Solid bitumen rhenium-osmium (Re-Os) isotope dating and the existing problems: Case study of Sinian-Cambrian gas reservoir in Sichuan Basin

  • Xiang GE , 1 ,
  • Guangyou ZHU 2 ,
  • Xinyu CHEN 3 ,
  • Yaxian GAO 3 ,
  • Chuanbo SHEN , 1
Expand
  • 1. Key Laboratory of Tectonics and Petroleum Resources,China University of Geosciences,Ministry of Education,Wuhan 430074,China
  • 2. PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China
  • 3. School of Earth Resources,China University of Geosciences,Wuhan 430074,China

Received date: 2023-08-26

  Revised date: 2023-11-16

  Online published: 2023-12-08

Supported by

The National Natural Science Foundation of China(42272168)

the Innovation Team project of Natural Science Foundation of Hubei Province(2021CFA031)

Key Research and Development Program of Guangxi Province(2021AB30011)

the Open Topic Fund from Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education(TPR⁃2021⁃03)

Abstract

The key timings related to the petroleum evolution, which play key roles in both exploration target optimization and oil/gas resource assessment, attract petroleum geologists’ attention worldwide. In recent years, the hydrocarbon (oil, bitumen) Re-Os isotope dating was innovatively applied to constrain the timing related to oil/gas generation, however, the obtained Re-Os isochron ages are complex and hard to understand sometimes. Based on various geochemistry and geochronology data on the Sinian to Cambrian nature gas reservoirs of the Sichuan Basin, this work reconstructed the hydrocarbon evolution process of the reservoir and discussed the meaning of various type bitumen Re-Os dating results. The gas accumulation in the Sinian-Cambrian reservoir experienced four stages of evolution and they are (1) initial oil generation during Ordovician to Silurian, (2) secondary oil generation during Triassic, (3) gas generation by thermal cracking of liquid oil from Jurassic to Cretaceous, and (4) gas reservoir redistribution since the Late Cretaceous. The bitumen Re-Os dates (ca. 485 Ma) characterized low maturity and biodegradation from the western Sichuan Basin record the oil generation during Ordovician before Caledonian tectonic event. The Re-Os dates (ca.184-128 Ma) of the highly mature bitumen that associated with the MVT Pb-Zn deposits in the northern Sichuan Basin reflect the information of both liquid oil cracking and TSR process. The complex Re-Os dates (ca. 414 Ma, ca.154 Ma) of highly mature bitumen from central Sichuan Basin seem to record different age information either related oil generation or gas generation. For the future studies, in order to understand the meaning of Re-Os dates, the genetic type, maturity, thermal cracking or TSR degrees of the bitumen are suggested to explore.

Cite this article

Xiang GE , Guangyou ZHU , Xinyu CHEN , Yaxian GAO , Chuanbo SHEN . Solid bitumen rhenium-osmium (Re-Os) isotope dating and the existing problems: Case study of Sinian-Cambrian gas reservoir in Sichuan Basin[J]. Natural Gas Geoscience, 2024 , 35(4) : 676 -687 . DOI: 10.11764/j.issn.1672-1926.2023.11.007

0 引言

盆地埋藏过程中,沉积有机质受温度、压力等因素控制,经过一系列物理、化学和生物的作用,形成石油、天然气等化石能源,并在构造及沉积作用共同影响下,发生运移及聚集作用,最终形成油气藏1-2。准确获得油气演化过程中生成、运移、改造等关键时刻的学科被国内学者称为成藏年代学,其对于了解整个油气成藏过程、提高油气勘探的成功率具有重要帮助3-5。20世纪80年代,主要根据生储盖圈运保等成藏要素的有效耦合,形成了圈闭形成时间法、烃源岩生排烃法和油藏饱和压力法等来宏观推测油气藏形成时代6-7。这些方法在构造演化历史简单,油气充注期次单一,无异常压力的浅埋藏单旋回盆地中,具有较好的应用效果。20世纪90年代以来,油气成藏研究逐渐走向微观,盆地埋藏历史以及油气成藏相关流体包裹体联合分析被广泛应用于油气成藏时代的约束8,该半定量方法受古地温梯度不确定性、埋藏历史复杂性、包裹体分析偶然性等诸多因素的影响9-10
放射性同位素定年是准确且有效记录历史年代的计时方法,基于放射性衰变系数,将不同放射性同位素体系应用于成藏相关的矿物,是实现油气成藏关键时刻准确测定的有效途径311。油气聚集成藏是富碳氢化合物的有机流体在合适构造部位封存的结果12-13,因此储层中烃类(原油、沥青)直接定年被认为是获取油气成藏年龄最为有效的方法414。基于油气成藏过程相关地质体(烃源岩、原油、沥青)所含有的放射性同位素体系直接约束油气成藏关键时刻是国内外学者关注的前沿科学问题315-19。相比于Pb-Pb和Rb-Sr等亲石同位素定年系统,Re和Os具有亲铜、亲铁以及亲有机质的特性,在还原环境下,Re和Os易于被有机物捕获而富集20。这一特性使得Re-Os地质计时器有可能为油气成藏关键时刻提供时间约束321-22。2005年以来,作为一项前沿研究领域,Re-Os同位素定年应用于油气成藏过程研究在国际上取得了重要成果,展现出良好的发展潜力和应用前景23-25。相比于国外含油气盆地,我国海相沉积盆地沉积时间长、埋藏深度大、地层温度高、构造演化复杂26。研究表明我国海相深层碳酸盐岩虽然具有优越的成藏条件,但是中新生代以来多期次的构造作用(印支运动、燕山运动、喜马拉雅运动)使得早期油气藏发生调整、改造乃至破坏27。现有的研究认为油气成藏改造过程中,油气运移过程中的油水接触28、热硫酸盐还原作用(TSR)21、原油热裂解作用22都有可能影响烃类Re-Os同位素系统的封闭性,导致烃类Re-Os同位素定年结果可能具有不同地质意义。然而,这些地质因素会对我国海相深层油气藏Re-Os同位素体系究竟产生怎样的影响,海相深层烃类Re-Os同位素定年是否仍然能够获得准确的成藏关键时间,仍需要进一步探索。
位于扬子地台西北侧的四川盆地是一个典型的多期构造叠合盆地29,其中盆地深部的海相震旦系—寒武系是油气赋存的重要层位。1964年,我国发现了震旦系灯影组中的威远气田,探明储量达400×108 m3,是世界上当时少数几个最古老的天然气田之一30。2013年,四川盆地中部震旦系灯影组—下寒武统龙王庙组油气勘探获得了数千亿方的天然气探明储量31-32。此外,在四川盆地的周缘,震旦系—寒武系含沥青古油藏广泛出露。四川盆地北缘米仓山震旦系灯影组中预计沥青储量可达125×108 t33。四川盆地西缘龙门山地区下寒武统长江沟组沥青总储量达到7 000万桶(约959万t)原油当量34-35。关于震旦系—寒武系油气藏的演化过程,前人通过流体包裹体分析36、储层沥青Re-Os定年37-38、储层方解石U-Pb定年39已经完成相关研究工作,结果显示相互之间既有相似性,也存在诸多差异,其背后复杂的油气成藏过程值得进一步综合讨论。此外,震旦系—寒武系内沥青Re-Os同位素结果同样表现出较强的多解性37-3840-41,其指示的地质意义有待进一步厘定。针对上述问题,研究通过梳理前人关于四川盆地震旦系—寒武系天然气藏演化的认识,尝试重建以高石梯—磨溪地区为代表的震旦系—寒武系深层油气藏演化过程;整合四川盆地及周缘震旦系—寒武系已发表沥青Re-Os定年结果,综合探讨沥青Re-Os同位素定年结果存在较大差异的可能原因及指示的地质意义,为后续学者研究提供帮助。

1 区域地质背景

四川盆地位于扬子准地台的西北缘,面积约为18×104 km2,是扬子准地台内北东及北西向交叉深断裂活动形成的一个菱形构造沉积盆地(图1)。 作为典型的叠合盆地42,四川盆地先后经历了桐湾、加里东、海西、印支、燕山和喜马拉雅等多期构造活动,整体可以划分为震旦纪至中晚三叠世伸展体制下的差异升降和被动大陆边缘阶段(奥陶纪至三叠纪期间存在不均衡挤压作用)、晚三叠世至始新世挤压体制下褶皱冲断和复合前陆盆地阶段及渐新世以来的褶皱隆升改造三大演化阶段43图2)。地层沉积方面,四川盆地的沉积基底为前震旦系板溪群变质岩和火成岩;基底之上沉积了以碳酸盐岩为主的震旦系—中三叠统海相地层(厚度为4 000~7 000 m)及以碎屑岩为主的上三叠统—第四系陆相地层(厚度约为2 000~5 000 m)44图2)。
图1 四川盆地简化地质图及川中地区天然气田位置

Fig.1 Simplified geological map of Sichuan Basin and location of the gas fields in the central Sichuan Basin

图2 四川盆地及其周缘地层综合柱状图

Fig.2 Comprehensive stratigraphic column of Sichuan Basin and its periphery

高石梯—磨溪构造位于四川盆地中部,总面积约为2.7×103 km2,构造位置上位于川中平缓褶皱区中部,东邻绵阳—长宁拉张槽中段,是乐山—龙女寺古隆起背景下的潜伏构造(图145-46。受四川盆地复杂构造作用控制,高石梯—磨溪构造震旦纪以来经历了多幕构造运动,其中震旦纪桐湾运动控制灯影组的形成演化,早寒武世兴凯运动导致高石梯—磨溪地区西侧绵阳—长宁拉张槽形成,志留纪末加里东运动形成乐山—龙女寺古隆起雏形后,海西期—燕山早期,高石梯—磨溪构造在乐山—龙女寺古隆起上发展演化,并最终于燕山晚期—喜马拉雅期定型31。油气成藏条件方面,天然气及固体沥青主要富集于震旦系灯影组和寒武系龙王庙组碳酸盐岩储层中29;烃源岩包括震旦系陡山沱组泥岩、灯影组三段泥岩、灯影组泥质白云岩以及寒武系筇竹寺组页岩,其中平面分布广、有机质丰度高、生烃能力强的下寒武统筇竹寺组泥岩扮演关键作用47。覆盖于灯影组及龙王庙组之上的下寒武统筇竹寺组泥岩以及中寒武统高台组泥质白云岩为震旦系—寒武系天然气藏的直接盖层48-49,而上二叠统泥岩、下三叠统膏岩扮演着区域盖层的重要作用(图250

2 四川盆地中部高石梯—磨溪地区震旦系—寒武系天然气藏的演化

由于震旦系—寒武系层内油气储量占四川盆地总探明储量的30%以上,四川盆地震旦系—寒武系油气藏演化一直是学者们研究的热点。当前聚集的天然气藏是各种地质作用演化的最终结果,复杂的成藏历史信息更多的保存在矿物捕获的多期包裹体、储层脉体及相关烃类残留物中。因此综合流体包裹体分析、储层中脉石矿物以及有机质定年可以联合约束油气成藏过程。
作为沉积盆地内流体与围岩相关作用的见证者,流体包裹体记录了沉积盆地内油气演化过程中相关的温度、压力等信息51,其中与烃类共生的盐水包裹体的均一温度被用来帮助约束油气的充注历史8。高石梯—磨溪地区发育多期白云石胶结物及方解石脉体,其中阴极发光呈暗红色、浅埋藏环境下形成的粒状白云石胶结物中第一期液态烃类包裹体发育丰富(包裹体较小,未获得均一温度)。结合该期胶结物微裂缝中褐色荧光沥青发育,以及沥青生物标志物表现出的生物降解特征,认为其记录了加里东运动影响下的早期成藏作用52-53
关于该期成藏作用的发生时间,前人主要依据盆地沉积埋藏历史及加里东构造运动的时间,定性地认为其主要发生于志留纪54-55。四川盆地西缘龙门山造山带矿山梁寒武系古油藏沥青Re-Os定年结果(约为486 Ma)41及川中资阳灯影组沥青Re-Os定年结果(约为414 Ma)37均指示加里东构造运动前,四川盆地震旦系—寒武系油气藏存在早期油气成藏作用(图3)。
图3 四川盆地高石梯—磨溪地区天然气藏成藏演化

Fig.3 Petroleum evolution of the Gaoshiti-Moxi gas fields,Sichuan Basin

加里东构造运动之后,高石梯—磨溪地区再次进入埋藏环境。埋藏过程表生期形成的溶蚀孔、洞可部分被细晶、中粗晶自形白云石充填,该期白云石阴极射线发红光—亮红光。第二期包裹体成群或均匀分布于缝、洞中充填的白云石中,其中呈褐色、深褐色的液态烃包裹体占主体(>70%),指示该类白云石形成与寒武系烃源岩再次大规模成熟相关,是油藏运移成藏的关键时期5356。高石梯—磨溪地区与液态烃类共生的白云石胶结物原位U-Pb结果(约254 Ma)指示该期成藏作用的上限为晚二叠世39。流体包裹体分析发现,与液态烃类伴生的盐水包裹体均一温度分布范围主要在100~130 ℃之间3639,将该均一温度投影至区域埋藏历史,发现三叠世(222~205 Ma)为高石梯—磨溪地区油气运移的重要阶段39图3)。
主要赋存于缝洞白云石胶结物中或与固体沥青接触部位的第三期包裹体主要为含沥青包裹体和气态烃包裹体,固体沥青包裹体为深黑色,呈碎屑状,大小不一,拉曼光谱结果可见 1 336.4 cm-1和1 603.5 cm-1的沥青特征峰36。成熟度方面,该期包裹体段共生沥青多表现为无荧光、高沥青反射率(R b=2.61%~2.86%),低H/C(约为0.4)、O/C(约为0.04)特征,表明已经进入高成熟演化阶段3650。气态烃包裹体呈深灰色,拉曼光谱可见2 915 cm-1的甲烷特征峰56,与之共生的盐水包裹体均一温度范围主要分布在180~210 ℃之间36,同样指示早期形成油藏已经进入热裂解作用阶段。关于原油裂解发生的时间,包裹体均一温度与区域埋藏历史结果联合分析指示侏罗纪为天然气藏形成的关键时期。此外,高石梯—磨溪地区GS102井和MX51井灯影组高成熟焦沥青Re-Os同位素结果(约154 Ma)39及四川盆地北缘米仓山地区震旦灯影组焦沥青Re-Os同位素结果(约为184~130 Ma)3840均指示侏罗纪至白垩纪为四川盆地震旦系—寒武系油藏裂解生气的关键时刻 (图3)。
赋存于孔洞晚期石英或白云石胶结物内的第四期包裹体以深灰色的气烃包裹体(高密度甲烷包裹体)为主,伴生盐水包裹体均一温度峰值介于210~230 ℃之间(图3)。不同于原油裂解时期白云石脉中流体包裹体所表现出的较高的捕获压力(>160 MPa),石英中流体包裹体捕获压力明显降低(120 MPa),指示石英胶结物形成过程中存在盆地抬升、压力释放作用。白垩纪以来,受到周缘板块(北部古亚洲洋构造带、东部太平洋板块、西部拉萨—羌塘地块)挤压作用,四川盆地经历持续的陆内变形作用。磨溪21井震旦系—寒武系储层中石英流体包裹体Ar-Ar定年(约125±8.2 Ma)结果56、四川盆地中部地区磷灰石裂变径迹结果(约119~100 Ma,12~10 Ma)5257-58均指示燕山—喜马拉雅构造活动造成了早期原油热裂解形成的天然气藏的调整改造(图3)。
基于四川盆地区域地质背景,综合盆地及周缘埋藏历史、流体包裹体分析及多项同位素年代学分析结果(沥青Re-Os定年、碳酸盐U-Pb定年、石英流体包裹体Ar-Ar 定年、磷灰石裂变径迹),四川盆地震旦系—寒武系深层油气藏演化过程总结如下:①奥陶纪至志留纪期间(约469~414 Ma),下寒武统泥岩经历持续埋藏并首次进入生烃门限,该期生烃作用因志留纪末的加里东抬升运动而停止,早期生成的原油遭受水洗、氧化作用形成第一世代沥青。②二叠纪以来,在印支构造运动控制下,四川盆地中古生界地层经历快速埋藏作用,下寒武统烃源岩在三叠纪再次进入生烃门限,并于晚三叠世(222~205 Ma)再次聚集成藏。③持续埋藏作用下,早期形成油气藏在侏罗纪至白垩纪期间埋藏深度超过6 000 m,储层温度超过180 ℃,导致油藏发生热裂解作用形成天然气藏(184~130 Ma)。④此后,受燕山晚期及喜马拉雅构造运动的影响,侏罗纪形成的天然气藏发生调整改造作用,控制了四川盆地震旦系—寒武系天然气藏的现今分布。

3 四川盆地震旦系—寒武系沥青Re⁃Os定年结果评述

2015年以来,国内外多个研究团队对四川盆地及其周缘震旦系—寒武系沥青开展了较为系统的Re-Os同位素定年工作37-4159。然而实验结果显示,获得的沥青Re-Os同位素年龄具有较大差异(表1)。探讨导致上述结果差异的潜在原因,有利于深入理解四川盆地震旦系—寒武系油气藏演化,同时对后续学者开展沥青Re-Os同位素定年工作具有一定帮助。
表1 四川盆地及周缘沥青Re-Os同位素定年结果统计

Table 1 Bitumen Re-Os isotopic dating results from reservoirs in Sichuan Basin and its surrounding areas

取样位置 层位 沥青特征 Re⁃Os等时线结果 参考文献
四川盆地西缘 寒武系沥青 低成熟生物降解沥青 486 ± 15 Ma GE et al.41, 2018
四川盆地北缘 震旦系灯影组沥青 高成熟度沥青 184 ± 23 Ma GE et al.38, 2018
四川盆地北缘 震旦系灯影组沥青 高成熟度沥青 128 ± 7.3 Ma ZHAO et al.40, 2021
四川盆地中部 震旦系灯影组沥青 高成熟度沥青 414 ± 44 Ma SHI et al.37, 2020
四川盆地中部 震旦系灯影组沥青 高成熟度沥青 154 ± 21 Ma SU et al.39, 2020
如前所述,四川盆地震旦系—寒武系天然气成藏过程具有早期多期次运移聚集、晚期调整改造的特征,大部分气藏都经历了复杂演化历史,现今气藏内的沥青是多成因沥青的集合体36。沥青的成因类型可能是影响沥青Re-Os同位素定年结果的重要因素之一。生物标志物结果显示四川盆地西缘龙门山地区寒武系古油藏中沥青为遭受生物降解作用后保留的低成熟度沥青(R O值约为0.9%)3341,由于生物降解、轻烃组分散失等在低温、低压条件下发生的作用,不利于烃类中各个组分的交换及Os同位素比值的均一,整体对沥青质中Re和Os影响作用微弱2160,因此,川西低成熟度沥青所构建的Re-Os等时线年龄(约485 Ma)记录了加里东构造运动前,奥陶纪的油气成藏作用41,这一结果与前期国外学者提出的原油、低成熟沥青Re-Os同位素年龄记录原油生成时代的认识相吻合2561-62
基于扬子地块雪峰隆起西缘麻江—万山古油藏中高成熟度焦沥青Re-Os同位素定年与磷灰石裂变径迹、盆地埋藏历史结果的一致性,GE等22创新性提出高温条件下的原油热裂解作用导致了烃类Re-Os同位素计时器的重置,造成焦沥青Re-Os等时线年龄指示原油热裂解形成天然气的时代。四川盆地北部及中部地区震旦系—寒武系储层均经历过高温环境3350,现有沥青Re-Os实验结果表现出的显著差异性(既有与生油时代相吻合的奥陶纪—志留纪年龄,也有与原油热裂解时代一致的侏罗纪—白垩纪年龄)与高成熟度沥青指示原油热裂解年龄的传统认识存在一定冲突,指示原油到焦沥青演化过程中,Re-Os同位素体系的传递和演化仍然存在诸多问题,值得进一步深化研究。
美国怀俄明州—蒙大拿州大角盆地原油Re-Os同位素分析发现原油硫同位素(δ34S)与187Re/188Os 、187Os/188Os 关系混乱。遭受硫酸盐热化学还原作用(TSR)的原油(δ34S>2‰) Re-Os等时线年龄存在较大MSWD值(>1 000)的现象指示TSR作用可能干扰原油的Re-Os同位素系统,其中遭受强烈TSR作用的原油Re-Os同位素年龄可能记录了TSR作用结束时间21。川北米仓山地区,震旦系—寒武系古油藏高成熟度焦沥青与MVT型铅锌矿床密切共生63-64。沥青相对较高的S/C 原子比(>0.03)、高硫同位素特征(12‰~26‰)及高成熟度特征(R b>2.0%)3365-66指示上述沥青为TSR作用和原油热裂解作用的联合产物。沥青Re-Os等时线年龄与区域铅锌矿成矿时代(约200 Ma)良好的吻合性63也支持烃类参与的TSR作用在提供还原硫方面扮演着重要作用,指示TSR作用可能干扰乃至重置了烃类的Re-Os同位素系统。因此,沥青Re-Os同位素年龄可能受原油热裂解作用及TSR作用的联合约束。
相比于川北地区,四川盆地中部高石梯—磨溪地区天气藏低H2S丰度(0~3.18%)、低气体酸化指数[H2S/(H2S+ΣCn)<0.03]及较少的金属硫化物沉淀现象指示高石梯—磨溪气藏TSR程度相对较低3950,沥青主要为原油热裂解作用形成的焦沥青。因此,磨溪—高石梯地区部分沥青Re-Os同位素定年获得的侏罗纪—白垩纪年龄可能更多指示原油热裂解时代39。然而,显微镜下发现的川中地区各向异性高成熟沥青和各项同性低成熟沥青共生现象50,SHI等37获得与加里东期油气演化相关的Re-Os同位素年龄结果(约414 Ma),暗示未遭受热裂解作用的沥青或者热裂解程度较弱的沥青的可能对Re-Os同位素结果仍然具有较大影响。由于沥青是复杂有机质混合物,组成并不固定,究竟多高的温度或者怎样的裂解程度能够使其中的Re-Os同位素封闭体系打开乃至重置还没有一个明确的认识,需要后续工作的持续探索。
作为一种重要的伴生产物,固体沥青存在于油气演化的整个过程当中,记录了包括烃类来源、油气运移路径及演化程度的诸多信息67。烃类演化过程中,生物降解、氧化、水洗淋滤、相迁移、TSR及热裂解等作用可以导致不同类型的沥青的形成(图467-71。水洗氧化、生物降解作用可以导致烃类物质中较轻的组分发生脱离,从而形成沥青质或者天然沥青70。目前研究结果整体显示低温低压条件下发生的生物降解及氧化作用对沥青的Re-Os同位素体系影响相对较弱21,Re-Os同位素定年结果仍然保留了烃类生成时刻的关键信息。四川盆地震旦系—寒武系储层中遭受生物降解作用后保留的沥青Re-Os同位素年龄便良好地记录了早期的油气生成作用(图4)。受温度和时间控制的TSR以及热裂解作用,可以将原油、沥青质等油气演化过程中的早期产物变为成熟度较高的焦沥青72-75。现有的研究指示,无论是TSR作用还是原油热裂解作用均可以干扰乃至破坏烃类的Re-Os同位素体系,由于TSR作用经常与热裂解作用共同发生,高成熟沥青Re-Os同位素年龄的具体地质意义需要联合其他地质资料综合探讨。四川盆地北缘与MVT型铅锌矿共生储层沥青一般具有高成熟度、高S/C比、高δ34S值等TSR作用沥青的特征,Re-Os同位素结果与周缘MVT铅锌矿形成时代的重叠性指示其与TSR作用发生的时代密切相关(图4)。高石梯—磨溪地区高成熟度焦沥青与低成熟沥青共生,并且天然气藏具有低H2S丰度(0~3.18%)、低气体酸化指数 [H2S/(H2S+ΣCn)<0.03]的特征指示川中地区TSR作用较弱,沥青Re-Os同位素定年同时记录了原油生成或热裂解时代(图4)。
图4 四川盆地高石梯—磨溪地区沥青演化模式及Re-Os定年地质意义

Fig.4 Bitumen evolution model and relavant geological significance of Re-Os dating of the Gaoshiti-Moxi Gas Field in Sichuan Basin

4 结论与认识

基于区域构造背景,综合储层流体包裹体、碳酸盐U⁃Pb定年、储层沥青Re⁃Os同位素定年以及磷灰石裂变径迹结果,研究指出四川盆地震旦系—寒武系天然气藏经历了①奥陶纪至志留纪(485~414 Ma)油藏初次形成、②晚三叠世(222~205 Ma)二次成藏、③侏罗纪至白垩纪(184~130 Ma)原油裂解天然气成藏及④晚白垩世以来天然气藏调整改造4个阶段的演化过程。
综合四川盆地及周缘震旦系—寒武系油气藏中沥青成因类型、硫同位素(δ34S),S/C原子比以及Re-Os同位素结果,研究指出①川西低成熟度生物降解沥青Re-Os等时线年龄(约485 Ma)记录了奥陶纪的油气成藏作用;②川北与MVT铅锌矿共生沥青Re-Os等时线年龄(约185~130 Ma)记录了侏罗纪至白垩纪原油热裂解及TSR作用的双重信息;③四川盆地中部不同成熟度沥青Re-Os等时线年龄(约414 Ma,154 Ma)记录了加里东期原油生成及侏罗热裂解成气的时代。在今后工作过程中,建议在沥青成因、成熟度、原油热裂解程度、TSR程度等研究基础上,开展沥青Re-Os同位素分析并对其地质意义进行合理解释。
1
陈昭年. 石油与天然气地质学[M]. 北京: 地质出版社, 2005.

CHEN Z N. Petroleum Geology[M].Beijing:Geological Publishing House,2005.

2
TISSOT B P, WELTE D H. Petroleum Formation and Occurrence[M]. Berlin Heidelberg:Springer-Verlag,1984.

3
SELBY D, CREASER R A. Direct radiometric dating of hydrocarbon deposits using rhenium-osmium isotopes[J]. Science, 2005, 308(5726): 1293-1295.

4
王华健, 张水昌, 王晓梅. 如何实现油气成藏期的精确定年[J]. 天然气地球科学, 2013, 24(2): 210-217.

WANG H J,ZHANG S C, WANG X M. How to achieve the precise dating of hydrocarbon accumulation[J].Natural Gas Geo-science, 2013, 24(2): 210-217.

5
沈传波, 葛翔, 梅廉夫, 等. 含油气系统铼—锇同位素年代学[M]. 北京: 科学出版社, 2020.

SHEN C B,GE X, MEI L F, et al. Rhenium-Osmium Isotope Chronology of Petroleum Systems[M]. Beijing: Science Press, 2020.

6
刘文汇, 王杰, 陶成, 等. 中国海相层系油气成藏年代学[J]. 天然气地球科学, 2013, 24(2): 199-209.

LIU W H, WANG J, TAO C, et al. The geochronology of petroleum accumulation of China marine sequence[J]. Natural Gas Geoscience, 2013, 24(2): 199-209.

7
李建华, 范柏江, 耿辉. 油气成藏期研究方法和进展[J]. 科技导报, 2010, 28(22): 106-111.

LI J H, FAN B J, GENG H. Analysis methods and progresses of dating of hydrocarbon accumulation[J]. Science & Technology Review, 2010, 28(22): 106-111.

8
刘可禹, 张宝收, 张鼐, 等. 应用流体包裹体研究油气成藏——以塔中奥陶系储集层为例[J]. 石油勘探与开发, 2013, 40(2): 171-180.

LIU K Y, ZHANG B S, ZHANG N, et al. Hydrocarbon charge history of the Tazhong Ordovician reservoirs, Tarim Basin as revealed from an integrated fluid inclusion study[J]. Petroleum Exploration and Development,2013,40(2):171-180.

9
BRAUN R L,BURNHAM A K.PMOD:A flexible model of oil and gas generation,cracking,and expulsion[J].Organic Geo-chemistry, 1992, 19(1): 161-172.

10
ROBERTS L N, LEWAN M D, FINN T M. Timing of oil and gas generation of petroleum systems in the southwestern Wyoming Province[J]. Mountain Geologist, 2004, 41(3): 87-117.

11
王龙樟, 王立云, 李季, 等, 伊利石40Ar-39Ar年龄的统计分析与成藏期[J]. 地球科学,2022,47(2):479-489.

WANG L Z, WANG L Y, LI J, et al. Statistics analysis of illite 40Ar-39Ar ages and petroleum accumulation period [J]. Earth Science, 2022, 47(2): 479-489.

12
金之钧, 朱东亚, 孟庆强, 等. 塔里木盆地热液流体活动及其对油气运移的影响[J]. 岩石学报, 2013, 29(3): 1048-1058.

JIN Z J, ZHU D Y,MENG Q Q, et al. Hydrothermal activites and influences on migration of oil and gas in Tarim Basin[J]. Acta Petrologica Sinica, 2013, 29(3): 1048-1058.

13
马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181-192.

MA Y S, CAI X Y,ZHAO P R. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192.

14
薛楠, 朱光有, 吕修祥, 等. 油气成藏年代学研究进展[J]. 天然气地球科学, 2020, 31(12): 1733-1748.

XUE N,ZHU G Y,LÜ X X,et al. Advances in geochronology of hydrocarbon accumulation[J]. Natural Gas Geoscience,2020,31(12):1733-1748.

15
PARNELL J, SWAINBANK I. Pb-Pb dating of hydrocarbon migration into a bitumen-bearing ore deposit, North Wales[J]. Geology,1990, 18(10): 1028-1030.

16
TANG L, CUI M. Multiphase tectonic movements, cap formations and evolution of the Majiang paleo-reservoir[J]. Petroleum Science, 2011, 8(2): 127-133.

17
沈传波, 梅廉夫, 阮小燕, 等. 油气成藏定年的 Re-Os 同位素方法应用研究[J]. 矿物岩石, 2011, 31(4): 87-93.

SHEN C B,MEI L F,RUAN X Y,et al. Advances in the study of Re-Os geochronology and tracing of hydrocarbon generation and accumulation[J]. Mineralogy and Petrology,2011, 31(4): 87-93.

18
蔡长娥, 邱楠生, 徐少华. Re-Os同位素测年法在油气成藏年代学的研究进展[J]. 地球科学进展, 2014, 29(12): 1362-1371.

CAI C E, QIU N S, XU S H. Advances in Re-Os isotopic dating in geochronology of hydrocarbon accumulation[J]. Advances in Earth Science,2014,29(12) : 1362-1371.

19
ZHU G, ZHANG S, LIU K, et al. A well-preserved 250 million-year-old oil accumulation in the Tarim Basin,western China:Implications for hydrocarbon exploration in old and deep basins[J]. Marine and Petroleum Geology,2013,43:478-488.

20
李超, 孙鹏程, 孟会明, 等. 沥青Re-Os同位素年龄地质意义解读[J]. 岩石学报, 2022, 38(6): 1595-1604.

LI C, SUN P C, MENG H M, et al. Interpretation of geological significance of Re-Os isotopic age of bitumen[J]. Acta Petrologica Sinica,2022,38(6):1595-1604.

21
LILLIS P G, SELBY D. Evaluation of the rhenium-osmium geochronometer in the phosphoria petroleum system, Bighorn Basin of Wyoming and Montana,USA[J]. Geochimica et Cosmochimica Acta, 2013, 118: 312-330.

22
GE X, SHEN C, SELBY D, et al. Apatite fission-track and Re-Os geochronology of the Xuefeng Uplift, China: Temporal implications for dry gas associated hydrocarbon systems[J]. Geology, 2016, 44(6): 491-494.

23
FU Y, WANG F, GUO C, et al. Re-Os geochronology of the Liuchapo Formation across the Ediacaran-Cambrian boundary of the Yangtze Block (South China)[J]. Journal of Earth Science, 2022, 33(1): 25-35.

24
SELBY D, CREASER R A. Direct radiometric dating of the Devonian-Mississippian time-scale boundary using the Re-Os black shale geochronometer[J].Geology,2005,33(7):545-548.

25
FINLAY A J, SELBY D, OSBORNE M J. Re-Os geochronology and fingerprinting of United Kingdom Atlantic margin oil: Temporal implications for regional petroleum systems[J]. Geology, 2011, 39(5): 475-478.

26
赵文智, 胡素云, 刘伟, 等. 再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景[J]. 天然气工业,2014,34(4):1-9.

ZHAO W Z, HU S Y,LIU W,et al. Petroleum geological features and exploration propect in deep marine carbonate strata onshore China: A further discussion[J]. Natural Gas Industry, 2014, 34(4): 1-9.

27
金之钧. 中国海相碳酸盐岩层系油气形成与富集规律[J]. 中国科学(地球科学), 2011, 41(7): 910-926.

JIN Z J. Formation and accumulation of oil and gas in marine carbonate strata in Chinese sedimentary basins[J]. Science China(Earth Science), 2011, 41(7): 910-926.

28
HURTIG N C, GEORGIEV S V, STEIN H J, et al. Re-Os systematics in petroleum during water-oil interaction:The effects of oil chemistry[J]. Geochimica et Cosmochimica Acta, 2019, 247: 142-161.

29
邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293.

ZOU C N,DU J H,XU C C,et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field,Sichuan Basin,SW China[J]. Petroleum Exploration and Development, 2014,41(3):278-293.

30
戴金星. 威远气田成藏期及气源[J]. 石油实验地质, 2003, 25 (5): 473-480.

DAI J X. Pool-forming periods and gas sources of Weiyuan Gasfield[J]. Petroleum Geology & Experiment,2003,25(5): 473-480.

31
魏国齐, 杜金虎, 徐春春, 等. 四川盆地高石梯一磨溪地区震旦系—寒武系大型气藏特征与聚集模式[J]. 石油学报, 2015, 36(1): 1-12.

WEI G Q, DU J H, XU C C, et al. Characteristics and accumulation modes of large gas reservoirs in Sinian-Cambrian of Gaoshiti Moxi region, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(1): 1-12.

32
ZHU G, WANG T, XIE Z, et al. Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China: Implications for gas exploration in old cratonic basins[J]. Precambrian Research, 2015, 262: 45-66.

33
代寒松, 刘树根, 孙玮, 等. 龙门山—米仓山地区下组合地表沥青特征研究[J]. 成都理工大学学报(自然科学版), 2009, 36(6): 687-696.

DAI H S, LIU S G, SUN W, et al. Study on characteristics of Sinian-Silurian bitumen outcrops in the Longmenshan-Micangshan area, Southwest China[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2009, 36(6): 687-696.

34
陈竹新, 贾东, 魏国齐, 等. 龙门山北段矿山梁构造解析及油气勘探[J]. 地学前缘, 2005, 12(4): 445-450.

CHEN Z X,JIA D,WEI G Q, et al. Structural analysis of Kuangshanliang in the northern Longmenshan fold-thrust belt and its hydrocarbon exploration[J]. Earth Science Frontiers, 2005, 12(4): 445-450.

35
田小彬. 龙门山北段构造特征及油气前景探讨[D].成都:成都理工大学, 2009.

TIAN X B. Structural Features in the Northern Segment of Longmen Mountains and the Discussion on its Hydrocarbon Prospects[D]. Chengdu:Chengdu University of Technology, 2009.

36
郝彬, 赵文智, 胡素云, 等. 川中地区寒武系龙王庙组沥青成因与油气成藏史[J]. 石油学报, 2017, 38(8): 863-875.

HAO B, ZHAO W Z, HU S Y, et al. Bitumen genesis and hydrocarbon accumulation history of the Cambrian Longwangmiao Formation in central Sichuan Basin[J]. Acta Petrolei Sinica, 2017, 38(8): 863-875.

37
SHI C, CAO J, SELBY D, et al. Hydrocarbon evolution of the over-mature Sinian Dengying reservoir of the Neoproterozoic Sichuan Basin, China: Insights from Re-Os geochronology[J]. Marine and Petroleum Geology, 2020,122: 104726.

38
GE X, SHEN C, SELBY D, et al. Neoproterozoic-Cambrian petroleum system evolution of the Micang Shan Uplift, northern Sichuan Basin, China:Insights from pyrobitumen Re-Os geochronology and apatite fission track analysis[J].AAPG Bulletin, 2018,102(8): 1429-1453.

39
SU A, CHEN H, FENG Y X, et al. Dating and characterizing primary gas accumulation in Precambrian dolomite reservoirs, central Sichuan Basin, China: Insights from pyrobitumen Re-Os and dolomite U-Pb geochronology[J]. Precambrian Research, 2020,350:105897.

40
ZHAO B, LI R, QIN X, et al. Biomarkers and Re-Os geochronology of solid bitumen in the Beiba Dome, northern Sichuan Basin, China: Implications for solid bitumen origin and petroleum system evolution[J]. Marine and Petroleum Geology, 2021,126:104916.

41
GE X, SHEN C, SELBY D, et al. Petroleum generation timing and source in the northern Longmen Shan thrust belt, Southwest China: Implications for multiple oil generation episodes and sources[J]. AAPG Bulletin,2018,102(5): 913-938.

42
何登发, 李德生, 张国伟, 等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 2011, 46(3): 589-606.

HE D F, LI D S,ZHANG G W,et al. Formation and evolution of multi-cycle superposed Sichuan Basin,China[J]. Chinese Journal of Geology, 2011,46(3): 589-606.

43
刘树根, 李智武, 孙纬, 等. 四川含油气叠合盆地基本特征[J]. 地质科学, 2011, 46(1): 233-257.

LIU S G, LI Z W, SUN W, et al. Basic geological features of superimposed basin and hydrocarbon accumulation in Sichuan Basin,China[J]. Chinese Journal of Geology, 2011, 46(1): 233-257.

44
魏国齐, 杨威, 刘满仓, 等. 四川盆地大气田分布、主控因素与勘探方向[J]. 天然气工业, 2019, 39(6): 1-12.

WEI G Q, YANG W, LIU M C, et al. Distribution rules, main controlling factors and exploration directions of giant gas fields in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6): 1-12.

45
田艳红, 刘树根, 赵异华, 等. 四川盆地高石梯—磨溪构造龙王庙组储层差异性及气水分布[J]. 西安石油大学学报(自然科学版), 2015, 30(5): 1-9,15-16.

TIAN Y H, LIU S G, ZHAO Y H, et al. Reservoir difference and gas-water distribution of Longwangmiao Formation in Gaoshiti-Moxi structure,Sichuan Basin[J].Journal of Xi'an Shi-you University (Natural Science Edition). 2015, 30(5): 1-9,15-16.

46
季玮. 川中高石梯磨溪构造形成演化与灯影组油气差异富集研究[D]. 成都:成都理工大学, 2020.

JI W. Study on the Formation and Evolution of Gaoshiti-Moxi Area and Differential Enrichment of Oil and Gas in Dengying Formation from Central of Sichuan Basin[D].Chengdu:Chengdu University of Technology, 2020.

47
郑平, 施雨华, 邹春艳, 等. 高石梯—磨溪地区灯影组、龙王庙组天然气气源分析[J]. 天然气工业, 2014, 34(3): 50-54.

ZHENG P,SHI Y H,ZOU C Y,et al.Natural gas sources in the Dengying and Longwangmiao Fms in the Gaoshiti Maoxi area,Sichuan Basin[J].Natural Gas Industry,2014,34(3):50-54.

48
鲁雪松, 柳少波, 田华, 等. 深层背斜圈闭中泥岩盖层完整性评价方法及其应用——以四川盆地川中地区震旦系气藏为例[J]. 石油学报, 2021, 42(4): 415-427.

LU X S,LIU S B,TIAN H,et al. An evaluation method for the integrity of mudstone caprock in deep anticlinal traps and its application: A case study of the Sinian gas reservoirs in the central Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(4): 415-427.

49
田华,鲁雪松,张永昌,等.四川盆地安岳气田龙王庙组气藏多层盖层天然气扩散量[J].石油学报,2022,43(3):355-363,398.

TIAN H, LU X S, ZHANG S C, et al. Multilayer caprock natural gas diffusion capacity of Longwangmiao Formation gas reservoir in Anyue Gas Field, Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(3): 355-363,398.

50
ZHANG P, LIU G, CAI C, et al. Alteration of solid bitumen by hydrothermal heating and thermochemical sulfate reduction in the Ediacaran and Cambrian dolomite reservoirs in the central Sichuan Basin,SW China[J].Precambrian Research,2019, 321: 277-302.

51
COOLEY M A, PRICE R A, KYSER T K, et al. Stable-isotope geochemistry of syntectonic veins in Paleozoic carbonate rocks in the Livingstone Range anticlinorium and their significance to the thermal and fluid evolution of the southern Canadian foreland thrust and fold belt[J]. AAPG Bulletin, 2011, 95(11): 1851-1882.

52
林雪梅, 袁海锋, 朱联强,等.川中安岳构造寒武系龙王庙组油气成藏史[J]. 地质学报, 2020, 94(3): 916-930.

LIN X M,YUAN H F, ZHU L Q, et al. Hydrocarbon accumulation history of the Cambrian Longwangmiao Formation in the Anyue structure of the central Sichuan Basin[J]. Acta Geologica Sinica, 2020, 94(3): 916-930.

53
袁海锋, 刘勇, 徐昉昊,等. 川中安平店—高石梯构造震旦系灯影组流体充注特征及油气成藏过程[J]. 岩石学报, 2014, 30(3): 727-736.

YUAN H F, LIU Y, XU F H, et al. The fluid charge and hydrocarbon accumulation,Sinian reservoir,Anpingdian-Gaoshiti Structure,central Sichuan Basin[J]. Acta Petrologica Sinica,2014, 30(3): 727-736.

54
胡召齐, 朱光, 张必龙,等.雪峰隆起北部加里东事件的K-Ar年代学研究[J]. 地质论评, 2010, 56(4): 490-500.

HU Z Q, ZHU G, ZHANG B L, et al. K-Ar geochronology of the caledonian event in the Xuefeng Uplift[J].Geological Review, 2010, 56(4): 490-500.

55
YUAN H, LIANG J, GONG D, et al. Formation and evolution of Sinian oil and gas pools in typical structures, Sichuan Basin, China[J]. Petroleum Science, 2012, 9(2): 129-140.

56
徐昉昊, 袁海锋, 徐国盛,等.四川盆地磨溪构造寒武系龙王庙组流体充注和油气成藏[J]. 石油勘探与开发, 2018, 45(3): 426-435.

XU F H, YUAN H F, XU G S, et al. Fluid charging and hydrocarbon accumulation in the Cambrian Longwangmiao Formation of Moxi structure, Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2018,45(3):426-435.

57
TIAN Y, KOHN B P, ZHU C, et al. Post-orogenic evolution of the Mesozoic Micang Shan Foreland Basin System, central China[J]. Basin Research, 2012, 24(1): 70-90.

58
YANG Z, RATSCHBACHER L, JONCKHEERE R, et al. Late-stage foreland growth of China's largest orogens (Qinling, Tibet): Evidence from the Hannan-Micang crystalline massifs and the northern Sichuan Basin,central China[J]. Lithosphere, 2013, 5(4): 420-437.

59
沈传波, 葛翔, 白秀娟. 四川盆地震旦—寒武系油气成藏的Re-Os年代学约束[J]. 地球科学, 2019, 44(3): 713-726.

SHEN C B,GE X, BAI X J. Re-Os geochronology constraints on the Neoproterozoic-Cambrian hydrocarbon accumulation in the Sichuan Basin[J]. Earth Science,2019,44(3): 713-726.

60
沈传波, 刘泽阳, 肖凡, 等. 石油系统 Re-Os 同位素体系封闭性研究进展[J]. 地球科学进展, 2015, 30(2): 187-195.

SHEN C B,LIU Z Y,XIAO F, et al. Advancements of the research on Re-Os isotope system in petroleum system[J]. Advances in Earth Science, 2015, 30(2): 187-195.

61
GE X, SHEN C, SELBY D, et al. Petroleum evolution within the Tarim Basin, northwestern China: Insights from organic geochemistry, fluid inclusions, and rhenium-osmium geochronology of the Halahatang Oil Field[J]. AAPG Bulletin, 2020, 104(2): 329-355.

62
LIU J, SELBY D, OBERMAJER M, et al. Re-Os geochronology and oil-source correlation of duvernay petroleum system, western Canada sedimentary basin: Implications for the application of the Re-Os geochronometer to petroleum systems[J]. AAPG Bulletin, 2018, 108(8): 1627-1657.

63
WANG G, HUANG Z, ZHAO F, et al. The relationship between hydrocarbon accumulation and Mississippi Valley-type Pb-Znmineralization of the Mayuan metallogenic belt, the northern Yangtze block, SW China: Evidence from ore geology and Rb-Sr isotopic dating[J]. Resource Geology, 2020,70(2): 188-203.

64
XIONG S F, JIANG S Y, CHEN Z H, et al. A Mississippi Valley-type Zn-Pb mineralizing system in South China constrained by in situ U-Pb dating of carbonates and barite and in situ S-Sr-Pb isotopes[J]. GSA Bulletin, 2022, 134(11-12): 2880-2890.

65
李荣西, 毛景文, 赵帮胜, 等. 烃类流体在MVT型铅锌矿成矿中角色与作用:研究进展与展望[J]. 地球科学进展, 2021, 36(4): 335-345.

LI R X, MAO J W, ZHAO B S, et al. A review of the role of hydrocarbon fluid in the ore formation of the MVT Pb-Zn deposit[J]. Advances in Earth Science, 2021, 36(4): 335-345.

66
龙腾. 四川盆地北缘MVT铅锌矿床与古油(气)藏耦合关系研究[D]. 成都:成都理工大学, 2016.

LONG T. Studies on the Coupling Relationship of the MVT Lead-zinc Deposits and the Ancient Oil(Gas)Reservoir in the Northern Margin of the Sichuan Basin[D]. Chengdu:Chengdu University of Technology,2016.

67
WU Z, PENG P, FU J, et al. Bitumen associated with petroleum formation, evolution and alteration-review and case studies in China[J]. Developments in Petroleum Science, 2000, 401-443.

68
ROGERS M, MCALARY J, BAILEY N. Significance of reservoir bitumens to thermal-maturation studies, western Canada Basin[J]. AAPG Bulletin, 1974, 58(9): 1806-1824.

69
JACOB H. Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”)[J]. International Journal of Coal Geology, 1989, 11(1): 65-79.

70
MEYER R F, DE WITT JR W. Definition and World Resources of Natural Bitumens[M].Reston,Vivginia United States Department of the Interior, United States Geological Survey, 1990.

71
HAO F, ZHANG X, WANG C, et al. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin, China[J]. Earth-Science Reviews, 2015, 41: 154-177.

72
DAHL J, MOLDOWAN J, PETERS K, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399(6731): 54-57.

73
VANDENBROUCKE M,BEHAR F, RUDKIEWICZ J.Kine-tic modelling of petroleum formation and cracking:Implications from the high pressure/high temperature Elgin Field(UK,North Sea)[J].Organic Geochemistry,1999,30(9):1105-1125.

74
KELEMEN S R, WALTERS C C, KWIATEK P J, et al. Characterization of solid bitumens originating from thermal chemical alteration and thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta,2010,74(18):5305-5332.

75
MACHEL H G. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights[J]. Sedimentary Geology, 2001, 140(1-2): 143-175.

Outlines

/