The potential environmental impacts of typical heavy metals and inorganics in shale gas production

  • Zhiyi SONG , 1, 2 ,
  • Xiangying ZENG , 1, 2 ,
  • Biao ZHANG 1, 2, 3 ,
  • Shengjun YANG 1, 2, 3 ,
  • Qian SONG 1, 2, 3 ,
  • Shiyu XIAO 1, 2, 3 ,
  • Yi LIANG 1, 2 ,
  • Zhiqiang YU 1, 2
Expand
  • 1. State Key Laboratory of Organic Geochemistry,Guangdong Key Laboratory of Environment and Resources,Guangzhou Institute of Geochemistry,ChineseAcademy of Sciences,Guangzhou 510640,China
  • 2. CAS Center for Excellence in Deep Earth Science,Guangzhou 510640,China
  • 3. University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2023-07-05

  Revised date: 2023-11-21

  Online published: 2024-01-11

Supported by

The National Key Research and Development Program of China(2019YFC 1805501)

the National Natural Science Foundation of China(42277251)

the Guangdong Foundation for Program of Science and Technology Research(2023B1212060049)

Abstract

The booming of shale gas production provides “clean energy”, while followed by potential environmental risks. Drilling cuttings and flowback/produced water are the major waste or wastewater during shale gas production. They show large differences on composition and element concentration due to geochemical information and additives diversity, which causes large challenge on solid waste and wastewater treatments. This review focused on the occurrence and distribution of inorganic and heavy metal in both drilling cutting and flowback/produced water, then tried to discriminate their potential pathways into aquatic systems and soil, as well as their possible impacts. We proposed suggestion of future study, and hope this should be useful for pollution prevention and control as well as risk management related to shale gas exploitation in our country in the future.

Cite this article

Zhiyi SONG , Xiangying ZENG , Biao ZHANG , Shengjun YANG , Qian SONG , Shiyu XIAO , Yi LIANG , Zhiqiang YU . The potential environmental impacts of typical heavy metals and inorganics in shale gas production[J]. Natural Gas Geoscience, 2024 , 35(4) : 718 -728 . DOI: 10.11764/j.issn.1672-1926.2023.11.008

0 引言

页岩气是赋存于页岩层中的天然气,被认为是传统油气的替代能源。随着水平钻井和水力压裂技术的开发和应用1-3,页岩气已经逐渐成为能源结构中的重要成分4。但是页岩气开采过程将产生大量岩屑和返排液/采出水,其中压裂完成后早期返回地面的液体通常称为返排液,其主要成分为压裂液;而后期伴随页岩气返回地面的液体通常称为采出水,其主要成分为地层水5(后文除非特别说明,统称为“返排液”)。
美国是全球最早开展页岩气勘探开采的国家,其商业化生产时间已经超过40年。相应地,美国科学家针对页岩气开采相关的环境影响研究广泛且深入,现有的研究显示6,页岩气开采产生的油基岩屑富含油性成分与钻井添加剂,而返排液具有高总有机碳(TOC)、高盐、高卤等特点7-8,若处理不当极易造成周边环境影响。在前期相关工作中,笔者已经针对页岩气开采导致的有机污染进行了总结与评述9
本文则围绕页岩气开采相关的重金属与无机物(主要为无机离子),收集整理了截至目前国内外公开研究中围绕页岩气开采相关的主要的环境影响。结合前期相关工作9,笔者希望能较为全面刻画页岩气开采活动对周边环境的影响,为页岩气生产过程环境风险管理提供理论与数据支撑。

1 数据来源

本文的数据来源于Web of Science数据库、万方数据库、公开出版图书以及专业网站(包括https://www.fracfocus.orghttps://www.epa.gov,等)。以关键词“Shale Gas”(页岩气)、“Drilling Cutting”(岩屑)、“Flowback/Produced Water”(返排液/采出水)、“Hydraulic Fracturing”(水力压裂)结合“Environmental Risk”(环境风险)、“Contamination”(污染)收集整理关于岩屑、返排液中重金属与无机离子的中外文献。为进一步了解页岩气开采造成的环境风险,关键词中添加了“Groundwater”(地下水)、“Surface Water”(地表水)、“Sediment”(沉积物)、“Soil”(土壤),收集整理页岩气开采周边环境相关文献。

2 页岩气开采岩屑与返排液中目标污染物分布特征

2.1 岩屑中重金属含量与组成

基于页岩气开采工艺,岩屑包括水基岩屑与油基岩屑。水基岩屑常见于页岩气钻井初期,而油基岩屑常见于深井钻井与岩层结构复杂的后期钻井阶段,受地层和钻井液的双重影响,岩屑成分极其复杂。其中,油基岩屑中除了重金属外,还含有大量的油类基液(柴油、白油、矿物油等)以及芳烃类化合物等毒害有机物,因此被《国家危险废物名录》归类为“危险废物”10-12
截至目前,关于岩屑中重金属的认识不够深入全面,研究人员普遍关注的重金属主要包括Cd、Hg、Ni、Cu、Cr、As、Zn、Pb、Mn和Ba等,其浓度水平和组成呈现明显的地域性差异(图1)。受添加剂重晶石的影响30,岩屑中Ba是检出浓度最高的重金属,油基岩屑中Ba含量高于水基岩屑31-32。从地域分布看,美国(251.7~90 000 mg/kg)1231高于我国(69~53 000 mg/kg)2933和波兰(8.6~1 911.3 mg/kg)34-35。Mn也是高含量重金属,其主要来源为岩层39,呈现出与Ba相反的分布规律,即水基岩屑中含量水平要高于油基岩屑,地域分布差异也十分显著,如我国页岩气岩屑中Mn含量为0.05~25 322 mg/kg1136,美国为200~10 000 mg/kg12,波兰为410~730 mg/kg17图1所示重金属中,值得关注的还有Pb、As和Hg,其中Pb含量(0.63~2 150 mg/kg)2937仅次于Ba和Mn,其次为As(0~200 mg/kg)1217和Hg(0~5.8 mg/kg)1517,但考虑到这几种重金属的毒性效应,如致癌性、生长发育毒性、神经系统毒性等40-41,岩屑无害化/资源化利用中Pb、As和Hg释放及潜在的人体健康影响值得高度关注。重金属Tl毒性极强,其生态毒性响应系数为4042,与Hg相当43,但岩屑中Tl的分布尚未引起研究人员和环境管理部门的足够关注,目前仅见一篇公开发表文献,揭示出我国重庆地区水基岩屑中高浓度Tl分布(2.07 mg/kg)38远高于我国土壤背景值(0.62 mg/kg),若因意外或者不当处置处理导致Tl进入周边环境,可能诱发不可忽视的潜在生态风险。
图1 岩屑中典型重金属含量与分布特征12-38

Fig.1 Concentrations and distributions of representative heavy metal in drilling cutting12-38

究其来源,岩屑中的重金属主要来源于钻井添加剂和地层岩石碎屑。一般而言,钻井过程中,不同类型金属氧化物或者金属盐作为功能添加剂使用,如,重晶石(BaSO4)为钻井液中必不可缺的增重剂30,ZnO与CuO用于提升钻井液的热稳定性44,ZnCrO4和ZnSO4可作为缓蚀剂45,PbCO3为重要的H2S吸附剂45,SnCl2配伍常规除氧剂使用,硼酸盐化合物、有机钛化合物以及锆化合物等是广泛使用的交联剂46。此外,黏土稳定剂中也富含各种金属元素,如Ti、Mn、Cu、Al和Ba等46-47。张悦47分析了取自威远和宜宾钻井现场的钻屑样品,认为钻屑中Mg、Mn、Al和Ba等元素主要来源于添加剂;值得注意的是,重晶石中共存的高含量Cd可导致岩屑中Cd超标48

2.2 返排液中重金属和无机离子分布特征

水力压裂过程中大量压裂液被高压泵入地层,故前期返回地面的返排液主要成分为压裂液,后期返排液主要为地层水5。故此,前期返排液中有机成分高,而后期返排液中总溶解性固体(TDS)浓度更高49-51。类似的,返排液也呈现明显的地域差异。即使同一开采区域,不同气井返排液中TDS差异也十分显著,例如美国(300~261 000 mg/L)52-54和中国(1 975~72 300 mg/L)55-57不同气井间TDS浓度相差2~3个数量级,而加拿大整体水平较高(182 533~243 000 mg/L)5458。尤其值得注意的是,返排液中具有高浓度水平的卤离子(如Cl-、Br-等)。据目前文献报道数据,美国、加拿大、中国、德国最高Cl-浓度分别为196 000 mg/L59、107 000 mg/L54、38 756 mg/L55、115 149 mg/L1;而Br-的浓度一般低于Cl-,在美国、加拿大、中国的最高浓度分别为1 990 mg/L59、297 mg/L54、257 mg/L5。在井下高温高压、高卤条件下以及返排液处理过程中极易产生消毒副产物59,进而威胁开采区域生态系统安全以及居民健康安全。返排液中较为常见的重金属,包括Ba、Sr、Zn、Mn等(图2)。
图2 返排液中典型重金属含量与分布12510234449-80

Fig.2 Concentrations and distribution of heavy metal in flowback water12510234449-80

与钻屑中重金属来源类似,返排液中重金属主要来源于压裂添加剂和井场地层。美国环保署(USEPA)对652份压裂液样品进行分析,发现压裂液配方中常含有BaSO4、CuSO4、ZnSO4、ZnCO3等重金属盐类81。受压裂液配方以及井场地层影响,返排液中重金属含量水平和组成特征也呈现明显的地域差异,不同开采区域返排液中Ba含量可相差4~5个数量级,如,美国、中国、加拿大、德国检出Ba浓度范围分别为0~139 00 mg/L59、0~907.9 mg/L73、5.85~7.28 mg/L5474、0~593 mg/L1。Sr主要受地层地质年龄的影响,美国、中国、加拿大、德国检出浓度范围分别为0~8 460 mg/L59、3.22~1 337 mg/L1077、0~931 mg/L5470、21~1 720 mg/L1。目前关于返排液其他重金属(如Cr、Cu、Hg、As、Pb、Ni等)的研究相对较少1656977-80,主要数据多来源于美国的研究报道,Cr、Cu和As高值可达13.6 mg/L78、116 mg/L65和26.1 mg/L78。德国的返排液中则检测出极高的Pb浓度(55 mg/L)1,陆廷清等69在我国四川珙县地区返排液检出截至目前的最高浓度Hg分布(34.08 mg/L)。

3 页岩气开采污染物进入周边环境主要途径

根据现有文献报道,在页岩气开采全生命周期,污染物可通过不同途径进入周边环境,包括生产过程(如钻井与压裂)、返排液储存、运输、处理处置、岩屑的无害化处理及资源化利用过程等。
水力压裂过程促进页岩气高效采收,但人工裂缝也是压裂液/返排液进入环境的通道;同时,生产中的意外事故可能导致污染物进入地表水、地下水80-82。美国环境保护署(EPA)基于页岩气开采场地上报的泄漏数据统计发现,意外事故主要包括生产中的操作失误以及场地设备如泵、储存罐等零件老化、破损导致的意外渗漏81。2005至2014年间仅新墨西哥州、科罗拉多州、宾夕法尼亚州和北达科他州发生的意外泄漏事故高达6 648起,2007—2014年间北达科他州Bakken地区共发生了意外事故3 900起,包括了返排液运输途中的意外交通事故与运输管道的破损80-84。这种突发意外事故对环境影响极为显著,例如2015年,美国威利斯顿盆地由于传输管道破裂,导致1.14×107 L待处理的返排液发生泄漏,即使在泄漏点下游7.2 km处的地表水中,Cl-浓度也较上游高72倍30
返排液较为常见的处理方式包括处理后回用、深井回注与达标后地表排放6885。然而,处理后返排液依旧残留一定含量水平的离子与重金属,地表排放成为了污染物进入环境水体的一条直接途径;加压深井回注后,由于深层地下水压力增加,可能与浅层地下水发生物质交换,导致污染物间接进入地表水86。采用受影响的地表水进行土壤污灌则会导致污染物进入土壤环境,甚至可能通过食物链富集放大,最终进入人体8587。 现有研究显示,通过砂过滤、膜过滤、电渗析、物理吸附、絮凝沉降、化学氧化沉降等过程88-89可有效去除废水中的重金属。因此,在页岩气污水处理过程中,耦合针对性的物理处理或者化学处理工艺段,将有效控制污水厂排放水中重金属含量水平,消减重金属对受纳水体的潜在影响。
岩屑组分复杂,尤其是油基岩屑通常含有高浓度水平的毒害有机物(如苯系物、芳烃类化合物以及工业添加剂等)、较高浓度的重金属(如Cu、Pb、As、Hg等)以及极高的油性组分,其浸出液毒性强,若简单粗放处理必然会导致污染物进入环境,严重威胁生态系统安全和人体健康。2016年油基岩屑已被列入了我国《国家危险废物名录》,在日常管理中实行不落地政策。因此油基岩屑对页岩气开采周边环境的直接影响甚为少见;其不利影响往往来源于油基岩屑处理处置和资源化利用过程。目前,油基岩屑常见的处理方法之一便是通过高温热解16有效地分离和回收油性组分,既可以重复使用降低生产成本,也减少对环境的负面影响;处理后的残渣可以作为建筑材料制作免烧砖、水泥,甚至铺设路面90-92。化学脱附技术则是利用化学药剂促进油性组分与残渣分离,但在处理过程中添加各种昂贵化学试剂,成本高且极易引入新的污染源93。对于回收利用价值不高的废弃岩屑则常常通过焚化处理94。研究表明,高温热解以及焚烧过程中,岩屑中挥发性重金属如Hg可直接迁移进气态组分进入大气环境16,同时飞灰中也可能富集部分金属,如Zn、Ni、As、Se等化合物,随着尾气排放进入大气环境中94。经过高温热解或者化学脱附处理后,岩屑中的重金属主要赋存于残渣,其浓度水平甚至高于岩屑,如CHEN等95研究发现高温热解处理后,残渣中Cr、Zn浓度可分别高达115.6 mg/kg、505.9 mg/kg。综上所述,油基岩屑的不落地政策避免了岩屑对周边环境的直接影响,但在随后的无害化处理过程中,环境隐患依然突出。值得注意的是,随着页岩气开发的快速发展,每年有大量的岩屑亟待无害化处理,研发高效、低能耗的绿色环保处理技术,依然是业界面临的难题。
研究人员通过模拟研究证明,在岩屑资源化使用过程中,重金属可因淋溶、磨损等方式,再次进入环境1596,但其释放速率和释放量与材料中重金属浓度并无显著相关97,而与资源化处理时添加的辅料98、处理温度99-100以及处理后的材料微孔结构101-102等相关。因此,在岩屑用于制作免烧砖、水泥等建筑材料时,严格控制其添加比例与煅烧温度,既能满足建筑材料的质量要求,同时可有效控制重金属泄漏与释放以及由此可能导致的次生污染。采用热等离子体处理基岩屑时,高温反应条件可完全降解有机物,灰渣也转化为玻璃态,可有效固定岩屑中的重金属。玻璃态灰渣具有玻璃特性,强度高,表面光滑,可进一步资源化利用102。目前,通过等离子体玻璃化处理可能是截断岩屑中重金属和有机物进入环境的最有效途径。

4 页岩气开采对周边环境的影响

目前已有许多研究围绕页岩气开采造成的环境影响开展,但多侧重于有机污染物,针对重金属与无机物的研究相对较少。对本次收集文献进行总结发现,页岩气开采相关的重金属和无机污染主要体现在开采区域地下水以及地表河流,土壤则主要承受重金属污染影响。
总体来说,密集的水力压裂作业可能导致区域性地下水、地表水中无机离子和重金属含量水平升高。美国北达科达州Bakken地区自2007年开始非常规油气开采,仅其西部区域就密集布设了9 700口钻井,该区域地表河流总体显现出高浓度水平TDS(最高可达5 000 mg/L),高于EPA规定的饮用水的最高容许水平(MCL,500 mg/L)一个数量级79。美国Barnett页岩气开采区域居民饮用的地下水中TDS浓度为200~1 900 mg/L,超过半数的样品中TDS也超过了MCL值95。页岩气开采导致地下水盐类的浓度提升往往伴随着重金属浓度的升高,如Barnett页岩气开采区域30%浅层地下水中As超过饮用水标准(10 μg/L),最高浓度可达161.2 μg/L;Sr与Se的最高浓度分别为18 195 μg/L和109 μg/L,均高于饮用水标准(分别为4 000 μg/L和50 μg/L)95。在Marcellus页岩气开采区,处于压裂阶段的气井周边地表水中Hg浓度(可达1.205 ng/L)高于非压裂区(0.491 ng/L),且导致压裂区河流中鳟鱼和小龙虾体内的Hg浓度(102.8 ng/g和54.9 ng/g)高于非压裂区(91.2 ng/g和42.6 ng/g)103。浅层地下水中的盐度与重金属浓度的增加可以灵敏地反映出该区域页岩气压裂活动的增加,在德克萨斯州Permian盆地的浅层地下水中As、Se、Ba的浓度随着区域压裂井数量的增加均有10%以上的提升104
意外事故时大量污染物短时间进入水体,对受纳水体水质以及生态系统的影响则更为显著。2014年7月美国Bear Den Bay泄漏事件中24 000桶(约3 816 t)卤水进入环境,一年之后泄漏点附近地表河流中Cl-和Br-含量依然高达14 795~16 032 mg/L和72.5~74.0 mg/L,较背景值高1~2个数量级;多种毒害重金属如Ba(最高达9 mg/L)、Pb(3 480 µg/L)、Tl(231 µg/L)、Cd(31 µg/L)、Se(970 µg/L)和Mn(16 mg/L)浓度水平较背景值也高1~2个数量级78,部分浓度水平显著高于EPA推荐的保护水生生物的慢性基准浓度。重金属易富集于沉积物中,因此页岩气开采标志性重金属Ba和Sr可记录流域中曾发生过的页岩气泄漏和排放。北达科他州地下管道泄露事件中,下游水体中Sr浓度水平较上游高9倍,而沉积物则高达15倍30。Blacklick Creek河流长期接收处理后返排液,柱状沉积物中Ba和Sr含量水平与返排液的历史排放呈现明显的相关性3。ZHOU等105研究了四川盆地页岩气开采区域某纳污水体中重金属空间分布规律,发现即使远离排污口5 km处底泥中Ba和Sr浓度分别为292 mg/kg 和289 mg/kg。在一定条件下,沉积物中重金属可以再悬浮进入水体,成为水体中重金属二次污染源。由于重金属和无机离子难降解,自然修复的唯一途径依赖于表层水的稀释与植物修复,因泄漏导致的无机污染可能持续数年之久。
长期受处理后返排液排放的影响,美国宾夕法尼亚州Blacklick Creek河流中TDS最高浓度为7 467 mg/L,高于上游35倍,Ba(10.87 mg/L)和Sr(73 mg/L)较上游高1~2个数量级106-107。深井回注中返排液并不直接进入水体环境,但是AKOB等85发现回注井下游表现出明显高于上游的Ba、Cr、Fe、Mn、Sr、Li分布,其中Ba、Sr、Li可达上游浓度的5倍以上。水体中盐度与重金属浓度的提升将影响纳污河流中的生物群落结构108,并且可能对鱼类的生存率与繁殖力起抑制作用109。最新的研究显示,返排液中盐度可能是其中主要的致毒组分110
目前,关于页岩气开采导致土壤污染甚少有研究报道。朱天菊等111以我国长宁页区块某平台为例研究发现,在页岩气开采过程中Cd、Hg、As呈逐渐上升的趋势,其中As浓度可高达43.9 mg/kg,且4.35%采样点土壤面临中度As污染风险。在页岩气开采不同功能区(如在钻井场、完井产气、有机岩屑处理站和集气站),其周边土壤中富集的重金属各有不同,部分采样点土壤中Cd、Pb、Cu、Ni和As等均有不同程度超标,研究结果揭示出页岩气开采活动对周边土壤的潜在影响。潜在生态风险评价结果表明部分区域土壤有轻度风险,主要风险源于Cd分布;值得注意的是部分位点对于人体健康有轻度非致癌风险。研究结果提醒我们要针对性采取措施防控土壤中重金属污染、潜在风险及迁移112-113。水基岩屑含有有机质、氮、磷等营养物质,含油量少,一般均可满足国家标准《食用农产品产地环境质量评价》(HJ/T 332—2006),可直接填埋或者土壤化利用26。固化/稳定化处理后可以降低重金属的迁移,但是不能完全阻止重金属的缓慢释放及对周边环境的影响101。进入环境中的离子态重金属一般都具有较强的迁移性,如Cd、Cr、Zn、Pb和Cu等114,某些矿物如方解石、天然铁锰矿物,对Cr、Pb、Hg 有吸附作用115,可以降低其迁移性及生物活性,导致重金属在土壤和沉积物中富集。但在长期受酸雨淋溶的环境中,重金属离子与矿物及土壤颗粒等在低pH条件下结合性较低,可在水体中长距离迁移3035。尤其值得注意的是,部分重金属如Cd、Cu、Pb和Zn等具有较强生物富集能力92,经食物链富集放大后最终进入人体,威胁人体健康;而Tl、Hg和Cd等重金属具有较高的生态毒性效应,危及生态系统安全和健康42105113。因此,规范化管理返排液和岩屑的处理处置,是有效控制页岩气开采潜在环境影响的重要基础。

5 结语与展望

页岩气作为非常规油气中重要的一员,在提供“清洁能源”的同时满足了日渐增长的能源需求,但页岩气的开采导致的潜在环境风险,值得环境管理部分和生产单位的高度关注。大力开发页岩气以满足国民经济需要,又要确保生态环境安全和居民健康安全,是页岩气开采面临的难题,也是生产部门致力解决的问题。我国正处于页岩气发展的起步阶段,截至目前我国针对页岩气开采导致的环境污染相关研究较少。与美国地广人稀的页岩气开采区域相比,我国页岩气开采所面临生态安全问题更加严峻。我国页岩气主产区四川盆地尤其是重庆市,地貌以丘陵山地为主,部分区域为典型的喀斯特地貌,岩溶发育强烈,生态环境脆弱,易受到页岩气开采活动的影响。与有机污染物不同,无机物尤其是卤素离子及重金属无法被生物降解,在环境中具有持久性,长期持续释放可能导致河流、地下水、土壤中无机污染物累积,威胁生态系统和居民健康安全。因此借鉴国外经验教训,针对污染物进入环境的主要途径加以防控,有利于对我国的页岩气开采过程进行风险管控。突发污染事故可能是返排液进入环境的重要途径,短时间高浓度污染输入对生态系统的危害极大。因此,制定突发事故应急响应预案,快速响应突发污染事故,这是环境风险管理实践中极为重要的一环。针对返排液常规处理,耦合多种处理工艺(如絮凝沉淀与化学氧化沉淀)可有效控制排放水重金属进入受纳水体。此外,可考虑将受纳水体改建为湿地生态公园,打造怡人生态景观,同时自然修复受影响的水体。
我国早在2016年已经将油基岩屑纳入危险废物管理,但是对于水基岩屑目前并未有针对性的管控政策措施。在水基钻屑资源化利用过程中,重金属同样可迁移进入环境,尤其是易迁移性、毒性强且又能生物富集的重金属(如Hg与Tl),应当作为风险管控中首先关注的重金属,加强日常监测管理。
1
OLSSON O, WEICHGREBE D, ROSENWINKEL K H. Hydraulic fracturing wastewater in Germany:Composition,trea-tment,concerns[J].Environmental Earth Sciences,2013,70(8): 3895-3906.

2
GORDALLA B C, EWERS U, FRIMMEL F H. Hydraulic fracturing:A toxicological threat for groundwater and drinking-water?[J]. Environmental Earth Sciences,2013,70(8):3875-3893.

3
BURGOS W D, CASTILLO-MEZA L, TASKER T L, et al. Watershed-scale impacts from surface water disposal of oil and gas wastewater in western Pennsylvania[J]. Environmental Science and Technology,2017,51(15):8851-8860.

4
HANIF M A,NADEEM F,TARIQ R,et al. Renewable and Alternative Energy Resources: Chapter 3-Future Energy Options: An Overview[M]. Academic Press,2022:113-169.

5
倪云燕,姚立邈,廖凤蓉,等.四川盆地威远返排液元素地球化学特征及排放处理建议[J]. 天然气地球科学,2021,32(4): 492-509.

NI Y Y, YAO L M, LIAO F R. et al. Geochemical characteristics of the elements in hydraulic fracturing flowback water from the Weiyuan shale gas development area in Sichuan Basin,China[J]. Natural Gas Geoscience,2021,32(4):492-509.

6
ZHILTSOV S S,SEMENOV A V. Shale Gas:Ecology,Politics,Economy:Shale Gas:History of Development[M].Cham: Springer International Publishing,2017: 9-16.

7
KRUPNICK A, WANG Z, WANG Y. Environmental risks of shale gas development in China[J].Energy Policy,2014,75: 117-125.

8
范真真, 罗霂, 郭丽, 等. 中美页岩气开发环境管理制度的分析与建议[J]. 化工环保, 2019, 39(2): 213-219.

FAN Z Z, LUO M, GUO L, et al. Analysis and suggestions on environmental management system for shale gas extraction in China and US[J]. Environmental Protection of Chemical Industry,2019,39(2):213-219.

9
宋谦, 张彪, 杨胜军, 等. 页岩气开采中典型毒害有机污染物来源及潜在风险研究进展[J]. 地球化学, 2023, 52(1): 9-19.

SONG Q, ZHANG B, YANG S J, et al. Research progress on sources and potential environmental risks of typical organic chemicals related to shale gas extraction[J].Geochimica,2023, 52 (1): 9-19.

10
WANG B, XIONG M Y, WANG P J, et al. Chemical characterization in hydraulic fracturing flowback and produced water (HF-FPW) of shale gas in Sichuan of China[J]. Environmental Science and Pollution Research, 2020, 27(21): 26532-26542.

11
XU T T, WANG L A, LI T, et al. Heavy Metal Pollution and Ecological Risk Assessment of Water-Based Drill Cuttings Produced in Shale Gas Exploitation in Chongqing, China[C].Proceedings of the 3rd International Conference on Energy Engineering and Environmental Protection (EEEP). Sanya, PEOPLES R CHINA, 2019: 19-21.

12
STUCKMAN M Y, LOPANO C L, BERRY S M, et al. Geochemical solid characterization of drill cuttings, core and drilling mud from Marcellus Shale Energy development[J]. Jou-rnal of Natural Gas Science and Engineering,2019,68:102922.

13
WANG C Q,JIN J Z,LIN X Y,et al.A study on the oil-based drilling cutting pyrolysis residue resource utilization by the exploration and development of shale gas[J]. Environmental Science and Pollution Research,2017,24(21):17816-17828.

14
HUANG Q, LIU Y, PENG J Z, et al. Utilizing shale gas drilling cuttings as admixture in cement mortars: A case study in Fuling, Chongqing, China[J]. Environmental Science and Pollution Research, 2022, 29(16): 24362-24369.

15
WANG C Q, LIN X Y, MEI X D, et al. Performance of non-fired bricks containing oil-based drilling cuttings pyrolysis residues of shale gas[J].Journal of Cleaner Production,2019,206: 282-296.

16
LV Q W, WANG L A, JIANG J J, et al. Catalytic pyrolysis of oil-based drill cuttings over metal oxides: The product properties and environmental risk assessment of heavy metals in char[J].Process Safety and Environmental Protection,2022,159:354-361.

17
MIKOS-SZYMANSKA M, RUSEK P, BOROWIK K, et al. Characterization of drilling waste from shale gas exploration in central and eastern Poland[J]. Environmental Science and Pollution Research,2018,25(36):35990-36001.

18
KUJAWSKA J, CEL W. Mobility of metals from drill cuttings[J].International Journal of Waste Resources,2017,7(3):1000285.

19
KUJAWSKA J, PAWLOWSKA M. The effect of amendment addition drill cuttings on heavy metals accumulation in soils and plants: Experimental study and artificial network simulation[J]. Journal of Hazardous Materials,2022,425:127920.

20
XU T, WANG L, ZHANG H, et al. Pyrolysis kinetics and environmental risks of oil-based drill cuttings at China's largest shale gas exploitation site[J]. Ecotoxicology and Environmental Safety, 2022, 246:114189.

21
XU T T, WANG L A, WANG X, et al. Heavy metal pollution of oil-based drill cuttings at a shale gas drilling field in Chongqing,China:A human health risk assessment for the wor-kers[J]. Ecotoxicology and Environmental Safety,2018,165: 160-163.

22
XIONG D M, WANG C Q. Risk assessment of human exposure to heavy metals, polycyclic aromatic hydrocarbons, and radionuclides in oil-based drilling cutting residues used for roadbed materials in Chongqing, China[J]. Environmental Science and Pollution Research, 2021, 28(35): 48171-48183.

23
WU H Y, LAN G H, QIU H Y, et al. Temporal changes of bacterial and archaeal community structure and their corrosion mechanisms in flowback and produced water from shale gas well[J].Journal of Natural Gas Science and Engineering,2022, 104:104663.

24
CHEN Z, TONG K, XU F L, et al. Development of supercritical water oxidation technology for application to hazardous waste treatment: An extreme case study[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105296.

25
HU G J, LIU H, CHEN C, et al. Low-temperature thermal desorption and secure landfill for oil-based drill cuttings management: Pollution control, human health risk, and probabilistic cost assessment[J]. Journal of Hazardous Materials,2021,410:124570.

26
张思兰, 张春, 王丹, 等. 基于模糊综合评价的钻井岩屑土壤化利用可行性分析[J]. 安全与环境学报, 2020, 20(5): 1924-1931.

ZHANG S L, ZHANG C, WANG D, et al. Feasibility analysis of drilling cuttings for soil utilization based on fuzzy synthetic evaluation[J]. Journal of Safety and Environment. 2020, 20 (5), 1924-1931.

27
于劲磊, 向启贵, 蒋国斌, 等. 深、浅层页岩气区块油基岩屑污染特征研究[J]. 石油与天然气化工,2021,50(4):124-129,134.

YU J L, XIANG Q G, JIANG G B, et al. Research on pollution characteristics of oil-base cuttings from deep and shallow shale gas development[J]. Chemical Engineering of Oil and Gas. 2021, 50(4):124-129,134.

28
吴娜, 聂志强, 李开环, 等. 页岩气开采钻井固体废物的污染特性[J]. 中国环境科学, 2019, 39(3): 1094-1100.

WU N, NIE Z Q, LI K H, et al. Pollution characteristics of solid waste in shale gas mining drilling[J]. China Environmental Science. 2019, 39 (3), 1094-1100.

29
卢邦俊. 页岩气钻屑中的重金属成分研究[J]. 能源环境保护, 2015, 29(5): 33-34.

LU B J. Studies of the content of heavy metals in drilling chips from exploitation of shale gas[J]. Energy Environmental Protection. 2015, 29 (5): 33-34.

30
COZZARELLI I M, SKALAK K J, KENT D B, et al. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota[J]. Science of Total Environment. 2017, 579: 1781-1793.

31
PHAN T T, CAPO R C, STEWART B W, et al. Trace metal distribution and mobility in drill cuttings and produced waters from Marcellus Shale gas extraction: Uranium, arsenic, barium[J]. Applied Geochemistry, 2015, 60: 89-103.

32
BALL A S, STEWART R J, SCHLIEPHAKE K. A review of the current options for the treatment and safe disposal of drill cuttings[J]. Waste Management and Research, 2012, 30(5): 457-473.

33
WU J W, ZENG L, MA W G, et al. Influence of cyclone oil desorption technology on the change of oil-based mud cuttings properties[J]. Fuel, 2022, 324: 124524.

34
DRZEWICZ P, NALECZ-JAWECKI G, DROBNIEWSKA A, et al. Toxicological evaluation of thermal treatment of drilling waste from shale gas expoloration in Poland[J]. Ecological Chemistry and Engineering S, 2019, 26(1): 45-57.

35
KUJAWSKA J, PAWLOWSKA M, CEL W, et al. Potential influence of drill cuttings landfill on groundwater quality-comparison of leaching tests results and groundwater composition[J]. Desalination and Water Treatment,2016,57(3):1409-1419.

36
张思兰, 张春, 何敏, 等. 水基钻屑特性分析及其土地利用关键问题初探[J]. 安全与环境学报, 2018, 18(3): 1150-1154.

ZHANG S L, ZHANG C, HE M, et al. Characteristic analysis of the water-based drilling cutting and its preliminary study over the key issues of the corresponding land use[J]. Journal of Safety and Environment,2018,18(3):1150-1154.

37
高昊辰, 张春, 张思兰, 等. 中国西南地区页岩气田水基钻屑理化性状与污染物分析[J]. 土壤, 2019, 51(6): 1168-1172.

GAO H C, ZHANG C, ZHANG S L, et al. Analysis of physiochemical properties and pollutants of water-based drilling cuttings in shale gas field near Southwest China[J] Soil, 2019, 51(6): 1168-1172.

38
LIU D S, WANG C Q, MEI X D, et al. An effective treatment method for shale gas drilling cuttings solidified body[J]. Environmental Science and Pollution Research,2019,26(17): 17853-17857.

39
AI J, SILJESTRöM S, ZHONG N, et al. Co-existing two distinct formation mechanisms of micro-scale ooid-like manganese carbonates hosted in Cryogenian organic-rich black shales in South China[J].Precambrian Research,2023,393:107091.

40
AHMAD S A, KHAN M H, KHANDKER S, et al. Blood lead levels and health problems of lead acid battery workers in Bangladesh[J]. Scientific World Journal,2014,2014:974104.

41
POREBA R, GAC P, POREBA M, et al. Environmental and occupational exposure to lead as a potential risk factor for cardiovascular disease[J].Environmental Toxicology and Phar-macology,2011,31(2):267-277.

42
高博, 孙可, 任明忠, 等. 北江表层沉积物中铊污染的生态风险[J]. 生态环境, 2008, 17(2): 528-532.

GAO B, SUN K, REN M Z, et al. Ecological risk assessment of thallium pollution in the surface sediment of Beijiang River[J]. Ecology and Environment Sciences, 2008, 17(2): 528-532.

43
HAKANSON L. An ecological risk index for aquatic pollution control:A sedimentological approach[J].Water Research,1980, 14(8): 975-1001.

44
PONMANI S, NAGARAJAN R, SANGWAI J S. Effect of nanofluids of CuO and ZnO in polyethylene glycol and polyvinylpyrrolidone on the thermal, electrical, and filtration-loss properties of water-based drilling fluids[J].SPE Journal,2016, 21(2): 405-415.

45
OPEKUNOV A, OPEKUNOVA M, KUKUSHKIN S, et al. Impact of drilling waste pollution on land cover in a high subarctic forest-tundra zone[J].Pedosphere,2022,32(3):414-425.

46
FINK J K. 水力压裂化学剂与液体技术[M]. 卢拥军, 陈彦东,译.北京:石油工业出版社, 2015.

FINK J K. Hydraulic Fracturing Chemicals and Fluids Technology[M]. LU Y J, CHEN Y D,Translated.Beijing:Petroleum Industry Press, 2015.

47
张悦. 页岩气油基钻屑清洗除油工艺及机理研究[D]. 北京: 中国石油大学(北京), 2021: 16-17.

ZHANG Y. Study on Oil Removal Process and Cleaning Mechanism of Shale Gas Oil-Based Drill Cuttings[D].Beijing: China University of Petroleum (Beijing), 2021:16-17.

48
刘晓辉,谢水祥, 许毓,等. 页岩气井钻井液添加剂环保性能与废弃物污染特性的相关性[J]. 石油石化绿色低碳, 2019, 4(4): 53-59.

LIU X H, XIE S X, XU Y,et al. Shale gas drilling fluid additives environmental performance vs. waste pollution[J]. Green Petroleum & Petrochemicals, 2019,4(4): 53-59.

49
LI Y M, HUANG T M, PANG Z H, et al. Geochemical processes during hydraulic fracturing: A water-rock interaction experiment and field test study[J]. Geosciences Journal, 2017, 21(5): 753-763.

50
LI X D, LIU C Q, HARUE M, et al. The use of environmental isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic effects on karst groundwater quality: A case study of the Shuicheng Basin, SW China[J]. Applied Geochemistry, 2010, 25(12): 1924-1936.

51
NI Y Y, YAO L M, SUI J L, et al. Shale gas wastewater geochemistry and impact on the quality of surface water in Sichuan Basin[J]. Science of the Total Environment, 2022, 851: 158971.

52
MAO H, WANG G, LIAO F, et al. Geochemical evolution of groundwater under the influence of human activities: A case study in the Southwest of Poyang Lake Basin[J]. Applied Geochemistry, 2022, 140:105299.

53
GREGORY K B, VIDIC R D, DZOMBAK D A. Water management challenges associated with the production of shale gas by hydraulic fracturing[J]. Elements, 2011, 7(3): 181-186.

54
BLEWETT T A, DELOMPRE P L M, HE Y H, et al. Sublethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water Flea Daphnia magna[J]. Environmental Science & Te-chnology, 2017, 51(5): 3032-3039.

55
王丹, 陈龙利, 何敏, 等. 页岩气采出水水质特性分析[J]. 环境监测管理与技术, 2018, 30(6): 50-53.

WANG D, CHEN L L, HE M, et al. Characteristics of shale gas produced water[J]. The Administration and Technique of Environmental Monitoring, 2018, 30 (6):50-53.

56
冯栩, 鲍晋, 苟杰, 等. 页岩气压裂返排液的序批式生物膜处理研究[J]. 工业水处理, 2018, 38(6): 50-53.

FENG X, BAO J, GOU J, et al. Research on the sequencing batch biofilm treatment of shale gas fracturing flowback fluid[J]. Industrial Water Treatment. 2018, 30 (6): 50-53.

57
陈龙利, 王丹, 张春, 等. 页岩气开发过程中土壤污染及修复技术展望[J]. 环境科学导刊, 2018, 37(S1): 17-21.

CHEN L L, WANG D, ZHANG C, et al. Prospective of soil pollution and remediation technology in shale gas exploitation[J]. Environmental Science Survey,2018,37(S1):17-21.

58
SARDARI K, FYFE P, WICKRAMASINGHE S R. Integrated electrocoagulation-Forward osmosis - Membrane distillation for sustainable water recovery from hydraulic fracturing produced water[J]. Journal of Membrane Science, 2019, 574: 325-337.

59
BARBOT E, VIDIC N S, GREGORY K B, et al. Spatial and temporal correlation of water quality parameters of produced waters from Devonian-Age Shale following hydraulic Fracturing[J]. Environmental Science & Technology, 2013, 47(6): 2562-2569.

60
LUEK J L, HARIR M, SCHMITT-KOPPLIN P, et al. Temporal dynamics of halogenated organic compounds in Marcellus Shale flowback[J]. Water Research,2018,136:200-206.

61
OLSSON O, WEICHGREBE D, ROSENWINKEL K H. Hydraulic fracturing wastewater in Germany:Composition,treatment, concerns[J]. Environmental Earth Sciences, 2013, 70(8): 3895-3906.

62
LI Z, HUANG T, MA B, et al. Baseline groundwater quality before shale gas development in Xishui, Southwest China: Analyses of hydrochemistry and multiple environmental isotopes(2H,18O,13C,87Sr/86Sr,11B,and Noble Gas Isotopes)[J]. Water, 2020, 12(6): 1741.

63
ZIEMKIEWICZ P F, HE Y T. Evolution of water chemistry during marcellus shale gas development: A case study in West Virginia[J]. Chemosphere, 2015, 134: 224-231.

64
ABUALFARAJ N, GURIAN P L, OLSON M S. Characterization of marcellus shale flowback water[J].Environmental En-gineering Science, 2014, 31(9): 514-524.

65
LESTER Y, FERRER I, THURMAN E M, et al. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment[J]. Science of the Total Environment, 2015, 512: 637-644.

66
CLUFF M A, HARTSOCK A, MACRAE J D, et al. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured marcellus shale gas wells[J].Environmental Science and Technology,2014,48(11): 6508-6517.

67
贺美, 陈文杰, 田磊, 等. 页岩气压裂返排液的水生生态毒性效应研究[J]. 生态毒理学报, 2017, 12(2): 108-119.

HE M, CHEN W J, TIAN L, et al. Study on the aquatic ecological toxicity of shale gas fracturing fluids[J]. Asian Journal of Ecotoxicology,2017, 12(2):108-119.

68
朱天菊, 王兵, 谢红丽, 等. 土著水生植物对页岩气钻井废水中Cu和Pb的去除及富集特征[J]. 环境科学研究, 2017, 30(3): 478-483

ZHU T J, WANG B, XIE H L, et al. Degradation and bioconcentration effects of aquatic plants on Cu/Pb in wastewater during drilling of shale gas[J]. Research of Environmental Science,2017, 30 (3):478-483.

69
陆廷清, 胡明, 刘墨翰, 等. 页岩气开发对川渝地区水资源环境的影响[J]. 科技导报, 2016, 34(23): 51-56.

LU T Q, HU M, LIU M H, et al. On the impact of shale gas development on water resource and environment in Sichuan and Chongqing[J]. Science and Technology Review,2016, 34(23): 51-56.

70
HE Y H, FLYNN S L, FOLKERTS E J, et al. Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water[J].Water Research,2017,114:78-87.

71
熊颖, 刘雨舟, 刘友权, 等. 长宁—威远地区页岩气压裂返排液处理技术与应用[J]. 石油与天然气化工, 2016, 45(5): 51-55.

XIONG Y, LIU Y Z, LIU Y Q, et al, Recycling disposal technology and application of shale gas fracturing flowback fluid in Changning-Weiyuan area[J]. Chemical Engineering of Oil and Gas,2016, 45 (5): 51-55.

72
HUANG T, PANG Z, LI Z, et al. A framework to determine sensitive inorganic monitoring indicators for tracing groundwater contamination by produced formation water from shale gas development in the Fuling Gasfield, SW China[J]. Journal of Hydrology, 2020, 581:124403.

73
WARNER N R, KRESSE T M, HAYS P D, et al. Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas[J]. Applied Geochemistry, 2013, 35: 207-220.

74
HALUSZCZAK L O,ROSE A W,KUMP L R. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania,USA[J].Applied Geochemistry,2013,28:55-61.

75
National Energy Technology Laboratory. Sampling and Analysis of Water Streams Associated with Marcellus Shale Gas[EB/OL]. [2014-2-6].https://edx.netl.doe.gov/dataset/sampling-and-analysis-of-water-streams-associated-with-the-development-of-marcellus-shale-gas.

76
BALABA R S, SMART R B. Total arsenic and selenium analysis in Marcellus shale, high-salinity water, and hydrofracture flowback wastewater[J]. Chemosphere, 2012, 89(11): 1437-1442.

77
金艳, 黄伙, 张建海. 页岩气采出水处理技术进展[J]. 广东化工,2017,44(16):149-151.

JIN Y, HUANG H, ZHANG J H. Technical progress of shale gas produced water treatment[J]. Guangdong Chemical Industry,2017, 44 (16): 149-151.

78
LAUER N E, HARKNESS J S, VENGOSH A. Brine spills associated with unconventional oil development in North Dakota[J]. Environmental Science & Technology, 2016, 50(10): 5389-5397.

79
MAGUIRE-BOYLE S J, BARRON A R. Organic compounds in produced waters from shale gas wells[J]. Environmental Science-Processes and Impacts, 2014, 16(10): 2237-2248.

80
USEPA. Hydraulic fracturing for oil and gas: impacts from the hydraulic fracturing water cycle on drinking water resources in the United States. Washington, DC[EB/OL].[2023-09-20].https://www.epa.gov/sites/default/files/2016-12/documents/hfdwa_executive_summary.pdf.

81
MALONEY K O, BARUCH-MORDO S, PATTERSON L A, et al. Unconventional oil and gas spills: Materials, volumes, and risks to surface waters in four states of the U.S[J]. Science of Total Environment, 2017, 581: 369-377.

82
VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J].Environmental Science & Technology,2014,48(15): 8334-8348.

83
PATTERSON L A,KONSCHNIK K E,WISEMAN H,et al. Unconventional oil and gas spills: Risks, mitigation priorities, and state reporting requirements[J]. Environmental Science & Technology, 2017, 51(5): 2563-2573.

84
CLANCY S A, WORRALL F, DAVIES R J, et al. The potential for spills and leaks of contaminated liquids from shale gas developments[J]. Science of Total Environment, 2018, 626: 1463-1473.

85
AKOB D M, MUMFORD A C, OREM W, et al. Wastewater disposal from unconventional oil and gas development degrades stream quality at a west virginia injection facility[J]. Environmental Science & Technology,2016,50(11):5517-5525.

86
AL-GHOUTI M A,AL-KAABI M A,ASHFAQ M Y, et al. Produced water characteristics, treatment and reuse: A review[J].Journal of Water Process Engineering,2019,28:222-239.

87
LAN D W, CHEN M Y, LIU Y C, et al. Development of shale gas in China and treatment options for wastewater produced from the exploitation: Sustainability lessons from the united states[J]. Journal of Environmental Engineering, 2020, 146(9):04020103.

88
WU Q, ZHENG M, HU Y. Shale gas produced water contamination and its comprehensive treatment[J]. Science and Technology Review, 2014, 32(13): 74-83.

89
JELLICOE K, MCINTOSH J C, FERGUSON G. Changes in deep groundwater flow patterns related to oil and gas activities[J]. Ground Water, 2022, 60(1): 47-63.

90
周奇, 姚光远, 包为磊, 等. 油气田开采钻井岩屑分类利用处置现状及环境管理[J]. 环境工程技术学报, 2023, 13(2): 785-792.

ZHOU Q, YAO G Y, BAO W L, et al. Current utilization, disposal and environmental management of drilling cuttings from oil and gas field exploitation[J]. Journal of Environmental Engineering Technology, 2023, 13(2):785-792.

91
YANG Y, TIAN L, BORCH T, et al. Safety and technical feasibility of sustainable reuse of shale gas flowback and produced water after advanced treatment aimed at wheat irrigation[J].ACS Sustainable Chemistry and Engineering,2022,10(38): 12540-12551.

92
LIU W, YUAN H, FAN Z, et al. Using water-based drilling cuttings from shale gas development to manufacture sintered bricks: A case study in the southern Sichuan Basin, China[J]. Environmental Science and Pollution Research,2021,28(23): 29379-29393.

93
YANG H, DIAO H, ZHANG Y, et al. Treatment and novel resource-utilization methods for shale gas oil based drill cuttings: A review[J]. Journal of Environmental Management, 2022, 317: 115462.

94
DHIR R K, CSETENYI L J, DYER T D, et al. Cleaned oil-drill cuttings for use as filler in bituminous mixtures[J]. Construction and Building Materials, 2010, 24(3): 322-325.

95
CHEN X L, YANG Y H, LU Z H, et al. Oil-based drilling cuttings pyrolysis residues at a typical shale gas drilling field in Chongqing: Pollution characteristics and environmental risk assessment[J]. Environmental Geochemistry and Health, 2023, 45(6): 2949-2962.

96
PEREIRA L B, SAD C M S, CASTRO E V R, et al. Environmental impacts related to drilling fluid waste and treatment methods: A critical review[J]. Fuel, 2022, 310:122301.

97
DENG Y,YIN H,CHEN Z,et al. Research progress and prospects on the treating and disposal for waste oil-based drilling cuttings from shale gas wells[J]. Geofluids,2022,15:1-15.

98
LIU W, YUAN H, FAN Z, et al. Using water-based drilling cuttings from shale gas development to manufacture sintered bricks: A case study in the southern Sichuan Basin, China[J]. Environmental Science Pollution Research International, 2021, 28(23): 29379-29393.

99
WANG C Q, CHEN S, HUANG D M, et al. Pozzolanic activity and environmental risk assessment of water-based drilling cuttings of shale gas[J]. Construction and Building Materials, 2022, 348: 128657.

100
ZHOU J H, ZHAI Z F, WU J L, et al. Thermal plasma vitrification treatment of oil-based drill cuttings: Product characterization and harmless transformation[J]. Journal of Environmental Management, 2023, 331: 117285.

101
XIONG D M, WANG C Q. Physical characteristics and environmental risks assessment of oil-based drilling cuttings residues used for subgrade materials[J]. Journal of Cleaner Production, 2021, 323: 129152.

102
李开环. 涪陵地区页岩气开采固体废物污染特性及资源化环境风险研究[D]. 重庆:重庆交通大学, 2018: 51-53.

LI K H. Study on Solid Waste Pollution Characteristics and Resource environmental Risk of Shale Gas Exploitation in Fuling Area[D].Chongqing:Chongqing Jiaotong University,2018: 51-53.

103
WANG M, ZHANG H. Accumulation of heavy metals in roadside soil in urban area and the related impacting factors[J]. International Journal of Environmental Research and Public Health, 2018, 15(6): 1064.

104
FONTENOT B E,HUNT L R,HILDENBRAND Z L,et al. An evaluation of water quality in private drinking water wells near natural gas extraction sites in the barnett shale formation[J].Environmental Science & Technology,2013,47(17): 10032-10040.

105
ZHOU S, LI Z, PENG S, et al. Combining eDNA and morphological approaches to reveal the impacts of long-term discharges of shale gas wastewaters on receiving waters[J]. Water Research, 2022, 222: 118869.

106
GRANT C J, WEIMER A B, MARKS N K, et al. Marcellus and mercury: Assessing potential impacts of unconventional natural gas extraction on aquatic ecosystems in northwestern Pennsylvania[J].Journal of Environmental Science and Health, 2015, 50(5): 482-500.

107
WARNER N R, CHRISTIE C A, JACKSON R B, et al. Impacts of shale gas wastewater disposal on water quality in western Pennsylvania[J]. Environmental Science & Technology, 2013, 47(20): 11849-11857.

108
HILDENBRAND Z L, CARLTON D D, FONTENOT B E, et al. Temporal variation in groundwater quality in the Permian Basin of Texas, a region of increasing unconventional oil and gas development[J]. Science of the Total Environment, 2016, 562: 906-913.

109
MOUSER P J,BORTON M,DARRAH T H,et al.Hydraulic fracturing offers view of microbial life in the deep terrestrial sub-surface[J]. FEMS Microbiology Ecology,2016,92(11):1-18.

110
WU F, ZHOU Z, ZHANG S, et al. Toxicity identification evaluation for hydraulic fracturing flowback and produced water during shale gas exploitation in China: Evidence from tissue residues and gene expression[J]. Water Research, 2023, 241: 120170.

111
朱天菊, 宋娇, 张超, 等. 某页岩气开发场地重金属污染风险分析[J]. 安全与环境学报, 2023, 23(1): 240-249.

ZHU T J, SONG J, ZHANG C, et al. Risk analysis of heavy metal pollution in shale gas development site[J]. Journal of Safety and Environment, 2023, 23(1): 240-249.

112
李炎, 田冬梅, 赖星, 等. 页岩气井场区域土壤重金属含量特征及生态风险评价[J]. 四川农业大学学报, 2019, 37(5): 695-701.

LI Y, TIAN D M, LAI X, et al. Characteristics of heavy metal content and ecological risk assessment of soil in shale gas field area[J].Journal of Sichuan Agricultural University,2019, 37(5):695-701.

113
LI Y, BAI H C, LI Y T, et al. An integrated approach to identify the source apportionment of potentially toxic metals in shale gas exploitation area soil, and the associated ecological and human health risks[J]. Journal of Hazardous Materials, 2023, 458: 132006.

114
韩春梅, 王林山, 巩宗强, 等. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 2005,24(12): 1499-1502.

HAN C M, WANG L S, GONG Z Q, et al. Chemical forms of soil heavy metals and their environmental significance[J]. Chinese Journal of Ecology, 2005,24(12): 1499-1502.

115
王吉中,李胜荣,刘宝林,等.国内矿物治理重金属废水研究进展与展望[J].矿物岩石地球化学通报,2005,24(2):159-164.

WANG J Z, LI S R, LIU B L, et al. Progress and prospect of the research on the treatment of heavy metal-bearing waste water by using minerals in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(2): 159-164.

Outlines

/