Sedimentary geochemical characteristics and organic matter enrichment of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin
Received date: 2023-07-17
Revised date: 2023-09-20
Online published: 2023-10-16
Supported by
The PetroChina Scientific and Technological Project(2021DJ0504)
the National Natural Science Foundation of China(42030804)
the Special Fund for Basic Scientific Research of Central Universities(2022YJSMT03)
The depositional environments of the Lower Cambrian Qiongzhusi Formation in different regions of the Sichuan Basin exhibit significant variations due to structural-sedimentary heterogeneities. However, there has been a lack of systematic comparison and understanding of the geochemical characteristics of deposition in different areas of the Qiongzhusi Formation. By collecting and organizing published geochemical data from 16 wells and nine outcrop sections of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin, and integrating previous knowledge, a comparative analysis of the sedimentary geochemical characteristics of the Qiongzhusi Formation in different regions of the Sichuan Basin was conducted. The following understandings were obtained with regards to the enrichment of organic matter: (1)The northern section of the Deyang-Anyue rift had a more reducing paleo-environment compared to the southern section, which was more conducive to the enrichment of organic matter and the formation and preservation of high-quality source rocks. (2)From the deepwater shelf area of the rift to the shallow-water shelf area in the northeast of the Sichuan Basin, there was a transition from anoxic to oxidized paleo-environment. Conversely, from the southwestern shallow-water shelf area to the middle section of the Deyang-Anyue rift area and the southwestern shallow-water shelf area to the southeastern shallow-water shelf area, the sedimentary water bodies got more reducing. (3)The northern and central sections of the rift both reflected a high level of paleo-productivity, and the widespread hydrothermal influence during the Qiongzhusi period in the Sichuan Basin provided highly favorable conditions for organic matter enrichment. (4)The organic matter abundance in the northern section of the Deyang-Anyue rift and the southwestern shallow-water shelf area was mainly influenced by paleo-productivity intensity. In the northeastern and southeastern shallow-water shelf area, organic matter abundance was mainly controlled by paleo-redox conditions. The organic matter enrichment in the middle section of the Deyang-Anyue rift was the result of the combined effects of high paleo-productivity and the anoxic to dysoxic paleo-oxygenation conditions. This research contributes to a deeper understanding of the sedimentary environment and hydrocarbon source rock formation conditions of the Qiongzhusi Formation in the Sichuan Basin, providing important theoretical and practical implications for deep and ultra-deep oil and gas exploration.
Tianyi ZHANG , Shipeng HUANG , Xianqing LI , Hua JIANG , Fuying ZENG , Yile MA . Sedimentary geochemical characteristics and organic matter enrichment of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin[J]. Natural Gas Geoscience, 2024 , 35(4) : 688 -703 . DOI: 10.11764/j.issn.1672-1926.2023.09.016
中国石油勘探开发研究院江青春高级工程师、成都理工大学宋金民副教授及四川轻化工大学夏国栋副教授在论文撰写过程中提出了很好的意见和建议,在此表示诚挚谢意;由衷感谢匿名审稿人提出的宝贵修改意见。
1 |
GUO Q J, SHIELDS G, LIU C Q, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 254: 194-216.
|
2 |
PI D H, LIU C Q, SHIELDS-ZHOU G A, et al. Trace and rare earth element geochemistry of black shale and kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for redox environments and origin of metal enrichments[J].Precambrian Research,2013,225:218-229.
|
3 |
GAO P, LIU G D, JIA C Z, et al. Redox variations and organic matter accumulation on the Yangtze carbonate platform during Late Ediacaran-Early Cambrian:Constraints from petrology and geochemistry[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 450: 91-110.
|
4 |
JIN C, LI C, ALGEO T J, et al. A highly redox-heterogeneous ocean in South China during the Early Cambrian(~529-514 Ma): Implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51.
|
5 |
LIU K, FENG Q, SHEN J, et al. Increased productivity as a primary driver of marine anoxia in the Lower Cambrian[J]. Palaeogeography Palaeoclimatology Palaeoecology,2018,491:1-9.
|
6 |
WU Y, TIAN H, GONG D, et al. Paleo-environmental variation and its control on organic matter enrichment of black shales from shallow shelf to slope regions on the Upper Yangtze Platform during Cambrian Stage 3[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2020, 545: 109653.
|
7 |
GAO P, LI S J, LASH G G, et al. Stratigraphic framework, redox history, and organic matter accumulation of an Early Cambrian intra-platfrom basin on the Yangtze Platform, South China[J]. Marine and Petroleum Geology,2021,130:105095.
|
8 |
WANG N, WEN L, LI M, et al. The origin of abnormally 13C-depleted organic carbon isotope signatures in the Early Cam-brian Yangtze Platform[J].Marine and Petroleum Geology,2021, 128: 105051.
|
9 |
STEINER M, WALLIS E, ERDTMANN B D, et al. Submarine hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2001, 169: 165-191.
|
10 |
GAO P, HE Z, LI S, et al. Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China[J].Palaeoge-ography Palaeoclimatology Palaeoecology,2018,505:381-397.
|
11 |
LIU Z H, ZHUANG X G, TENG G E, et al. The Lower Cambrian Niutitang Formation at Yangtiao(Guizhou, SW China):Organic matter enrichment, source rock potential, and hydrothermal influences[J].Journal of Petroleum Geology,2015, 38 (4): 411-432.
|
12 |
WANG S F, ZOU C N, DONG D Z, et al. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology, 2015, 66: 660-672.
|
13 |
ZHAI L N, WU C D, YE Y T, et al. Fluctuations in chemical weathering on the Yangtze Block during the Ediacaran-Cambrian transition: Implications for paleoclimatic conditions and the marine carbon cycle[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2018, 490: 280-292.
|
14 |
ZHANG K, SONG Y, JIANG S, et al. Mechanism analysis of organic matter enrichment in different sedimentary backgrounds: A case study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze Region[J]. Marine and Petroleum Geology, 2019, 99: 488-497.
|
15 |
赵建华, 金之钧, 林畅松, 等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.
ZHAO J H, JIN Z J, LIN C S, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze Region[J].Oil & Gas Geology,2019,40(4):701-715.
|
16 |
WANG N, LI M J, TIAN X W, et al. Climate-ocean control on the depositional watermass conditions and organic matter enrichment in Lower Cambrian black shale in the Upper Yangtze Platform[J].Marine and Petroleum Geology,2020,120:104570.
|
17 |
杨雨, 罗冰, 张本健, 等. 四川盆地下寒武统筇竹寺组烃源岩有机质差异富集机制与天然气勘探领域[J]. 石油实验地质, 2021, 43( 4): 611-619.
YANG Y, LUO B, ZHANG B J, et al. Differential mechanisms of organic matter accumulation of source rocks in the Lower Cambrian Qiongzhusi Formation and implications for gas exploration fields in Sichuan Basin[J]. Petroleum Geology & Experiment,2021,43(4):611-619.
|
18 |
魏国齐,杨威,谢武仁,等. 克拉通内裂陷及周象大型岩性气藏形成机制、潜力与勘探实践——以四川盆地震旦系—赛武系为例[J]. 石油勘探与开发,2022,49(3):465-477.
WEI G Q, YANG W, XIE W R, et al. Formation mechanisms, potentials and exploration practices of large lithologic gas reservoirs in and around an intracratonic rift: Taking the Sinian Cambrian of Sichuan Basin as an example[J].Petroleum Exploration and Development, 2022, 49(3):465-477.
|
19 |
ZHAO L, LIU S G, LI G Q, et al. Sedimentary environment and enrichment of organic matter during the deposition of Qiongzhusi Formation in the Upslope areas-A case study of W207 Well in the Weiyuan area,Sichuan Basin,China[J].Frontier in Earth Science, 2022, 10: 867616.
|
20 |
郭正吾, 邓康龄, 韩永辉, 等. 四川盆地形成与演化[M]. 北京:地质出版社, 1996:1-200.
GUO Z W, DENG K L, HAN Y H, et al. The Formation and Development of Sichuan Basin[M]. Beijing: Geological Publishing House, 1996: 1-200.
|
21 |
姜鹏飞, 吴建发, 朱逸青, 等. 四川盆地海相页岩气富集条件及勘探开发有利区[J], 石油学报, 2023, 44 (1): 91-109.
JIANG P F,WU J F, ZHU Y Q, et al. Enrichment conditions and favorable areas for exploration and development of marine shale gas in Sichuan Basin[J].Acta Petrolei Sinica,2023, 44 (1): 91-109.
|
22 |
管树巍, 吴林, 任荣, 等. 中国主要克拉通前襄武纪裂谷分布与油气勘探前景[J]. 石油学报, 2017, 38 (1): 9-22.
GUAN S W, WU L, REN R, et al. Distribution and petroleum prospect of Precambrian rifts in the main cratons, China[J]. Acta Petrolei Sinica, 2017, 38( 1): 9-22.
|
23 |
刘树根, 孙玮, 罗志立, 等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版), 2013, 40( 5): 511-520.
LIU S G, SUN W, LUO Z L, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2013,40(5): 511-520.
|
24 |
邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发,2014,41(3):278-293.
ZOU C N, DU J H, XU C C, et al. Formation, distribution, resource potential and discovery of the Sinian Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.
|
25 |
杜金虎, 邹才能, 徐春春, 等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3): 268-277.
DU J H, ZOU C N, XU C C, et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin[J].Petroleum Exploration and Development,2014, 41 (3): 268-277.
|
26 |
魏国齐, 杨威, 杜金虎, 等. 四川盆地震旦纪—早寒武世克拉通内裂陷地质特征[J]. 天然气工业,2015,35(1):24-35.
WEI G Q, YANG W, DU J H, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry,2015,35(1):24-35.
|
27 |
汪泽成, 赵文智, 胡素云, 等. 克拉通盆地构造分异对大油气田形成的控制作用——以四川盆地震旦系—三叠系为例[J]. 天然气工业,2017,37(1):9-23.
WANG Z C, ZHAO W Z, HU S Y, et al. Control of tectonic differentiation on the formation of large oil and gas fields in craton basins:A case study of Sinian-Triassic of the Sichuan Basin[J]. Natural Gas Industry,2017,37(1):9-23.
|
28 |
朱茂炎, 孙智新, 杨爱华, 等. 中国襄武纪岩石地层划分和对比[J]. 地层学杂志, 2021, 45(3): 222-249.
ZHU M Y, SUN Z X,YANG A H, et al. Lithostratigraphic subdivision and correlation of the Cambrian in China[J]. Journal of Stratigraphy,2021,45(3):222-249.
|
29 |
付小东, 陈娅娜, 罗冰, 等. 中上扬子区下寒武统麦地坪组—筇竹寺组烃源岩与含油气系统评价[J]. 中国石油勘探, 2022,27(4):103-120.
FU X D, CHEN Y N, LUO B, et al. Evaluation of source rocks and petroleum system of the Lower Cambrian Maidiping Formation-Qiongzhusi Formation in the Middle-Upper Yangtze Region[J].China Petroleum Exploration,2022,27(4):103-120.
|
30 |
汪泽成, 姜华, 王铜山, 等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发,2014,41(3):305-312.
WANG Z C, JIANG H, WANG T S, et al. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development,2014,41(3):305-312.
|
31 |
刘树根,刘殊,孙玮,等.绵阳—长宁拉张槽北设构造—沉积特征[J].成都理工大学学报(自然科学版),2018,45(1):1-13.
LIU S G, LIU S, SUN W, et al. Tectonic and sedimentary features of the northern Mianyang-Changning intracratonic sag Sichuan China[J]. Journal of Chengdu University of Technology( Science & Technology Edition),2018,45(1):1-13.
|
32 |
杨威, 魏国齐, 武赛军, 等. 四川盆地区域不整合特征及其对油气成藏的控制作用[J]. 石油勘探与开发,2023,50(3):504-515.
YANG W, WEI G Q, WU S J, et al. Regional unconformities and their controls on hydrocarbon accumulation in Sichuan Basin,SW China[J].Petroleum Exploration and Development, 2023,50(3):504-515.
|
33 |
范海经, 邓虎成, 伏美燕, 等. 四川盆地下寒武统筇竹寺组沉积特征及其对构造的响应[J]. 沉积学报,2021,39(4):1004-1019.
FAN H J, DENG H C, FU M Y, et al. Sedimentary characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its response to construction[J]. Acta Sedmentologica Sinica,2021,39(4):1004-1019.
|
34 |
汪泽成, 姜华, 陈志勇, 等. 中上扬子地区晚震旦世构造古地理及油气地质意义[J]. 石油勘探与开发,2020,47(5):884-897.
WANG Z C, JIANG H, CHEN Z Y, et al. Tectonic paleogeography of Late Sinian and its significances for petroleum exploration in the Middle-Upper Yangtze region,South China[J].Petroleum Exploration and Development,2020,47(5):884-897.
|
35 |
牟传龙, 周恳恳, 梁薇, 等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报, 2011,85(4):526-532.
MOU C L, ZHOU K K, LIANG W, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze Region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011,85(4):526-532.
|
36 |
洪海涛, 田兴旺, 孙奕婷, 等. 四川盆地海相碳酸盐岩天然气富集规律[J]. 中国地质,2020,47(1):99-110.
HONG H T, TIAN X W, SUN Y T, et al. Hydrocarbon enrichment regularity of marine carbonate in Sichuan Basin[J]. Geology in China,2020,47(1):99-110.
|
37 |
魏国齐, 王志宏, 李剑, 等. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J].天然气地球科学,2016,28(1):1-13.
WEI G Q, WANG Z H, LI J, et al. Characteristics of source rocks, resource potential and exploration direction of Sinian and Cambrian in Sichuan Basin[J]. Natural Gas Geoscience, 2016,28(1):1-13.
|
38 |
黄博宇. 四川盆地震旦纪—早寒武世岩相古地理与裂陷槽演化[D]. 北京: 中国石油大学(北京), 2018.
HUANG B Y. The Evolution of Paleogeographic and Rift Trough During Sinian-Early Cambrian in Sichuan Basin[D]. Beijing: China University of Petroleum(Beijing), 2018.
|
39 |
黄士鹏, 姜华, 王铜山, 等. 四川盆地8 000 m海相超深层天然气成藏条件及有利勘探区带[J]. 地质学报,2023,97(5):1544-1560.
HUANG S P, JIANG H, WANG T S, et al. Accumulation conditions and favorable exploration zones for natural gas in 8 000 meters marine ultra-deep strata in the Sichuan Basin[J]. Acta Geologica Sinica, 2023, 97 (5): 1544-1560.
|
40 |
刘宝珺, 许效松. 中国南方岩相古地理图集[M]. 北京: 科学出版社, 1994.
LIU B J, XU X S. Atlas of Lithofacies and Paleogeography of Southern China[M]. Beijing: Science Press, 1994.
|
41 |
刘树根, 冉波, 郭彤楼, 等. 四川盆地及周缘下古生界富有机质黑色页岩:从优质烃源岩到页岩气产层[M]. 北京: 科学出版社, 2015.
LIU S G, RAN B, GUO T L, et al. From Oil-Prone Source Rock to Gas-Producing Shale Reservoir-Lower Palaeozoic Organic-Matter-Rich Black Shale in the Sichuan Basin and Its Periphery[M]. Beijing: Science Press, 2015.
|
42 |
HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas,USA[J]. Chemical Geology,1992,99(1/3):65-82.
|
43 |
周道容. 四川盆地威远地区下古生界页岩气成藏条件及有利区优选[D]. 成都: 成都理工大学, 2013.
ZHOU D R. Shale Gas Reservoiring Conditions and Favorable Area Preferred in Lower Paleozoic in Weiyuan, Sichuan[D]. Chengdu: Chengdu University of Technology, 2013.
|
44 |
夏国栋. 川西地区下寒武统烃源岩特征研究[D]. 成都: 成都理工大学, 2018.
XIA G D. Characteristics of Hydrocarbon Source Rocks of the Lower Cambrian Formation in Western Sichuan Basin, China[D]. Chengdu: Chengdu University of Technology, 2018.
|
45 |
ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on Molybdenum-Uranium covariation[J]. Chemical Geology,2009,268(3/4):211-225.
|
46 |
樊秋爽, 夏国清, 李高杰, 等. 古海洋氧化还原条件分析方法与研究进展[J]. 沉积学报, 2022, 40 (5): 1151-1171.
FAN Q S, XIA G Q, LI G J, et al. Analytical methods and research progress of redox conditions[J]. Acta Sedmentologica Sinica, 2022, 40 (5): 1151-1171.
|
47 |
JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J].Chemical Geology,1994,111(1/2/3/4):111-129.
|
48 |
WIGNALL P B,TWITCHETT R J.Oceanic anoxia and the end Permian mass extinction[J].Science,1996,272:1155-1158.
|
49 |
ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geo1ogy,2004,206(3/4):289-318.
|
50 |
韦恒叶. 古海洋生产力与氧化还原指标—元素地球化学综述[J]. 沉积与特提斯地质, 2012,32(2):76-88.
WEI H Y. Productivity and redox proxies of palaeo-oceans:An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012,32(2):76-88.
|
51 |
杜金虎, 汪泽成, 邹才能, 等.上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报,2016,37(1):1-16.
DU J H, WANG Z C, ZOU C N, et al. Discovery of intra-cratonic rift in the Upper Yangtze and its control effect on the formation of Anyue giant gas field[J].Acta Petrolei Sinica,2016,37(1):1-16.
|
52 |
钟勇,李亚林,张晓斌,等.四川盆地下组合张性构造特征[J]. 成都理工大学学报:自然科学版,2013,40(5):498-510.
ZHONG Y, LI Y L, ZHANG X B, et al. Features of extensional structures in Pre-Sinian to Cambrian strata, Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2013,40(5):498-510.
|
53 |
赵坤, 李婷婷, 朱光有, 等. 中国华南渝东北城口地区下寒武统烃源岩发育环境与形成机制[J]. 沉积学报,2020,38(5):1111-1122.
ZHAO K, LI T T, ZHU G Y, et al. Development environment and formation mechanism of Lower Cambrian source rocks in the Chengkou area, Northeast Chongqing South China[J]. Acta Sedimentologica Sinica,2020,38(5):1111-1122.
|
54 |
杨帅杰, 王伟锋, 张道亮, 等. 川东北地区筇竹寺组优质烃源岩分布特征及形成环境[J]. 天然气地球科学,2020,31(4):507-517.
YANG S J, WANG W F, ZHANG D L, et al. Distribution characteristics and formation environment of high quality source rocks of Qiangzhusi Formation in northeastern Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(4): 507-517.
|
55 |
张力, 马向贤, 马勇, 等. 基于硫元素化学种等指标的页岩氧化还原条件判识——以N208井筇竹寺组和龙马溪组为例[J]. 沉积学报,2022,40(5):1427-1438.
ZHANG L,MA X X,MA Y, et al. Multiple proxies for redox condition indentification based on sulfur species:A case study of the cored Qiongzhusi and Longmaxi formations of Well N208[J].Acta Sedmentologica Sinica,2022,40(5):1427-1438.
|
56 |
陈威振, 田景春, 林小兵, 等. 川西南下寒武统麦地坪组—筇竹寺组元素地球化学特征及其古环境意义——以JS1井为例[J/OL]. 沉积学报:1-21[2023-07-12]. https://doi.org/10.14027/j.issn.1000-0550.2022.101.
CHEN W Z, TIAN J C, LIN X B, et al. Geochemical characteristics and paleoenvironmental significance of Lower Cambrian Maidiping and Qiongzhusi formations in southwestern Sichuan Basin: A case study of Well JS1[J/ OL]. Acta Sedimentologica Sinica:1-21.[2023-07-12].https://doi. org/10. 14027/ j. issn. 1000- 0550. 2022. 101.
|
57 |
OCH L M, CREMONESE L, SHIELDS-ZHOU G A, et al. Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran-Cambrian transition[J]. Sedimentology, 2016, 63(2): 378-410.
|
58 |
李依林, 伏美燕, 邓虎成, 等. 滨岸闭塞环境中有机质富集模式——以川西南峨边葛村剖面筇竹寺组为例[J]. 天然气地球科学, 2022, 33 (4): 588-604.
LI Y L, FU M Y, DENG H C, et al. The enrichment model of organic matter in the coastal detention environment: Case study of the Qiongzhusi Formation in the Gecun section of Ebian in southwestern Sichuan Basin[J]. Natural Gas Geoscience,2022, 33 (4): 588-604.
|
59 |
TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232: 12-32.
|
60 |
XU L G, LEHMANN B, MAO J W, et al. Mo isotope and trace element patterns of Lower Cambrian black shales in South China:Multi-proxy constraints on the paleoenvironment[J]. Chemical Geology, 2012, 318-319:45-59.
|
61 |
尹秀珍. 松辽盆地中部晚白垩世早期古湖泊生产力研究[D]. 北京:中国地质大学(北京),2008.
YIN X Z. Palaeolacustrine Productivity Study of Early Late Cretaceous in the Central Area of Songliao Basin[D]. Beijing: China University of Geoscience(Beijing), 2008.
|
62 |
DYMOND J, SUESS E, LYLE M. Barium in deep-sea sediment:A geochemical proxy for paleoproductivity[J].Paleoce-anography, 1992,7(2):163-181.
|
63 |
殷鸿福, 谢树成, 颜佳新, 等. 海相碳酸盐烃源岩评价的地球生物学方法[J]. 中国科学:地球科学,2011,41(7):895-909.
YIN H F, XIE S C, YAN J X, et al. Geobiological approach to evaluating marine carbonate source rocks of hydrocarbon[J]. Scientia Sinica(Terrae), 2011, 41 (7): 895-909.
|
64 |
贾智彬. 贵州地区牛蹄塘组热水沉积的地球化学特征研究[D]. 北京:中国地质大学(北京), 2018.
JIA Z B. Geochemistry Characteristics of Hydrothermal Sedimentation in the Lower Cambrian Niutitang Formation in Guizhou[D].Beijing:China University of Geoscience(Beijing),2018.
|
65 |
LERMAN. A Lakes:Chemistry,Geology,Physics[M]. New York: Springer New York, 1978.
|
66 |
刘刚, 周东升. 微量元素分析在判别沉积环境中的应用——以江汉盆地潜江组为例[J]. 石油实验地质,2007,29(3): 307-310.
LIU G, ZHOU D S. Application of microelements analysis in identifying sedimentary environment-Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007,29(3):307-310.
|
67 |
梁文君, 肖传桃, 肖凯, 等. 藏北安多晚侏罗世古环境、古气候与地球化学元素关系研究[J]. 中国地质, 2015,42 (4): 1079-1091.
LIANG W J, XIAO C T, XIAO K, et al. The relationship of Late Jurassic paleoenvironment and paleoclimate with geochemical elements in Amdo country of northern Tibet[J]. Geology in China, 2015, 42(4): 1079-1091.
|
68 |
刘鑫, 尚婷, 田景春, 等. 鄂尔多斯盆地镇北地区延长组长4+5段沉积期古环境条件及意义[J].地质学报,2021,95(11): 3501-3518.
LIU X, SHANG T, TIAN J C, et al. Paleo-sedimentary environmental conditions and its significance of Chang 4+5 Member of Triassic Yanchang Formation in the Zhenbei area, Ordos Basin, NW China[J]. Acta Geologica Sinica, 2021, 95(11): 3501-3518.
|
69 |
贾智彬, 侯读杰, 孙德强, 等. 热水沉积区黑色页岩稀土元素特征及其地质意义——以贵州中部和东部地区下寒武统牛蹄塘组页岩为例[J]. 天然气工业, 2018, 38(5): 44-51.
JIA Z B, HOU D J, SUN D Q, et al. Genesis and intensity of hydrothermal sedimentation in hydrocarbon source rocks in the Lower Cambrian Niutitang Formation,Guizhou area[J]. Natural Gas Industry, 2018,38(5):44-51.
|
70 |
CHOI J H,HARIYA Y.Geochemistry and depositional environ-ment of Mn oxide deposits in the Tokoro Belt, northeastern Hok-kaido, Japan[J]. Economic Geology, 1992, 87: 1265-1274.
|
71 |
李娟, 于炳松, 郭峰,等. 黔北地区下寒武统底部黑色页岩沉积环境条件与源区构造背景分析[J]. 沉积学报,2013,31(1):20-31.
LI J, YU B S, GUO F, et al. Depositional setting and tectonic background analysis on Lower Cambrian black shales in the North of Guizhou Province[J]. Acta Sedmentologica Sinica, 2013,31(1):20-31.
|
72 |
程建, 郑伦举. 川南地区金页1井早寒武世烃源岩沉积地球化学特征[J]. 石油与天然气地质, 2020,41(4):800-810.
CHENG J, ZHENG L J. Sedimentary geochemical characteristics of the Early Cambrian source rocks in Well Jinye 1 in southern Sichuan Basin[J]. Oil & Gas Geology,2020,41(4): 800-810.
|
/
〈 |
|
〉 |