Provenance of the bauxite rock series in the Benxi Formation in the eastern Ordos Basin

  • Lei ZHANG , 1, 2 ,
  • Aiguo WANG , 3, 4 ,
  • Bo PAN 1, 2 ,
  • Haifeng ZHANG 5 ,
  • Yiwei REN 3, 4 ,
  • Xinghui NING 3, 4 ,
  • Jinxiang WEI 3, 4 ,
  • Jie WANG 3, 4
Expand
  • 1. Research Institute of Exploration and Development,PetroChina Changqing Oilfield Company,Xi'an 710018,China
  • 2. National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields,Xi'an 710018,China
  • 3. Department of Geology,Northwest University,Xi’an 710069,China
  • 4. State key Laboratory of Continental Dynamics,Northwest University,Xi’an 710069,China
  • 5. Exploration Division of PetroChina Changqing Oilfield Company,Xi'an 710018,China

Received date: 2024-01-11

  Revised date: 2024-04-12

  Online published: 2024-05-06

Supported by

The Project of Exploration and Development Research Institute of PetroChina Changqing Oilfield Company(CQYT-CQKTY-2022-JS-2959)

Abstract

Significant breakthroughs have been made in the exploration of bauxite rock gas in the Ordos Basin, but the petrogenesis of bauxite rock is still unclear. One of the key issues is that the provenance of bauxite rock has not been resolved yet. Therefore, this study conducted provenance analysis on the bauxite rock series in the Benxi Formation in the Shenmu-Mizhi area of the eastern Ordos Basin using methods of detrital zircon chronology and stable element geochemistry. The results show that the detrital zircons in the bauxite rock series are angular shaped magmatic zircons, with particle sizes ranging from 0.06 mm to 0.03 mm. The zircon age displays two peaks,which correspond to 500-400 Ma and 350-300 Ma,respectively.The zircons in the overlying clastic rocks of the bauxite rock series are mainly elliptical metamorphic zircons with particle sizes ranging from 0.13 mm to 0.06 mm. About half of the zircon ages are disharmonious. The harmony age peaks of zircon are 2 600-2 300 Ma and 2 100-1 700 Ma. The bauxite rock series are significantly enriched in stable elements. Their Zr/Nb values are similar to those of the underlying carbonate rocks, but are significantly different from the Zr/Nb values from the overlying clastic rocks and the tuffs in the Majiagou Formation in the basin. After comparative analysis, it is believed that the North China Craton basement to the northern basin is the provenance of the overlying clastic rocks, but makes little material contribution to the bauxite rock series. The Lower Paleozoic and Carboniferous tuffs in the basin are the direct sources of detrital zircons in the bauxite rock series, but their material contribution to the bauxite rock series is extremely limited. The main provenance of the bauxite rock series is the Lower Paleozoic carbonate rocks within the Basin.

Cite this article

Lei ZHANG , Aiguo WANG , Bo PAN , Haifeng ZHANG , Yiwei REN , Xinghui NING , Jinxiang WEI , Jie WANG . Provenance of the bauxite rock series in the Benxi Formation in the eastern Ordos Basin[J]. Natural Gas Geoscience, 2024 , 35(8) : 1351 -1362 . DOI: 10.11764/j.issn.1672-1926.2024.04.024

0 引言

长期以来,国内外鲜有在铝土岩系(铝土岩、泥质铝土岩、铝土质泥岩的统称)发现工业油气的报道。近年来,鄂尔多斯盆地铝土岩勘探接连取得重大突破1-3,一举打破传统地质认识,发现了铝土岩储层新类型,开辟了一个天然气勘探新领域4。目前,前人3-8对这类新储层的测井判识、储集性能、岩矿特征、分布规律等研究较多,对铝土岩储层相关的基础理论研究还非常薄弱。例如,铝土岩的成因问题,目前尚未得到解决,这严重制约了铝土岩储层形成机理和铝土岩储层预测研究。
明确铝土岩的原始物质来源一直是铝土岩成因研究的一项重点内容,因为铝土岩的成岩母质经历了强烈的化学风化作用9-10,原始风化物中蕴藏的地质记录多已损失殆尽。对于华北板块下古生界风化壳上的铝土岩系,其成岩母质来源长期存在争议,存在古陆(岛)铝硅酸盐岩来源11-12、下伏寒武系—奥陶系碳酸盐岩来源13-14及混合来源15-16等观点。
由于重矿物和稳定元素稳定性强,历经强烈风化作用后仍能残留并能记录母岩的部分地质特征,故被广泛应用于铝土岩(矿)物源研究1216-17。本文研究即尝试使用碎屑锆石年代学和稳定元素地球化学的方法对鄂尔多斯盆地东部神木—米脂地区本溪组铝土岩系的物质来源进行追溯,以期为铝土岩的成因和分布预测研究提供依据。

1 区域地质背景

鄂尔多斯盆地位于华北板块西部(图1),是一个稳定沉降、扭动明显、坳陷迁移的多重叠合盆地18,经历了中新元古代拗拉槽、早古生代浅海台地、晚古生代近海平原、中生代内陆湖盆和新生代周边断陷五大沉积演化阶段19-20
图1 鄂尔多斯盆地晚石炭世本溪期构造沉积环境(据文献[18]修改)

Fig.1 Tectonic and sedimentary environment of the Late Carboniferous Benxi Period in the Ordos Basin (modified from Ref.[18])

早古生代,鄂尔多斯盆地为稳定的陆表海沉积,发育巨厚的碳酸盐岩—蒸发岩沉积1921-22。早古生代末期,华北板块整体抬升,形成长达1.5亿年的沉积间断,缺失志留系、泥盆系和下石炭统。晚石炭世,华北地台发生海侵,在盆地东西两侧分别形成了华北陆表海和祁连海(图1)。当时,西南部的中央古隆起及北部伊盟古隆起为暴露剥蚀区18,中央古隆起以东地区沉积了滨浅海和陆相交互的含煤系地层,即本溪组23-24。从构造环境看,华北板块此时正处于泛大陆汇聚过程25-27:在北部,古亚洲洋向南俯冲于华北板块,盆地北缘为活动大陆边缘;在南部,南秦岭地块和华北克拉通之间的勉略洋正处于扩张阶段,盆地南缘为被动大陆边缘。在盆地东部,本溪组直接沉积在奥陶系风化面之上,底部发育一套分布广泛、厚度不等的铝土岩系。铝土岩系以上的本溪组为正常的碎屑岩或碳酸盐岩沉积。在盆地东南部及其以东地区(如河南、山西省),本溪组底部的这套铝土岩系出露地表成为铝土矿床。

2 样品与实验方法

本文从鄂尔多斯盆地东部神木—米脂地区(图1)6口钻井本溪组岩心中采集了33块铝土岩系样品(表1)。为了对比研究,从铝土岩系上覆本溪组碎屑岩中采集了2块砂岩样品[表1图2(a)]和3块泥岩样品[表1图2(b)];从铝土岩系下伏白云岩、碳酸盐岩角砾中采集了7块不含风化充填物和成岩胶结物的碳酸盐岩样品[表1图2(a)]。
表1 鄂尔多斯盆地东部本溪组铝土岩系及相邻岩石的稳定微量元素特征

Table 1 Stable trace element characteristics of bauxite rock series and adjacent rocks in the Benxi Formation in the eastern Ordos Basin

井号 样品编号 深度/m 岩性 微量元素/10-6 Zr/Nb Zr/Hf
Nb Zr Hf Ta Cr Th Ni U
M119 M119-1 3 047.52 泥质铝土岩 78.1 744.0 20.5 5.7 181.0 75.7 66.9 35.4 9.5 36.4
M119-2 3 047.79 铝土岩 93.9 858.0 23.6 7.0 230.0 92.9 95.0 33.4 9.13 36.4
M119-3 3 048.42 铝土岩 81.2 725.0 19.8 6.2 225.0 107.0 91.6 42.9 8.9 36.5
M119-4 3 049.01 泥质铝土岩 66.7 585.0 16.2 5.0 206.0 94.5 73.5 29.7 8.8 36.0
M119-5 3 049.5 铁铝岩 37.6 333.0 9.2 2.7 138.0 55.6 50.9 19.9 8.9 36.2
M119-6 3 049.67 铁铝岩 47.3 406.0 11.6 3.5 171.0 74.9 66.5 21.0 8.6 35.0
M119-7 3 050.17 泥岩 45.2 418.0 12.0 3.3 181.0 73.6 70.5 20.4 9.3 35.0
M119-8 3 050.48 泥岩 42.7 482.0 13.2 3.1 143.0 62.3 53.0 30.0 11.3 36.5
M119-9 3 050.99 泥岩 42.7 334.0 9.3 3.1 121.0 56.5 40.8 16.3 7.8 36.0
M119-10 3 051.4 角砾白云岩 17.1 132.0 3.5 1.2 47.1 23.4 14.5 14.1 7.7 37.5
Q30 Q30-1 2 872.6 砂岩 7.0 124.0 3.4 1.0 36.5 5.1 7.7 1.9 17.8 37.0
Q30-2 2 872.8 砂岩 7.3 124.0 3.6 1.0 38.7 5.5 8.6 2.4 16.9 34.8
Q30-3 2 874.08 泥岩 43.9 448.0 12.4 3.0 137.0 33.5 28.5 15.2 10.2 36.1
Q30-4 2 875.2 泥质铝土岩 88.8 722.0 20.0 6.3 235.0 116.0 94.1 47.1 8.1 36.1
Q30-5 2 875.22 泥质铝土岩 88.0 739.0 20.4 6.6 234.0 119.0 87.0 47.8 8.4 36.1
Q30-6 2 876.8 泥质铝土岩 81.4 636.0 17.6 5.8 218.0 108.0 92.3 27.4 7.8 36.1
Q30-7 2 877 泥质铝土岩 72.8 597.0 16.4 5.2 217.0 95.0 71.0 23.3 8.2 36.5
Q30-8 2 877.69 泥岩 57.9 435.0 11.5 3.9 157.0 74.8 55.7 19.4 7.5 37.9
Q30-9 2 877.98 泥岩 38.7 340.0 9.1 2.9 106.0 53.3 46.4 24.0 8.8 37.4
Q30-10 2 878.27 泥岩 31.1 275.0 7.7 2.2 78.9 44.7 38.4 20.6 8.8 35.6
Q30-11 2 878.4 白云岩 6.8 66.3 1.8 0.5 22.0 9.9 8.4 9.8 9.8 37.7
Q30-12 2 878.6 白云岩 21.0 163.0 4.6 1.5 52.1 27.1 17.0 15.7 7.8 35.6
Q30-13 2 878.99 白云岩 1.4 11.5 0.3 0.1 5.1 1.4 1.4 3.3 8.1 36.9
Q36 Q36-1 2 834.42 泥岩 38.9 575.0 15.6 2.7 152.0 35.5 48.3 12.7 14.8 36.8
Q36-2 2 836.84 泥岩 43.5 378.0 10.2 3.2 139.0 55.5 54.1 19.0 8.7 37.2
Q36-3 2 837.54 泥岩 41.6 348.0 9.8 3.1 135.0 54.3 47.1 16.6 8.4 35.4
Q36-4 2 838.03 泥岩 47.0 378.0 10.8 3.4 132.0 56.0 50.1 15.3 8.0 35.1
S220 S220-1 2 911.5 铝土岩 96.0 900.0 24.0 6.6 229.0 88.7 78.4 37.4 9.4 37.5
S220-2 2 913.09 泥质铝土岩 56.3 477.0 13.3 4.1 138.0 60.6 51.6 25.9 8.5 35.9
S220-3 2 913.96 铝土岩 65.1 510.0 14.9 4.6 148.0 75.6 69.3 33.4 7.8 34.2
S220-4 2 914.32 铝土岩 79.7 696.0 18.9 5.9 186.0 97.0 69.1 32.2 8.7 36.8
S220-5 2 915.61 角砾白云岩 14.0 117.0 3.2 1.0 31.7 17.8 10.2 7.3 8.3 36.1
S464 S464-1 3 309.16 铝土岩 105.0 919.0 25.6 7.3 227.0 108.0 98.4 53.5 8.8 35.9
S464-2 3 309.51 铝土岩 102.0 872.0 24.5 6.9 228.0 97.0 103.0 57.1 8.6 35.6
S464-3 3 309.7 泥质铝土岩 103.0 861.0 24.4 7.2 216.0 100.0 82.6 43.4 8.4 35.3
S464-4 3 310 铝土质泥岩 93.9 767.0 21.5 6.5 188.0 95.3 63.0 35.1 8.2 35.6
S464-5 3 310.07 铝土质泥岩 62.2 538.0 15.2 4.4 136.0 73.1 52.5 23.1 8.7 35.4
S464-6 3 311.08 泥岩 47.2 422.0 11.9 3.4 115.0 55.2 50.2 22.9 8.9 35.3
S464-7 3 311.55 泥岩 42.0 381.0 10.6 3.0 122.0 57.3 37.7 38.8 9.1 36.0
S464-8 3 311.99 泥岩 21.4 181.0 4.9 1.5 44.7 23.5 15.8 10.1 8.5 37.0
S464-9 3 312.2 灰岩角砾 3.7 32.6 0.8 0.3 9.6 4.1 3.7 2.1 8.8 38.7
S464-10 3 313.13 灰岩角砾 1.9 14.4 0.4 0.1 6.2 2.0 2.1 1.2 7.6 39.5
S144 S144-1 2 533.1 泥岩 39.9 677.0 18.7 2.9 141.0 29.0 57.8 9.5 17.0 36.2
S144-2 2 535.07 泥岩 55.7 539.0 15.1 3.9 126.0 42.0 46.9 10.6 9.7 35.7
S144-3 2 536.1 泥岩 67.9 978.0 27.2 4.8 174.0 54.4 55.0 21.0 14.4 35.9
图2 鄂尔多斯盆地东部 Q30井、S144井岩心岩性柱状图和取样位置

Fig.2 Core lithology and sampling location of Wells Q30 and S144 in the eastern Ordos Basin

这些样品被粉碎至200目后,按照刘晔等28的测试方法在西北大学大陆动力学国家重点实验室开展了全岩微量元素测试。
另外,本研究还从Q30井和S144井的本溪组中采集了2件铝土岩系样品和2件碎屑岩样品(图2)开展了碎屑锆石U-Pb定年测试。将它们机械性粉碎后,采用重液分选法、磁选法和镜下分析法将锆石挑选出来,在玻璃板上用环氧树脂固定,并抛光至锆石中心。采用偏光显微镜和电子显微镜分别拍摄单偏光照片和阴极发光(CL)图像,以揭示其表面形态和内部结构。
锆石U-Pb定年和原位微量元素测试在西北大学大陆动力学国家重点实验室利用激光等离子质谱仪分析完成。激光剥蚀系统为GeoLas2005,离子质谱仪为Agilent 7900,剥蚀激光斑束直径为30 μm。测试前,根据锆石图像优选锆石分析点位置,避开锆石颗粒上的包裹体、裂隙、蚀变区域、核—幔边界等位置。测试时,采用29Si为内标,NIST610为外标,Harvard锆石91500为元素分馏效应的外部矫正标准。测试过程中,每测试6个点后测试一组标样。每个分析点的背景采集时间为22 s,信号采集时间为40 s。测试数据的离线处理采用Gilter软件完成。锆石U-Pb年龄数据中,对大于1 000 Ma 的分析点,采用207Pb/206Pb年龄;对小于1 000 Ma 的分析点,采用206Pb /238U年龄。锆石样品的U-Pb年龄谱图通过Isoplot 3.0完成。

3 实验结果

3.1 碎屑锆石形貌学与微量元素特征

偏光和电子显微镜观察显示,研究区铝土岩系上覆砂岩、泥岩中碎屑锆石的形态主要为椭圆状[图3(a),图3(b)],磨圆较好,粒径为0.06~0.13 mm(图4)。锆石多具核—幔—边结构,核部仍记录有明显的环带信息,幔部已重结晶,最外层为薄的晚期变质增生边[图3(a),图3(b)]。锆石核部原位微量元素具有HREE富集、正Ce异常、负Eu异常[图5(a),图5(b)]和Th/U>0.4的地球化学特征。从锆石形貌学、地球化学特征来看,这些锆石主要为变质成因锆石,可能是岩浆锆石重变质而成。
图3 鄂尔多斯盆地东部本溪组铝土岩系及其上覆砂泥岩中碎屑锆石的形态和U-Pb年龄

(a)上覆泥岩;(b)上覆砂岩;(c),(d)铝土岩系

Fig.3 Morphology and U-Pb ages of detrital zircons in the bauxite rock series and its overlying sandstones/mudstones in the Benxi Formation in the eastern Ordos Basin

图4 鄂尔多斯盆地东部本溪组铝土岩系和上覆碎屑岩中碎屑锆石的粒径

Fig.4 Particle sizes of detrital zircon in the bauxite rock series and its overlying detrital rocks in the Benxi Formation in the eastern Ordos Basin

图5 鄂尔多斯盆地东部本溪组铝土岩系及上覆岩石中碎屑锆石的稀土元素分布特征

Fig.5 Distribution patterns of rare earth elements in the bauxite rock series and its overlying detrital rocks in the Benxi Formation in the eastern Ordos Basin

铝土岩系碎屑锆石的形态主要为短柱状和长柱状,少部分为等粒状和不规则状[图3(c),图3(d)],粒径以0.03~0.06 mm为主(图4)。锆石边缘棱角分明,磨圆较差,其内部呈典型的岩浆震荡环带和条带结构[图3(c),图3(d)]。另外,锆石原位微量元素亦具有HREE富集、正Ce异常、负Eu异常(图5)和Th/U>0.4的地球化学特征,揭示这些碎屑锆石主要为岩浆成因锆石。

3.2 碎屑锆石年龄分布特征

本文研究从4件锆石样品中共获得了355组U-Pb年龄。经谐和度计算,269组年龄是谐和的,谐和度介于90%~110%之间。其中,2件铝土岩系样品的U-Pb年龄基本上都是谐和年龄,谐和年龄占比分别为96.9%和96.8%[图6(a),图6(b)]。然而,2件碎屑岩样品的U-Pb年龄中,仅一半左右的年龄是谐和的,谐和年龄占比分别为46.9%和54.3%[图6(c),图6(d)]。
图6 鄂尔多斯盆地东部本溪组铝土岩系(a),(b)及上覆岩石(c),(d)中碎屑锆石年龄谱

Fig.6 Age spectrum of detrital zircons in the bauxite rock series (a),(b) and its overlying detrital rocks(c),(d) in the Benxi Formation in the eastern Ordos Basin

利用谐和年龄数据绘制了4件锆石样品的U-Pb年龄谱图。如图6所示,年龄谱图中存在4个年龄峰:① 2 600~2 300 Ma;② 2 100~1 700 Ma; ③500~400 Ma(峰值年龄450 Ma);④ 350~300 Ma。铝土岩系中碎屑锆石的年龄以年龄峰③和④为主[图6(a),图6(b)]。上覆砂岩中碎屑锆石的年龄以年龄峰①和②为主[图6(c)],这与前人2429获得的邻区本溪组砂岩碎屑锆石年龄谱峰特征一致。在S144井中,铝土岩系上覆泥岩中碎屑锆石的年龄较为分散,年龄峰①、②、③均有显示[图6(d)]。

3.3 全岩稳定微量元素特征

研究区本溪组铝土岩系及相邻岩石的稳定微量元素含量如表1所示。铝土岩系的Zr、Nb、Hf、Ta、Cr、Th、Ni含量分别为(181.0~919.0)×10-6、(21.4~105.0)×10-6、(4.9~25.6)×10-6、(1.5~7.3)×10-6、(44.7~235.0)×10-6、(23.5~119.0)×10-6、(15.8~103.0)×10-6,其平均含量分别为553.9×10-6、63.1×10-6、15.4×10-6、4.5×10-6、167.1×10-6、74.8×10-6、63.4×10-6,明显高于下伏碳酸盐岩和上覆砂岩(表1图7),揭示了这些稳定元素在风化过程中的累积效应。上覆泥岩与铝土岩系的稳定元素含量相近,也具有稳定元素相对富集的特征(表1图7)。研究区本溪组岩石的Zr、Nb元素的含量具有明显的正相关关系[图8(a)],但Zr/Nb值在不同岩石之间存在明显差别[图8(b)]。铝土岩系与下伏碳酸盐岩的Zr/Nb值基本一致,为7.52~11.28(平均为8.8),但明显不同于上覆砂岩、泥岩的Zr/Nb值(14.78~17.82,平均为17.3)。另外,与铝土岩系相比,鄂尔多斯盆地内马家沟组凝灰岩的Zr含量相近,Nb含量明显较小30-31,因而其Zr/Nb值也明显偏大(图8)。
图7 鄂尔多斯盆地东部本溪组铝土岩系及相邻岩石的稳定微量元素

Fig.7 Stable trace elements of bauxite rock series and its adjacent rocks in the Benxi Formation in the eastern Ordos Basin

图8 鄂尔多斯盆地东部本溪组铝土岩系及相邻岩石的Zr、Nb含量相关图(a)和Zr/Hf、Zr/Nb值相关图(b)

注:鄂尔多斯盆地马家沟组凝灰岩的微量元素数据引自文献[30-31

Fig.8 Correlation diagrams of Zr, Nb abundance (a) and Zr/Hf, Zr/Nb values(b) for the bauxite rock series and its adjacent rocks in the Benxi Formation in the eastern Ordos Basin

4 讨论

4.1 碎屑锆石的来源

研究区铝土岩系与上覆碎屑岩存在明显的锆石年龄差异(图6)。铝土岩系上覆碎屑岩(图2)中的碎屑锆石多经历了变质作用[图3(a),图3(b)],一半左右的锆石年龄是不谐和的。对锆石的谐和年龄统计发现,碎屑锆石的年龄以①2 600~2 300 Ma和②2 100~1 700 Ma为主[图6(c),图6(d)]。华北克拉通的演化过程存在2期最为重要的地质事件,分别发生于2.6~2.4 Ga 与2.0~1.7 Ga,董晓杰32将其称为2.5 Ga和1.8 Ga地质事件。因此,研究区铝土岩系上覆砂岩中的碎屑锆石应该来自华北板块基底。另外,这些锆石磨圆非常好,揭示了这些碎屑锆石经历了长距离搬运。高志东29观察S85井本溪组砂岩中的碎屑锆石形貌后,也认为这些碎屑锆石经历了较长距离的搬运。考虑到华北板块基底的空间出露情况33以及本溪组沉积期海水自东向西的海侵事件(图1),盆地北部的基底应该是这些碎屑锆石的物源。该认识与尚玥34开展的本溪期沉积相研究结论一致,即研究区本溪组碎屑岩的物源来自盆地北部的基底。
铝土岩系中的碎屑锆石基本上为岩浆锆石[图3(c),图3(d)]。而且,这些碎屑锆石的年龄谱图也相近,以③500~400 Ma和④350~300 Ma为主[图6(a),图6(b)]。在盆地周缘的造山带中(图9),盆地南部的北秦岭、北祁连造山带发育500~400 Ma的岩浆锆石,350~300 Ma的岩浆锆石不发育35-36。与之相反的是,盆地北部阴山陆块发育350~300 Ma的岩浆锆石,同时也存在少量的500~400 Ma的岩浆锆石3537。因此,从锆石年龄判断的话,铝土岩系中350~300 Ma的锆石来自盆地北部的阴山陆块,而500~400 Ma的碎屑锆石可能主要来自盆地南部的北秦岭、北祁连造山带,但也不排除盆地北部阴山陆块的贡献。
图9 鄂尔多斯盆地周缘造山带锆石年龄谱(据文献[35])

Fig.9 Zircon age spectra of the orogenic belts around the Ordos Basin (according to Ref.[35])

4.2 稳定元素揭示的物质来源

稳定元素在母源风化过程中保持相对稳定38-39,因而常被用于铝土岩溯源研究15-1640。随着风化程度的增大,稳定元素在风化物中逐渐富集,但风化物与母源的稳定元素的相对比例保持不变,即母源与风化物处于同一条风化线上。如图8所示,铝土岩系与其上覆砂岩、泥岩的Zr/Nb值存在明显差别,二者处于2条不同的风化线上。也就是说,铝土岩系与上覆碎屑岩的物源是不同的。该认识与前文锆石年龄分析获得的认识一致。前文已述,研究区铝土岩系上覆碎屑岩来自盆地北部的华北板块基底。因此,盆地北部的华北板块基底不是研究区铝土岩系的物质来源。
需要注意的是,研究区铝土岩系与下伏碳酸盐岩的Zr/Nb值基本一致,二者处于同一条风化线上[图8(a)]。这表明,下伏的奥陶系马家沟组碳酸盐岩应该是研究区铝土岩系的物质来源。其实,鄂尔多斯盆地马家沟组也含有一定丰度的铝质,其主量元素分析结果显示Al2O3含量为0.11%~12.27%(平均为3.86%)41。虽然马家沟组内的凝灰岩更富铝,但凝灰岩与铝土岩系不在同一条风化线上,其Zr/Nb值明显偏高(图8),因而排除了马家沟组凝灰岩对研究区本溪组铝土岩系的物质贡献。

4.3 盆地东部本溪组铝土岩系的物质来源

前文已述,研究区本溪组铝土岩系中的碎屑锆石来自盆地周缘造山带。根据碎屑锆石年龄示踪的原理,这意味着铝土岩系很可能源自盆地周缘造山带。然而,稳定元素却揭示铝土岩系的物质来源为马家沟组碳酸盐岩。2种物源示踪方法竟然给出了截然不同的认识,这或许是目前华北板块铝土岩系物源分析存在争议的主要原因。为此,结合地质背景,本文对盆地东部本溪组铝土岩系的物质来源开展了进一步分析。
研究区处于鄂尔多斯盆地腹地,距离盆地周缘的造山带都比较远(图1)。周缘造山带的岩矿物质(含岩浆锆石)进入研究区的途径主要有2种:河流搬运的碎屑和空气搬运的火山灰。因为铝土岩系中碎屑锆石的年龄为③500~400 Ma(峰值年龄450 Ma)和④350~300 Ma[图6(a),图6(b)],因此周缘造山带的岩矿物质进入研究区的时间不会早于500 Ma。考虑到①鄂尔多斯盆地南部在早古生代发育继承性的中央古隆起42,在晚三叠世以前,鄂尔多斯盆地南部表现为向南倾的简单单斜43;②鄂尔多斯盆地下古生界为厚层碳酸盐岩沉积,碎屑岩不发育19-21;③铝土岩系中的碎屑锆石棱角分明、磨圆非常差,因此盆地周缘造山带的岩矿物质不太可能经由河流搬运进入研究区,应该是以火山灰或者凝灰岩的形式进入盆地内部。这一结论,也得到了碎屑锆石粒径数据和鄂尔多斯盆地奥陶系凝灰岩研究成果24的支持。如图4所示,一方面,铝土岩系中碎屑锆石的粒径以0.03~0.06 mm(细粉砂级)为主,明显小于上覆碎屑岩中河流搬运而来的碎屑锆石的粒径(0.06 ~0.13 mm,粗粉砂级)。另一方面,鄂尔多斯盆地奥陶系发育凝灰岩3044-45,厚度自南向北逐渐减小30,揭示了一个自南向北的火山灰沉降过程。而且,凝灰岩中的锆石年龄为470~430 Ma,峰值年龄为450 Ma,与研究区铝土岩系中碎屑锆石年龄峰③的范围和峰值基本一致。因此可以断定,研究区铝土岩系中年龄为500~400 Ma的碎屑锆石主要来自盆地内的早古生代凝灰岩。同理,研究区铝土岩系中年龄为350~300 Ma的碎屑锆石很可能来自盆地内的石炭纪凝灰岩。由于当时整个华北板块正值陆表风化时期,石炭系凝灰岩未能保留下来,但凝灰岩中的碎屑锆石却保留下来并最终进入了铝土岩系。
综上所述,研究区铝土岩系中的碎屑锆石主要源自于早古生代、石炭纪落入盆地的凝灰岩,是铝土岩系继承的“再循环”锆石。一方面,盆地内奥陶系凝灰岩厚度较薄,介于0.5~1.25 m之间30;另一方面,凝灰岩的Zr/Nb值明显不同于铝土岩系(图8)。因此,凝灰岩对铝土岩系的物质贡献极其有限。由于铝土岩系与马家沟组碳酸盐岩处于同一条风化线上[图8(a)],因此铝土岩系的主要物质来源应该是盆地内的下古生界碳酸盐岩。

5 结论

(1)鄂尔多斯盆地东部本溪组铝土岩系中的碎屑锆石基本上为棱角分明的自形的或残缺的岩浆成因锆石,粒径以0.03~0.06 mm为主,谐和年龄占比达97%,年龄区间为500~400 Ma(峰值年龄450 Ma)和350~300 Ma。它们的直接物源为盆内的下古生界和石炭纪凝灰岩,原始物源为盆地周缘的造山带,是铝土岩系继承的“再循环”锆石。
--引用第三方内容--

(2)鄂尔多斯盆地东部本溪组铝土岩系上覆砂岩、泥岩中的碎屑锆石基本上为磨圆度较高的变质成因锆石,粒径为0.06~0.13 mm,谐和年龄占比低(±50%),年龄区间为2 600~2 300 Ma和2 100~1 700 Ma。这些碎屑锆石主要来自盆地北部的华北克拉通基底,在本溪组沉积期经长距离搬运后沉积于研究区铝土岩系之上。

(3)研究区本溪组铝土岩系富集稳定元素,Zr、Nb丰度明显高于下伏碳酸盐岩和上覆砂岩。铝土岩系的Zr/Nb值与下伏碳酸盐岩的Zr/Nb值基本一致,但与上覆碎屑岩、马家沟组凝灰岩的Zr/Nb值明显不同。

(4)盆地北部的基底是研究区铝土岩系上覆碎屑岩的物源,但对铝土岩系的物质贡献较少。盆地内下古生界和石炭纪凝灰岩对铝土岩系的物质贡献也极其有限。研究区铝土岩系的主要物质来源为下古生界碳酸盐岩。
1
孟卫工,李晓光,吴炳伟,等.鄂尔多斯盆地宁古3井太原组含铝岩系天然气成藏特征及地质意义[J].中国石油勘探,2021,26(3):79-87.

MENG W G,LI X G,WU B W,et al.Research on gas accumula-tion characteristics of aluminiferous rock series of Taiyuan Formation in Well Ninggu 3 and its geological significance,Ordos Basin[J].China Petroleum Exploration,2021,26(3):79-87.

2
付金华,李明瑞,张雷,等.鄂尔多斯盆地陇东地区铝土岩天然气勘探突破与油气地质意义探索[J].天然气工业,2021,41(11):1-11.

FU J H, LI M R, ZHANG L, et al. Breakthrough in the exploration of bauxite gas reservoir in Longdong area of the Ordos Basin and its petroleum geological implications[J]. Natural Gas Industry,2021,41(11):1-11.

3
南珺祥,柳娜,王邢颖,等.鄂尔多斯盆地陇东地区太原组铝土岩储层特征及形成机理[J].天然气地球科学,2022,33(2):288-296.

NAN J X, LIU N, WANG X Y, et al. Characteristics and formation mechanism of bauxite reservoir in Taiyuan Formation, Longdong area,Ordos Basin[J].Natural Gas Geoscience,2022,33(2):288-296.

4
姚泾利,石小虎,杨伟伟,等.鄂尔多斯盆地陇东地区二叠系太原组含铝岩系储层特征及勘探意义[J].沉积学报,2023,41(5):1583-1597.

YAO J L,SHI X H,YANG W W, et al. Reservoir characteristics and exploration significance of the bauxite rock series of Per-mian Taiyuan Formation in the Longdong area of the Ordos Basin[J]. Acta Sedimentologica Sinica,2023,41(5):1583-1597.

5
刘蝶,周金昱,张小刚,等.鄂尔多斯盆地铝土岩储层岩相成像测井特征及分布规律[J/OL].天然气地球科学,2024,1-15. http://kns.cnki.net/kcms/detail/62.1177.TE.20240404.2314.002.html.

LIU D, ZHOU J Y, ZHANG X G, et al. Study on lithofacies log identification and favorable lithofacies distribution of new types of bauxite reservoirs in Ordos Basin[J/OL]. Natural Gas Geoscience,2024,1-15. http://kns.cnki.net/kcms/detail/62.1177.TE.20240404.2314.002.html.

6
吴见,杨昊宇,徐延勇,等.鄂尔多斯盆地临兴地区本溪组铝土岩储层特征及其发育控制因素[J/OL].地质科技通报, 2024,1-13. https://doi.org/10.19509/j.cnki.dzkq.tb20230657.

WU J, YANG H Y, XU Y Y, et al. Reservoir characteristics and development control factors of Benxi Formation bauxite in Linxing area of Ordos Basin[J/OL]. Bulletin of Geological Science and Technology,2024,1-13. https://doi.org/10.19509/ j.cnki.dzkq.tb20230657.

7
李勇,王壮森,邵龙义,等.鄂尔多斯盆地东部上石炭统铝土岩系储集层特征及形成模式[J]. 石油勘探与开发, 2024,51(1):39-47.

LI Y, WANG Z S, SHAO L Y, et al. Reservoir characteristics and formation model of Upper Carboniferous bauxite series in eastern Ordos Basin, NW China[J]. Petroleum Exploration and Development,2024,51(1):39-47.

8
李涵,付金华,季汉成,等.鄂尔多斯盆地西南部上古生界风化壳型铝土岩系发育过程及优势储层分布规律[J].石油与天然气地质,2023,44(5):1243-1255.

LI H, FU J H, JI H C, et al. Bauxite series in the Upper Paleozoic weathering crusts in the southwestern Ordos Basin: Development and distribution of dominant reservoirs[J]. Oil & Gas Geology,2023,44(5):1243-1255.

9
王庆飞,邓军,刘学飞,等.铝土矿地质与成因研究进展[J].地质与勘探,2012,48(3):430-448.

WANG Q F,DENG J,LIU X F,et al. Review on research of bauxite geology and genesis in China[J]. Geology and Exploration,2012,48(3):430-448.

10
DARGENIO B, MINDSZENTY A. Bauxites and related paleokarst:Tectonic and climatic event markers at regional unconformities[J]. Eclogae Geologicae Helvetiae,1995,88(3):453-499.

11
刘恩法,曹高社,邢舟,等.豫西偃龙地区本溪组含铝岩系的原岩恢复及其地质意义[J]. 河南理工大学学报(自然科学版),2022,41(3):57-65.

LIU E F, CAO G S, XING Z, et al. Protolith restoration and its geological significance of the aluminiferous rock series of the Benxi Formation in the Yanlong area,Western Henan[J]. Journal of Henan Polytechnic University(Natural Science),2022,41(3):57-65.

12
WANG Q, DENG J, LIU X, et al. Provenance of Late Carboniferous bauxite deposits in the North China Craton:New constraints on marginal arc construction and accretion processes[J]. Gondwana Research,2016,38:86-98.

13
班宜红,郭锐,王军强,等.河南省钙红土风化壳型铝土矿沉积规律及找矿远景概论[J].矿产与地质,2012,26(3):210-220.

BAN Y H,GUO R,WANG J Q,et al.Sedimentary environment of the red earth weathering crust type bauxite and the outlook for its exploration[J]. Mineral Resources and Geology,2012,26(3):210-220.

14
孟健寅,王庆飞,刘学飞,等.山西交口县庞家庄铝土矿矿物学与地球化学研究[J].地质与勘探,2011,47(4):593-604.

MENG J Y, WANG Q F, LIU X F, et al. Mineralogy and geochemistry of the Pangjiazhuang bauxite deposit in Jiaokou Country, Shanxi Province[J]. Geology and Exploration,2011,47(4):593-604.

15
孙雪飞,刘学飞,左鹏飞,等.华北南缘石炭纪仁村大型喀斯特型铝土矿物质来源与成矿过程研究[J].岩石学报,2023,39(2):600-620.

SUN X F, LIU X F, ZUO P F, et al. Source and metallogenic process of the Carboniferous Rencun large karstic bauxite deposit in the southern margin of North China Craton[J]. Acta Petrologica Sinica,2023,39(2):600-620.

16
ZHAO L, LIU X, YANG S, et al. Regional multi-sources of Carboniferous karstic bauxite deposits in North China Craton: Insights from multi-proxy provenance systems[J]. Sedimentary Geology,2021,421:105958.

17
LIU T, WANG X, WANG Z, et al. Provenance of the Early Permian bauxitic claystone in Huayingshan region, Sichuan Basin, South China:Constraints from U-Pb ages and trace elements of detrital zircons[J]. Journal of Palaeogeography,2023,12(2):211-228.

18
翟咏荷,何登发,马静辉,等.鄂尔多斯盆地及邻区晚石炭世本溪期构造—沉积环境及原型盆地特征[J].地质科学,2020,55(3):726-741.

ZHAI Y H, HE D F, MA J H, et al. Tectonic-depositional environment and prototype basins during the depositional period of Late Carboniferous Benxi Formation in Ordos Basin[J]. Chinese Journal of Geology,2020,55(3):726-741.

19
杨华,刘新社,闫小雄.鄂尔多斯盆地晚古生代以来构造—沉积演化与致密砂岩气成藏[J].地学前缘,2015,22(3):174-183.

YANG H, LIU X S, YAN X X. The relationship between tectonic-sedimentary evolution and tight sandstone gas reservoir since the Late Paleozoic in Ordos Basin[J]. Earth Science Frontiers,2015,22(3):174-183.

20
郭艳琴,张梦婷,李百强,等.鄂尔多斯盆地沉积体系与古地理演化[J].古地理学报,2019,21(2):293-321.

GUO Y Q, ZHANG M T, LI B Q, et al. Sedimentary systems and palaeogeography evolution of Ordos Basin[J].Journal of Palaeogeography,2019,21(2):293-321.

21
邵东波,包洪平,魏柳斌,等.鄂尔多斯地区奥陶纪构造古地理演化与沉积充填特征[J].古地理学报,2019,21(4):537-556.

SHAO D B, BAO H P, WEI L B,et al. Tectonic palaeogeography evolution and sedimentary filling characteristics of the Ordovician in the Ordos area[J]. Journal of Palaeogeography,2019,21(4):537-556.

22
杨泽光,王爱国,范立勇,等.鄂尔多斯盆地奥陶系盐下储层中固体沥青的发现及其对天然气成藏的启示[J].天然气工业,2024,44(2):68-80.

YANG Z G, WANG A G, FAN L Y, et al. Discovery of solid bitumen in the Ordovician pre-salt reservoirs of the Ordos Basin and its implications for natural gas accumulation[J]. Natural Gas Industry,2024,44(2):68-80.

23
陈洪德,侯中健,田景春,等.鄂尔多斯地区晚古生代沉积层序地层学与盆地构造演化研究[J].矿物岩石,2001,21(3):16-22.

CHEN H D, HOU Z J, TIAN J C, et al. Study on sequence stratigraphy of deposits and tectono-sedimentary evolution in the Ordos Basin during the Late Palaeozoic[J]. Journal of Mineralogy and Petrology,2001,21(3):16-22.

24
贾浪波,钟大康,孙海涛,等.鄂尔多斯盆地本溪组沉积物物源探讨及其构造意义[J].沉积学报,2019,37(5):1087-1103.

JIA L B, ZHONG D K, SUN H T,et al. Sediment provenance analysis and tectonic implication of the Benxi Formation,Ordos Basin[J]. Acta Sedimentologica Sinica,2019,37(5):1087-1103.

25
万天丰,朱鸿.古生代与三叠纪中国各陆块在全球古大陆再造中的位置与运动学特征[J].现代地质,2007,21(1):1-13.

WAN T F, ZHU H. Kinematic analysis of plate collision during the assembly of pangea in Late Paleozoic[J].Geoscie-nce,2007,21(1):1-13.

26
黄宝春,周烑秀,朱日祥.从古地磁研究看中国大陆形成与演化过程[J].地学前缘,2008,15(3):348-359.

HUANG B C, ZHOU Y X, ZHU R X. Discussions on phanerozoic evolution and formation of continental China[J].Earth Science Frontiers,2008,15(3):348-359.

27
李江海,李维波,王洪浩,等.晚古生代泛大陆聚合过程中板块碰撞的运动学分析[J].地质论评,2013,59(6):1047-1059.

LI J H, LI W B, WANG H H, et al. Kinematic analysis of plate collision during the assembly of pangea in Late Paleozoic[J]. Geological Review,2013,59(6):1047-1059.

28
刘晔,第五春荣,柳小明,等.密闭高温高压溶样ICP-MS测定56种国家地质标准物质中的36种痕量元素——对部分元素参考值修正和定值的探讨[J].岩矿测试,2013,32(2):221-228.

LIU Y,DIWU C R,LIU X M,et al. Determination of 36 trace elements in 56 chinese national standard reference materials by ICP-MS with pressurized acid-digestion[J]. Rock and Mineral Analysis,2013,32(2):221-228.

29
高志东.鄂尔多斯盆地上石炭统本溪组物源分析及有利砂体发育规律[D].成都:成都理工大学,2019:37-40.

GAO Z D. Provenance Analysis of Benxi Formation of Upper Carboniferous in Ordos Basin and Distribution Regularity of Favorable Sand Bodies[D]. Chengdu: Chengdu University of Technology,2019:37-40.

30
汪建,赵红格,雷琳琳,等.鄂尔多斯盆地奥陶系凝灰岩锆石U-Pb年代学、地球化学特征及其地质意义[J].矿物岩石地球化学通报,2023,42(6):1-16.

WANG J, ZHAO H G, LEI L L, et al. The zircon U-Pb geochronology and geochemical characteristics of the Ordovician tuff in the Ordos Basin and their geological significances[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2023,42(6):1-16.

31
李振宏.鄂尔多斯盆地对秦岭造山过程的构造沉积响应[D].北京:中国地质科学院,2011:107-109.

LI Z H. Response to Qinling Orogenic with the Tectonic and Sedimentary Evolution of Ordos Basin[D].Beijing:Chinese Aca-demy of Geological Sciences,2011:107-109.

32
董晓杰.内蒙古西乌兰不浪地区高级变质岩的变质作用特征、时代及其构造意义[D].长春:吉林大学,2009:1-40.

DONG X J.The Metamorphism Times and Tectonic Significa-nce of High Grade Metamorphic Rocks in Xiwulangbulang Area Inner Mongolia[D].Changchun:Jilin University,2009:1-40.

33
ZHAO G, CAWOOD P A, LI S, et al. Amalgamation of the North China Craton: Key issues and discussion[J]. Precambrian Research,2012,222-223:55-76.

34
尚玥.鄂尔多斯盆地中东部上石炭统本溪组沉积相及储层特征研究[D].成都:成都理工大学, 2021:19-39.

SHANG Y. The Sedimentary Facies and Reservoir Characteristics of the Upper Carboniferous Benxi Formation in the Central-Eastern Part of the Ordos Basin[D].Chengdu:Chengdu Uni-versity of Technology,2021:19-39.

35
蒋子文.鄂尔多斯盆地南部上古生界山1—盒8段物源分析及盆山耦合关系研究[D].西安:西北大学, 2020:64-99.

JIANG Z W. The Study of Provenance and Basin Mountain Coupling of Shan1-He8 Member, Upper Palaeozoic, Southern Ordos Basin[D]. Xi’an: Northwest University,2020:64-99.

36
DONG Y, SANTOSH M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt,Central China[J]. Gondwana Research, 2016, 29(1):1-40.

37
朱伟鹏,田伟,魏春景.阴山东部固阳地区晚石炭世碱性火山岩的发现及其地质意义[J].岩石学报,2023,39(3):670-688.

ZHU W P,TIAN W, WEI C J. Discovery of the Late Carboniferous alkaline volcanic rocks in the Guyang area, eastern Yinshan Block and its geological implications[J]. Acta Petrologica Sinica,2023,39(3):670-688.

38
MACLEAN W H, BARRETT T J. Lithogeochemical technique using immobile elements[J]. Journal of Geochemical Exploration,1993,48(2):109-133.

39
ANDREW K C, DERRY L A, CHADWICK O A, et al. Refractory element mobility in volcanic soils[J]. Geology,2000,28(8):683-686.

40
刘学飞,王庆飞,马遥,等.华北克拉通南缘石炭系本溪组铁—铝黏土矿物质来源:以河南三门峡大安铝黏土矿床为例[J].古地理学报,2020,22(5):965-976.

LIU X F,WANG Q F,MA Y,et al. Provenance of iron,bauxite and clay deposits of the Carboniferous Benxi Formation in southern margin of North China Craton:An example from Da'an bauxite and clay deposit of Sanmenxia area, Henan Province[J].Journal of Palaeogeography,2020,22(5):965-976.

41
LI X, GANG W, YAO J, et al. Major and trace elements as indicators for organic matter enrichment of marine carbonate rocks: A case study of Ordovician subsalt marine formations in the central-eastern Ordos Basin, North China[J]. Marine and Petroleum Geology,2020,111:461-475.

42
何登发,包洪平,孙方源,等.鄂尔多斯盆地中央古隆起的地质结构与成因机制[J].地质科学,2020,55(3):627-656.

HE D F, BAO H P, SUN F Y, et al. Geologic structure and genetic mechanism for the central uplift in the Ordos Basin[J]. Chinese Journal of Geology,2020,55(3):627-656.

43
黄军平,林俊峰,张艳,等.鄂尔多斯盆地南缘下寒武统海相烃源岩有机地球化学特征与成藏贡献[J].天然气地球科学,2022,33(3):461-471.

HUANG J P,LIN J F,ZHANG Y,et al.The organic geoche-mical characteristics of Lower Cambrian marine source rocks and its contribution to hydrocarbon accumulation in the southern margin of Ordos Basin[J]. Natural Gas Geoscience,2022,33(3):461-471.

44
黄栋,惠倩楠.华北地块南缘富平奥陶系赵老峪组凝灰岩定年研究[J].西部资源,2016(5):91-92.

HUANG D, HUI Q N. Dating of tuff from the Ordovician Zhaolaoyu Group in Fuping area, southern margin of North China Block[J].Westrn Resources,2016(5):91-92.

45
吴素娟,李振宏,胡健民,等.鄂尔多斯盆地南缘赵老峪剖面奥陶系凝灰岩锆石SHRIMPU-Pb定年及其地质意义[J].地质论评,2014,60(4):903-912.

WU S J, LI Z H, HU J M, et al. Confirmation of Ordovician sediments in South Margin of Ordos Basin by SHRIMP U-Pb zircon dating of volcanic tuff interlayers and its significance[J]. Geological Review,2014,60(4):903-912.

Outlines

/