter in Chinese marine carbonates[J]. Petroleum Exploration and Development, 2017, 41(1): 155-164.

23
王晓锋,冯丹婷,刘文汇,等.高演化碳酸盐岩烃源岩生烃演化特征与评价方法[J].西北大学学报(自然科学版),2022,52(6):957-967.

WANG X F, FENG D T, LIU W H, et al. Hydrocarbon generation characteristics and evaluation methods of highly maturity carbonate source rocks[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(6): 957-967.

24
张涛,张亚雄,金晓辉,等.鄂尔多斯盆地奥陶系马家沟组碳酸盐岩—蒸发岩层系层序地层模式及其对源—储的控制作用[J].石油与天然气地质,2023,44(1):110-124.

ZHANG T, ZHANG Y X, JIN X H, et al. Sequence stratigraphy models of carbonate-evaporite successions and their controls on source rocks and reservoirs in the Ordovician Majiagou Formation, Ordos Basin[J].Oil & Gas Geology,2023,44(1): 110-124.

25
任战利,祁凯,李进步,等.鄂尔多斯盆地热动力演化史及其对油气成藏与富集的控制作用[J].石油与天然气地质,2021,42(5):1030-1042.

REN Z L, QI K, LI J B, et al. Thermodynamic evolution history of Ordos Basin and its control on hydrocarbon accumulation and enrichment[J]. Oil & Gas Geology, 2021, 42(5): 1030-1042.

26
FENG Z Q, LIU D, HUANG S P, et al. Geochemical characteristics and genesis of natural gas in the Yan’an Gas Field, Ordos Basin,China[J].Organic Geochemistry,2016,102:67-76.

27
FENG Z Q, DONG D Z, TIAN J Q, et al. Geochemical characteristics of the Paleozoic natural gas in the Yichuan-Huanglong area, southeastern margin of the Ordos Basin: Based on late gas generation mechanisms[J]. Marine and Petroleum Geology, 2021, 124:104867.

28
陈军军,赵靖舟 ,李军,等. 鄂尔多斯盆地南部上古生界天然气地球化学特征——以志丹—甘泉地区为例[J].科学技术与工程,2020,20(26):10598-10604.

CHEN J J, ZHAO J Z, LI J, et al.Geochemical characteristics of Upper Paleozoic natural gas in southern Ordos Basin: A case study of Zhidan-Ganquan area[J].Science Technology and Engineering, 2020, 20(26): 10598-10604.

29
PENG W L, GUO F T, HU G Y, et al. Geochemistry and accumulation process of natural gas in the Shenmu Gas Field, Ordos Basin,central China[J].Journal of Petroleum Science and Engineering, 2019, 180: 1022-1033.

30
HUANG S P, FANG X, LIU D, et al. Natural gas genesis and sources in the Zizhou Gas Field, Ordos Basin, China[J]. International Journal of Coal Geology, 2015, 152: 132-143.

31
胡安平,李剑,张文正,等. 鄂尔多斯盆地上、下古生界和中生界天然气地球化学特征及成因类型对比[J] .中国科学(D辑:地球科学),2007,37(S2):157-166.

HU A P,LI J,ZHANG W Z,et al. Geochemical characteristics and genetic types of natural gas in Upper,Lower Paleozoic and Mesozoic in Ordos Basin[J].Science in China (Series D: Earth Sciences), 2007, 37(S2): 157-166.

32
HU G Y, LI J, SHAN X Q, et al. The origin of natural gas and the hydrocarbon charging history of the Yulin Gas Field in the Ordos Basin, China[J]. International Journal of Coal Geology, 2010, 81(4): 381-391.

33
LIU Q Y, CHEN M J, LIU W H, et al. Origin of natural gas from the Ordovician paleo-weathering crust and gas-filling model in Jingbian Gas Field, Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2009, 35: 74-88.

34
LIU Q Y, JIN Z J, MENG Q Q, et al. Genetic types of natural gas and filling patterns in Daniudi Gas Field, Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2015, 107: 1-11.

35
戴金星,李剑,罗霞,等. 鄂尔多斯盆地大气田的烷烃气碳同位素组成特征及其气源对比[J].石油学报,2005,26(1):18-26.

DAI J X, LI J, LUO X, et al. Alkane carbon isotopic composition and gas source in giant gas fields of Ordos Basin[J] .Acta Petrolei Sinica, 2005, 26(1): 18-26.

36
WU X Q, LIU Q Y, ZHU J H, et al. Geochemical characteristics of tight gas and gas-source correlation in the Daniudi Gas Field, the Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 79: 412-425.

37
王香增,曹红霞,曹军,等. 鄂尔多斯盆地延安地区下古生界天然气气源分析[J]. 非常规油气,2022,9(6):9-13.

WANG X Z, CAO H X, CAO J, et al. Analysis of natural gas source of Lower Paleozoic in Yan'an area, Ordos Basin[J]. Unconventional Oil & Gas, 2022, 9(6): 9-13.

38
魏新善,魏柳斌,任军峰,等. 鄂尔多斯盆地下古生界风化壳气藏差异性[J].天然气地球科学,2018,29(2):178-188.

WEI X S, WEI L B, REN J F, et al. Differential distribution of natural gas in the Lower Paleozoic paleokarst gas reservoir, Ordos Basin[J].Natural Gas Geoscience,2018,29(2):178-188.

39
戴金星. 各类天然气的成因鉴别[J]. 中国海上油气(地质),1992,6(1):11-19.

DAI J X. Identification of various genetic natural gases[J]. China Offshore & Gas (Geology), 1992, 6(1): 11-19.

40
戴金星,邹才能,张水昌,等. 无机成因和有机成因烷烃气的鉴别[J].中国科学(D辑:地球科学),2008,38(11):1329-1341.

DAI J X, ZOU C N, ZHANG S C, et al. Identification of inorganic and organic alkane gases[J]. Scientia Sinica(Terrae), 2008,38(11):1329-1341.

41
徐永昌.天然气成因理论及应用[M].北京:科学出版社,1994.

XU Y C. Theory and Application of Natural Gas Genesis[M]. Beijing: Science Press, 1994.

42
LIU Q Y, WU X Q, WANG X F, et al. Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic identification of natural gas[J]. Earth-Science Reviews, 2019, 190: 247-272.

43
陈安定.陕甘宁盆地中部气田奥陶系天然气的成因及运移[J].石油学报,1994,15(2):1-10.

CHEN A D. Origin and migration of natural gas in Ordovician reservoir in Shan Gan Ning Basin central gas field[J]. Acta Petrolei Sinica, 1994, 15(2): 1-10.

44
陈安定.论鄂尔多斯盆地中部气田混合气的实质[J].石油勘探与开发,2002,29(2):33-38.

CHEN A D. On the essence of mixed gas in the central gas field of the Ordos Basin[J]. Petroleum Exploration and Development, 2002, 29(6): 33-38.

45
MENG Q, WANG X F, WANG X Z, et al. Gas geochemical evidences for biodegradation of shale gases in the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. International Journal of Coal Geology, 2017, 179:139-152.

46
LIU Q Y, WORDEN R H, JIN Z J, et al. Thermochemical sulphate reduction (TSR) versus maturation and their effects on hydrogen stable isotopes of very dry alkane gases[J]. Geochimica et Cosmochimica Acta, 2014, 137: 208-220.

47
夏新宇,赵林,戴金星,等.鄂尔多斯盆地中部气田奥陶系风化壳气藏天然气来源及混源比计算[J].沉积学报,1998,16(3):75-79.

XIA X Y, ZHAO L, DAI J X, et al. Gas sources and mixing ratio of Ordovician weathering crust reservoir of central gas field in Ordos Basin[J]. Acta Sedimentologica Sinica,1998,16(3): 75-79.

48
LIU Q Y, WORDEN R H, JIN Z J, et al. TSR versus non-TSR processes and their impact on gas geochemistry and carbon stable isotopes in Carboniferous, Permian and Lower Triassic marine carbonate gas reservoirs in the eastern Sichuan Basin,China[J].Geochimica et Cosmochimica Acta,2013,100: 96-115..

49
CAI C F, ZHANG C M, HE H, et al. Carbon isotope fractionation during methane-dominated TSR in East Sichuan Basin gas fields, China: A review[J]. Marine and Petroleum Geology, 2013, 48: 100-110.

50
WANG X, LIU W, SHI B, et al. Hydrogen isotope characteristics of thermogenic methane in Chinese sedimentary basins[J]. Organic Geochemistry, 2015, 83-84: 178-189.

51
BURRUSS R C, LAUGHREY C D. Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons[J]. Organic Geochemistry, 2010, 41: 1285-1296.

52
TILLEY B, MUEHLENBACHS K. Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems[J].Chemical Geology,2013,339: 194-204.

53
ZUMBERGE J, FERWORN K, BROWN S. Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations[J]. Marine and Petroleum Geology,2012.31:43-52.

54
XIA X Y, CHEN J, BRAUN R, et al. Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks[J].Chemical Geology,2013,339: 205-212.

55
FENG Z, HAO F, TIAN J, et al. Shale gas geochemistry in the Sichuan Basin,China[J].Earth-Science Reviews,2022,232: 104141.

56
赵孟军,卢双舫,王庭栋,等. 克拉2气田天然气地球化学特征与成藏过程[J]. 科学通报,2002, 47(S1):109-115.

ZHAO M J, LU S F, WANG T D, et al. Geochemical characteristics and reservoir formation process of natural gas in Kela2 Gas Field[J]. Chinese Science Bulletin, 2002, 47(S1): 109-115.

57
刘全有,秦胜飞,李剑,等. 库车坳陷天然气地球化学以及成因类型剖析[J]. 中国科学:地球科学,2007,37(增刊2):149-156.

LIU Q Y, QIN S F, LI J, et al. The dissect about the origin and geochemistry of natural gas in Kuqa Depression, Tarim Basin[J]. Chinese Science,2007, 37(s2): 149-156.

58
冯松宝,汪宏志. 库车坳陷克拉苏构造带超高压大气田天然气地球化学特征[J]. 天然气地球科学,2013,24(4):784-789.

FENG S B, WANG H Z. Geochemical characteristics of natural gas in over pressured large gas field of Kelasu tectonic belt in Kuga Depression[J]. Natural Gas Geoscience,2013,24(4): 784-789.

59
孔庆芬,张文正,李剑锋,等. 鄂尔多斯盆地奥陶系盐下天然气地球化学特征及成因[J]. 天然气地球科学,2019,30(3):423-432.

KONG Q F, ZHANG W Z, LI J F, et al. Geochemical characteristics and genesis of Ordovician natural gas under gypsolyte in Ordos Basin[J]. Natural Gas Geoscience,2019,30(3): 423-432.

60
李伟,涂建琪,张静,等. 鄂尔多斯盆地奥陶系马家沟组自源型天然气聚集与潜力分析[J] .石油勘探与开发,2017,44(4):521-530.

LI W,TU J Q,ZHANG J,et al. Accumulation and potential analysis of self-sourced natural gas in the Ordovician Majiagou Formation of Ordos Basin,NW China[J]. Petroleum Exploration and Development, 2017, 44(4): 521-530.

61
刘文汇,王晓锋,张东东,等.鄂尔多斯盆地靖边气田地球化学特征与成因再认识[J].西北大学学报(自然科学版),2022,50(6):943-956.

LIU W H, WANG X F, ZHANG D D, et al. Restudy on geochemical characteristics and genesis of Jingbian Gas Field in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2022, 50(6): 943-956.

62
何海清,郭绪杰,赵振宇,等.鄂尔多斯盆地奥陶系盐下马四段天然气成藏新认识及勘探重大突破[J].石油勘探与开发,2022,49(3):429-439.

HE H Q, GUO X J, ZHAO Z Y, et al. New understandings on gas accumulation and major exploration breakthroughs in subsalt Ma 4 Member of Ordovician Majiagou Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(3): 429-439.

Outlines

/