Geological evaluation of Chang 73 shale oil in Jinghe Oilfield, Ordos Basin

  • Yue WU , 1 ,
  • Chuanxi LIU 1 ,
  • Dongling XIA 1 ,
  • Yupu FU 1 ,
  • Dongdong XIA 1 ,
  • Qing LI 2
Expand
  • 1. SINOPEC Petroleum Exploration and Development Research Institute,Beijing 100083,China
  • 2. College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China

Received date: 2023-07-17

  Revised date: 2023-11-03

  Online published: 2024-01-24

Supported by

The China National Major Science and Technology Special Projects(2017ZX 05049-006)

Abstract

Based on core, thin section, scanning electron microscope and various experimental test data, a systematic study has been carried out on the Chang 73 shale series in the Yanchang Formation, Jinghe Oilfield, the southern margin of Ordos Basin, and the geological characteristics, exploration potential and next exploration direction of shale oil have been clarified. The main understanding is as follows: Three types of lithofacies combinations are developed in Chang 73 shale series longitudinally, which are thick tuff with thin shale, thick shale with thin tuff, and shale. The thin interbed type of tuff and siltstone reflects the interactive sedimentation process of hydrostatic suspension and gravity flow; the abundance of organic matter is high, reaching the level of rich carbon and high carbon. The kerogen type is mainly Ⅰ-Ⅱ1, and the maturity R O is 0.6%-0.8%. Some shale enters the main hydrocarbon generation stage; the pore type of the reservoir is dominated by inorganic pores such as intergranular pores, intragranular pores and intercrystalline pores. The organic matter pores are underdeveloped, in which the tuff macropores account for a high proportion and the porosity is large, with an average of 7.19%, which is the most favorable reservoir type, followed by organic rich siliceous shale and clayey shale; Shale oil occurs in inorganic pores or clay minerals and kerogen surfaces in free, adsorbed and dissolved forms. The total oil content is high, but the proportion of free oil is low, averaging 32%, which is related to the low degree of thermal evolution. According to preliminary estimation, the total amount of shale oil geological resources in the study area is about 917 million tons, including 342 million tons of free oil resources. The resource potential is large, but the resource taste is general, and it generally belongs to category III under the SINOPEC shale oil evaluation standard. The northeast of the work area is about 400 km2, with large shale thickness, high organic carbon content, high maturity, and large hydrocarbon generation potential. It is the next key exploration target area Ordos Basin.

Cite this article

Yue WU , Chuanxi LIU , Dongling XIA , Yupu FU , Dongdong XIA , Qing LI . Geological evaluation of Chang 73 shale oil in Jinghe Oilfield, Ordos Basin[J]. Natural Gas Geoscience, 2024 , 35(7) : 1214 -1222 . DOI: 10.11764/j.issn.1672-1926.2023.11.002

0 引言

近年来,国内加大了页岩油勘探开发力度,在多个盆地多个层系取得突破,截至2020年底,我国页岩油年产油311×104 t,正向规模化生产不断发展1-2。鄂尔多斯盆地是国内页岩油勘探热点地区,中国石油长庆油田分公司在盆地中南部新安边、陇东、庆城等地区取得了三叠系延长组7段长71、长72砂岩夹层型页岩油的勘探突破,并实现了规模效益开发,目前勘探对象逐步向底部的长73页岩型页岩油转变3-5。相对于长71、长72砂岩夹层型页岩油,长73页岩型页岩油目前处于勘探评价阶段,地质评价与潜力分析是首要工作,前期主要将该套页岩作为中生界主力烃源岩对其有机地球化学性质和生烃潜力做了系统研究6-10。本文以鄂尔多斯盆地南缘中国石化矿区泾河油田长73富有机质页岩层系为研究对象,开展了岩相组合、有机地球化学、储层、含油性等方面综合研究,深入认识了长73页岩油地质特征,明确了勘探潜力与有利勘探目标,以期为实现鄂尔多斯盆地长7段多类型页岩油勘探开发突破提供参考。

1 区域地质概况

鄂尔多斯盆地位于我国中西部,属于整体升降、坳陷迁移、构造简单的大型多旋回克拉通盆地,包括伊盟隆起、渭北隆起、西缘逆冲带、晋西挠褶带、天环坳陷和伊陕斜坡等6个次级构造单元11-12,研究区位于伊陕斜坡、渭北隆起和天环坳陷的交界处,面积约为3 013×104 km2图1)。三叠系延长组7段沉积期,盆地中南部几乎被湖泊所覆盖,发育半深湖—深湖相,长7段是鄂尔多斯盆地主要生油层段,厚约为100~120 m,岩性为暗色泥岩、炭质泥岩、油页岩夹薄层粉、细砂岩。根据沉积纵向演化特征和岩相差异,长7段又分为3个亚段,其中长73亚段沉积期为最大湖侵期,该亚段页岩层系厚度最厚达18 m以上,平均为10 m。
图1 泾河油田构造位置

Fig.1 Structural location of Jinghe Oilfield

长73亚段沉积期,盆地南缘地区火山活动强烈,一部分喷出的火山灰经过大气或水体搬运到离物源区较远的地区,后又与陆源碎屑沉积物一起发生再搬运,通过重力流作用沉积到深湖—半深湖形成厚层凝灰岩;另一部分在火山爆发时随喷发气流及风的带动随大气搬运降落,后沉降至水体中,与深湖相泥岩沉积同时进行,互层产出。大规模的火山灰短期内沉积,携带了Fe、P等营养物质降落至湖泊中,导致湖盆内藻类勃发,极大地提高了湖盆古生产力,为富有机质页岩的形成提供了丰富的物质来源,此时底水虽然呈弱氧化—弱还原环境,不是有机质保存的最佳环境,但在有机质供给量充足的前提下,仍然在沉积物中大量富集与保存13-17

2 岩相组合特征

根据岩石类型、沉积构造等特征,将长73富有机质页岩层系划分为4大类岩相,包括页(泥)岩、凝灰岩、泥质粉砂岩及细砂岩,其中页(泥)岩和凝灰岩是主体岩相类型,泥质粉砂岩和细砂岩厚度薄、分布局限。

2.1 页岩岩相

根据有机质含量和矿物成分进一步细分页岩岩相,研究区主要页岩岩相类型为高有机质硅质页岩和高有机质黏土质页岩。高有机质硅质页岩内有机质纹层和长英质纹层发育,矿物类型以石英为主,平均为30%,含有大量黄铁矿,平均为15%,有机质含量平均为17%[图2(a)]。高有机质黏土质页岩发育黏土和有机质的混合纹层,矿物类型以黏土矿物为主,平均为67%,黄铁矿平均含量为9%,有机质含量高,平均为14%[图2(b),图2(c)]。
图2 泾河油田长73页岩层系岩相镜下照片

(a)高有机质硅质页岩,JH4井,1 453.6 m;(b)高有机质黏土质页岩,JH4井,1 454.7 m;(c)有机质纹层与凝灰质纹层互层,JH4井,1 452.5 m;(d)玻屑凝灰岩,B1井,1 444.9 m;(e)晶屑质玻屑凝灰岩,B1井,1 442.3 m;(f)泥质粉砂岩,JH2井,1 402.6 m

Fig.2 Lithofacies microscope photograph of Chang 73 shale series in Jinghe Oilfield

2.2 凝灰岩岩相

主要为玻屑凝灰岩和晶屑质玻屑凝灰岩。玻屑凝灰岩内玻屑含量大于75%,玻屑形态多样,呈鸡骨状、不规则状等,正交光下全消光[图2(d)],矿物类型以石英、长石和黏土矿物为主,平均含量分别为21%、18%和24%,含有部分沸石,平均含量为14%。晶屑质玻屑凝灰岩内玻屑含量大于50%,晶屑含量介于25%~50%之间,形状不规则,表面具有不规则的裂纹[图2(e)],矿物类型以石英、长石和黏土矿物为主,平均含量分别为37%、21%和37%。

2.3 岩相组合

考虑沉积环境相似性及内部结构均一性,结合页岩与其他夹层岩相组合关系,将长73页岩层系纵向上划分为3套岩相组合(图3):底部为厚层凝灰岩夹薄层页岩组合,指示低位体系域多期浊流沉积,厚度为2~6 m;中部为高有机质黏土质页岩夹薄层凝灰岩组合,厚度为6~8 m,主要为湖侵体系域静水悬浮沉积,纹层发育程度高;上部为高有机质硅质页岩、凝灰岩及粉细砂岩近等厚互层组合体,厚度为6~8 m,体现了高位体系域混积作用特点。整个长73页岩层系反映了水体由深变浅的沉积过程,具备完整的沉积层序结构。
图3 泾河油田长73页岩层系沉积层序模式

Fig.3 Sequence stratigraphic model of Chang 73 shale series in Jinghe Oilfield

3 有机地球化学特征

3.1 有机质丰度

目前常用评价有机质丰度的指标包括总有机碳(TOC)、岩石热解生烃潜量(S 1+S 2)、氯仿沥青“A”和总烃含量(HC)等。研究区长73富有机质页岩TOC值普遍在10%以上,局部高达22%,平均为14%;岩石热解实验得到S 1+S 2值介于6.65~40.45 mg/g之间,平均为16.6 mg/g,显示达到了页岩油资源富集级别;TOCS 1+S 2具有明显正相关关系,即有机碳含量越高,含油量越大[图4(a)]。
图4 泾河油田长73页岩有机地球化学特征

(a)TOC vs. S 1+S 2;(b)T max vs I H;(c)有机显微组分含量分布;(d)生烃史模拟结果

Fig.4 Organic geochemical characteristics of Chang 73 shale in Jinghe Oilfield

3.2 有机质类型

有机质类型反映有机质的显微组分和化学结构,是衡量有机质生烃演化属性的重要标志。根据岩石热解实验数据中T maxI H的相关关系分析,研究区长73页岩有机质类型以Ⅰ—Ⅱ1型为主[图4(b)]。显微组分分析表明,研究区长73页岩有机质以壳质体为主,平均百分含量大于75%,矿物沥青质次之,平均含量约为15%,另外还含有少量藻质体,是主要的生烃组分,属于Ⅰ—Ⅱ1型腐泥型有机质类型[图4(c)]。

3.3 有机质成熟度

镜质组反射率(R O)是评价有机质热演化程度最主要参数之一。实验分析得到研究区长73页岩R O值分布范围在0.6%~0.8%之间,有机质处于中—低成熟阶段。生烃动力学模拟得到地质条件下研究区长73页岩主生烃期对应R O值在0.70%~0.87%之间[图4(d)],表明目前部分页岩已进入主生烃阶段,具备一定的页岩油生成条件。

4 储层特征

4.1 孔隙类型

参考国内外页岩油储层孔隙分类方案18-20,本文将长73页岩层系储层孔隙类型划分为基质孔隙和有机质相关孔隙两大类。薄片及扫描电镜观察显示,基质孔隙主要有粒间孔、粒内孔和晶间孔,其中粒间孔主要位于长石、石英及一些其他矿物之间,形状呈不规则状[图5(a),图5(b)],粒内孔主要位于长石和石英矿物颗粒内部,形状为椭圆形、方形以及不规则状[图5(c),图5(d)],晶间孔主要为黄铁矿晶间孔及黏土矿物晶间孔[图5(e),图5(f)];有机质相关孔隙包括有机质孔和有机质边缘孔,有机质孔是由于固体干酪根转为烃类流体而在干酪根内部形成的孔隙,有机质边缘孔隙是由于有机质与矿物物理性质的差异,在有机质与矿物接触的边缘形成的长条状和不规则状孔隙[图5(g),图5(h),图5(i)]。
图5 泾河油田长73页岩层系储层微观孔隙镜下照片

(a)长石粒间孔,JH4井,1 452.5 m;(b)石英粒间孔,B1井,1 446.34 m;(c)长石粒内孔,JH4井,1 454.76 m;(d)黏土矿物粒内孔,JH4井,1 452.5 m;(e)黄铁矿晶间孔,JH4井,1 454.76 m;(f)黏土矿物晶间孔,B1井, 1 446.34 m;(g)有机质孔,JH4井,1 454.76 m;(h)有机质边缘孔,JH4井,1 452.5 m;(i)有机质边缘孔,B1井,1 437.91 m

Fig.5 Microscopic photo of Chang 73 shale series reservoir in Jinghe Oilfield

不同岩相由于其矿物组分及成岩过程的不同,孔隙发育丰度及主体孔隙类型有差异,高有机质黏土质页岩以黏土矿物晶间孔为主,粒间孔、粒内孔、有机质孔和有机质边缘孔丰度适中;高有机质硅质页岩以粒间孔、黄铁矿晶间孔和有机质边缘孔为主,粒内孔和有机质孔丰度低;凝灰岩孔隙类型以粒间孔为主,粒内孔、晶间孔和有机质边缘孔丰度低。

4.2 孔隙结构及物性特征

本文采用了CO2吸附、N2吸附及高压压汞联测的实验方法表征储层全孔径孔隙结构,其中CO2吸附主要表征微孔(孔径<2nm)孔径分布,N2吸附主要表征介孔(孔径2~50 nm)孔径分布,高压压汞主要表征宏孔(孔径>50 nm)孔径分布。结果表明,高有机质黏土质页岩孔隙分布呈双峰型,微孔孔径主要集中在0.7~2 nm之间,介孔孔径主要集中在5~30 nm之间,宏孔孔径主要集中在50~110 nm之间,孔隙大小以微孔—介孔为主;高有机质硅质页岩孔径分布呈单峰型,介孔孔径集中在6~20 nm之间,宏孔孔径在50~110 nm之间相对集中,孔隙以宏孔—介孔为主,宏孔含量稍多于介孔;凝灰岩孔隙主要分布于0.1~2 μm之间,大小以宏孔为主,宏孔含量比上述两类储层高(图6)。
图6 泾河油田长73页岩层系不同储层联合孔径分布特征

(a)高有机质黏土质页岩;(b)高有机质硅质页岩;(c)凝灰岩

Fig.6 Joint pore size distribution characteristics of different reservoirs in Chang 73 shale in Jinghe Oilfield

通过氦气孔隙度测试法及高压压汞法得到了储层孔隙度值,渗透率测试结果误差较大,此文不予讨论。高有机质黏土质页岩孔隙度为2.24%~5.87%,平均为3.58%;高有机质硅质页岩孔隙度为2.84%~5.61%,平均为4.01%;凝灰岩孔隙度为2.33%~9.73%,平均为7.19%。总体来看,岩相类型控制了储层物性,凝灰岩孔隙度最高,其次为高有机质硅质页岩,高有机质黏土质页岩孔隙度最低,可能与微孔和介孔占比高有关。

4.3 含油特征

扫描电镜与能谱分析相结合,确定长73页岩油在自然条件下存在游离态、吸附态和溶解态3类赋存状态。游离态页岩油主要赋存于无机孔隙内部以及微裂缝中;吸附态页岩油主要赋存在有机质边缘孔表面,有机孔内表面、黏土矿物孔隙内表面;溶解态页岩油主要赋存于有机质(干酪根)内部(图7)。
图7 泾河油田长73页岩油赋存状态镜下照片

(a)石英颗粒表面页岩油油滴;(b)图(a)中油滴相关能谱;(c)吸附于干酪根表面的页岩油油滴;(d)吸附于沥青表面的页岩油油滴

Fig.7 Microscopic photo of shale oil occurrence in Chang 73 shale series of Jinghe Oilfield

利用多温阶热解实验定量表征页岩油赋存状态,热解参数S 1-1S 1-2反映游离烃含量,S 2-1代表以吸附和互溶态存在的重质、非烃和沥青质等组分含量。100余块B1井岩心测试结果显示,游离油S 1-1含量介于0.06~1.78 mg/g之间,平均为0.90 mg/g;游离油S 1-2含量介于1.49~22.44 mg/g之间,平均为10.11 mg/g;吸附油S 2-1含量介于1.29~16.32 mg/g之间,平均为8.63 mg/g。通过(S 1-1+S 1-2)/(S 1-1+S 1-2 +S 2-1)计算游离油占比介于27%~48%之间,平均为32%,表明长73页岩油以吸附和溶解态为主。

5 页岩油潜力评价

通过质量含油率资源量计算方法21得到,研究区长73页岩基质型页岩油地质资源量约为9.0×108 t,其中游离油资源量约为3.42×108 t,凝灰岩夹层型页岩油资源量约为0.17×108 t,资源潜力总体较大。对标中国石化页岩油评价标准,研究区长73页岩油在有机质成熟度、储层物性、游离烃含量、可压性及地层压力等方面存在劣势,整体属于Ⅲ类,资源品位较低,局部发育Ⅰ类“甜点”(表1)。
表1 中国石化页岩油分类评价标准及泾河油田长73页岩油参数特征

Table 1 Classification and evaluation criteria of SINOPEC shale oil and parameter characteristics of Chang 73 shale oil in Jinghe Oilfield

参数类型

(权重)

参数名称

(权重)

I类(赋值区间)

(0.8~1.0)

II类(赋值区间)

(0.6~0.8)

III类(赋值区间)

(0.5~0.6)

泾河油田

长73亚段

源岩品质(0.35) TOC>1.0%累计厚度/m(0.03) >40 30~40 <30 12~18
TOC/%(0.05) >4.0 2.0~4.0 1.0~2.0 6~30
面积/km2(0.02) >100 50~100 <50 435
R O/%(0.1) >1.1 0.9~1.1 0.7~0.9 0.54~0.76
游离烃 S 1/( mg/g)(0.15) >3.0 2.0~3.0 1.0~2.0 6~21

储层品质

(0.25)

页岩

(0.15)

基质孔隙度/%(0.05) >8 5~8 <5 2.24~5.87
岩相(0.05) 纹层状 层状 块状 层状为主
裂缝发育程度(0.05) 发育 较发育 不发育 较发育
砂岩(灰岩)夹层(0.1) 累计厚度/m(0.05) >10 5~10 0~5 2~
孔隙度/%(0.05) >8 5~8 <5 2.33~9.73
渗透率/(10-3 μm2)(0.05) 0.1~1.0 0.04~0.1 <0.04 <0.1

油藏品质

(0.2)

地层能量(0.1) 压力系数(0.1) >1.4 1.2~1.4 1.0~1.2 0.75~0.85
流体性质(0.1) 原油密度/(g/cm3)(0.1) <0.82 0.82~0.87 0.87~0.92 0.83~0.88
工程条件(0.2) 埋深/m (0.1) <3 500 3 500~4 000 >4 000 1 200~1 400
页岩脆性矿物含量/%(0.1) >60 60~50 40~50 45
合计 总分:0.53
从层段上来看,长73页岩层系顶部6~8 m高有机质硅质页岩与凝灰岩互层段TOC含量高、储层物性好、脆性指数大,最为有利,可以在勘探开发底部长8段致密砂岩油的同时,兼顾评价该层段页岩油潜力;其次为底部2~6 m凝灰岩夹薄层页岩段,老井复查对该段重复压裂,压后原油产量较低,油稠主要产自裂缝,凝灰岩基质含油性差,未达预期,含油性评价是关键。从平面分布来看,研究区东北部页岩厚度大、有机碳含量高、成熟度高、生烃潜力大,是重点勘探目标区,有利区面积估算约为430 km2图8)。
图8 泾河油田长73页岩油有利勘探目标区分布

Fig.8 Distribution of favorable exploration target areas for Chang 73 shale oil in Jinghe Oilfield

6 结论

(1)鄂尔多斯盆地泾河油田长73页岩层系发育四大类六小类岩相,形成3套岩相组合,纵向上从底到顶部依次为厚层凝灰岩夹薄层页岩组合、厚层页岩夹薄层凝灰岩组合及页岩、凝灰岩、粉细砂岩薄互层组合,反映了水体由深变浅进积型沉积过程,体现了静水悬浮与重力流交互的混合沉积特点。
(2)从生烃、储集和含油3个方面开展了长73页岩油地质综合评价,页岩有机质丰度高,TOC值平均为14%,有机质类型以Ⅰ—Ⅱ1型为主,成熟度R O值介于0.6%~0.8%之间;凝灰岩夹层是最有利储层类型,平均孔隙度为7.19%,其次为富有机质硅质页岩和富有机质黏土质页岩,平均孔隙度分别为4.01%和3.58%;总油含量高,但游离油占比低,平均为32%,以吸附和溶解态为主。
(3)泾河油田长73页岩油地质资源总量约为9.17×108
t,对标中石化页岩油评价标准,评价为Ⅲ类页岩油,整体品位较低,需要突破性开发技术。长73亚段顶部多类岩相互层组合体是有利层位,研究区东北部是重点勘探目标区。
1
李阳, 赵清民, 吕琦, 等. 中国陆相页岩油开发评价技术与实践[J]. 石油勘探与开发, 2022, 49(5): 955-964.

LI Y, ZHAO Q M, LÜ Q, et al. Evaluation technology and practice of continental shale oil development in China[J].Petroleum Exploration and Development, 2022, 49(5): 955-964.

2
赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10.

ZHAO W Z, HU S Y, HOU L H, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10.

3
付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长 7 段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883.

FU J H, LI S X, NIU X B, et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883.

4
付金华,郭雯,李士祥,等 . 鄂尔多斯盆地长 7 段多类型页岩油特征及勘探潜力[J]. 天然气地球科学,2021,32(12):1749-1761.

FU J H,GUO W,LI S X,et al. Characteristics and exploration potential of muti-type shale oil in the 7th Member of Yanchang Formation,Ordos Basin[J].Natural Gas Geoscience,2021,32(12):1749-1761.

5
杨华,牛小兵, 徐黎明,等. 鄂尔多斯盆地三叠系长 7 段页岩油勘探潜力[J]. 石油勘探与开发, 2016, 43(4): 511-520.

YANG H, NIU X B, XU L M, et al. Exploration potential of shale oil in Chang7 Member Upper Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 511-520.

6
李志明,陶国亮, 黎茂稳,等. 鄂尔多斯盆地西南部彬长区块三叠系延长组7段3亚段页岩油勘探前景探讨[J]. 石油与天然气地质, 2019, 40(3): 558-570.

LI Z M, TAO G L, LI M W, et al. Discussion on prospecting potential of shale oil in the 3rd sub-member of the Triassic Chang 7 member in Binchang block,southwestern Ordos Basin[J]. Oil & Gas Geology, 2019, 40(3): 558-570.

7
梅启亮,郭睿良,周新平,等. 鄂尔多斯盆地延长组长73亚段纹层型页岩油储层孔隙结构特征与影响因素[J]. 天然气地球科学, 2023, 34(5):851-867.

MEI Q L,GUO R L,ZHOU X P,et al. Pore structure characteristics and impact factors of laminated shale oil reservoir in Chang 73 sub-member of Ordos Basin[J].Natural Gas Geoscience,2023,34(5):851-867.

8
孙照通,辛红刚,吕成福,等. 鄂尔多斯盆地长73亚段泥页岩型页岩油赋存状态与有机地球化学特征[J]. 天然气地球科学, 2022,33(8):1304-1318.

SUN Z T,XIN H G,LÜ C F,et al. Occurrence states and organic geochemical characteristics of shale-type shale oil from Chang 73 sub-member in the Ordos Basin[J].Natural Gas Geoscience,2022,33(8):1304-1318.

9
赵文智,卞从胜,李永新,等. 鄂尔多斯盆地三叠系长73亚段页岩有机质转化率、排烃效率与页岩油主富集类型[J].石油勘探与开发, 2023,50(1):12-23.

ZHAO W Z, BIAN C S, LI Y X, et al. Organic matter transformation ratio, hydrocarbon expulsion efficiency and shale oil enrichment type in Chang 73 shale of Upper Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(1): 12-23.

10
付金华,牛小兵,李明瑞,等. 鄂尔多斯盆地延长组7段3亚段页岩油风险勘探突破与意义[J].石油学报,2022,43(6):760-787.

FU J H, NIU X B, LI M R, et al. Breakthrough and significance of risk exploration in the 3rd sub-member, 7th Member of Yanchang Formation in Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(6): 760-787.

11
潘杰, 刘忠群, 蒲仁海, 等. 鄂尔多斯盆地西南缘泾河油田长7—长8古流向及沉积相分析[J].沉积学报, 2017, 35(1): 124-138.

PAN J,LIU Z Q,PU R H,et al. Provenance direction and sedimentary facies of Chang7-Chang8 Members in Yanchang Formation of Jinghe Oilfield,southwestern margin of Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(1): 124-138.

12
付金华,郭正权,邓秀芹.鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义[J].古地理学报,2005, 7(1): 35-44.

FU J H, GUO Z Q, DENG X Q. Sedimentary facies of the Yanchang Formation of Upper Triassic and petroleum geological implication in southwestern Ordos Basin[J]. Journal of Palaeogeography, 2005, 7(1): 34-44.

13
邓秀芹,付金华,姚泾利,等.鄂尔多斯盆地中及上三叠统延长组沉积相与油气勘探的突破[J].古地理学报, 2011,13(4): 443-455.

DENG X Q,FU J H,YAO J L,et al.Sedimentary facies of the Middle-Upper Triassic Yanchang Formation in Ordos Basin and breakthrough in petroleum exploration[J].Journal of Palaeogeography, 2011, 13(4): 443-455.

14
杨华,窦伟坦,刘显阳,等.鄂尔多斯盆地三叠系延长组长7沉积相分析[J].沉积学报,2010, 28(2): 254-263.

YANG H, DOU W T, LIU X Y, et al. Analysis on sedimentary facies of Member 7 in Yanchang Formation of Triassic in Ordos Basin[J].Acta Sedimentologica Sinica,2010,28(2):254-263.

15
TISSOT B P, PELET R, UNGERER P. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation[J]. AAPG Bulletin,1987,71(12):1445-1466.

16
李庆,卢浩,吴胜和,等.鄂尔多斯盆地南部三叠系长73亚段凝灰岩沉积成因及储层特征[J]. 石油与天然气地质,2022,43(5):1141-1154.

LI Q,LU H,WU S H,et al. Sedimentary origins and reservoir characteristics of the Triassic Chang 73 tuffs in the southern Ordos Basin[J]. Oil & Gas Geology,2022,43(5):1141-1154.

17
李庆,李江山,卢浩,等.鄂尔多斯盆地南部长73页岩层系储层特征及主控因素[J]. 现代地质,2022,43(5):1141-1154.

LI Q,LI J S,LU H,et al. Sedimentary origins and reservoir characteristics of the Triassic Chang 73 tuffs in the southern Ordos Basin[J]. Geoscience,2022,43(5):1141-1154.

18
邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报, 2011, 27(6): 1857-1864.

ZOU C N,ZHU R K,BAI B,et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica,2011,27(6):1857-1864.

19
钟太贤.中国南方海相页岩孔隙结构特征[J].天然气工业,2012,32(9):1-5.

ZHONG T X.Characteristics of pore structure of marine shales in South China[J]. Natural Gas Industry,2012,32(9):1-5.

20
杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报, 2013, 34(2): 301-311.

YANG F, NING Z F, HU C P, et al. Characteristics of microscopic pore structures in shale reservoir[J].Acta Petrolei Sinica,2013,34(2):301-311.

21
李士祥,周新平,郭芪恒,等 .鄂尔多斯盆地长 73亚段页岩油可动烃资源量评价方法[J].天然气地球科学,2021,32(12):1771-1784.

LI S X,ZHOU X P,GUO Q H,et al. Research on evaluation method of movable hydrocarbon resources of shale oil in the Chang 73 sub-member in the Ordos Basin[J].Natural Gas Geoscience,2021,32(12):1771-1784.

Outlines

/