Re-understanding of the oil and gas geological conditions of the Maokou Formation in the Hebaochang area of southern Sichuan Basin based on a new seismic geological interpretation model

  • Liu YANG , 1 ,
  • Yadong ZHU 2 ,
  • Yongbo DIAO 1 ,
  • Rongrong YANG 1 ,
  • Chao GENG 3 ,
  • Jisheng SONG 1 ,
  • Jiao XU 1 ,
  • Hong ZHENG 1
Expand
  • 1. Southwest Geophysical Research Institute,BGP,CNPC,Chengdu 610213,China
  • 2. Geophysical Research Institute,BGP,CNPC,Zhuozhou 072751,China
  • 3. Shunan Division,PetroChina Southwest Oil & Gasfield Company,Luzhou 646001,China

Received date: 2023-06-28

  Revised date: 2023-07-26

  Online published: 2024-03-07

Supported by

The Major Scientific and Technological Project of PetroChina(2016E-06)

Abstract

Previous studies have generally believed that the Maokou Formation in the Hebaochang area of southern Sichuan suffered from the widespread karst of Dongwu period, and was superposed with the NE trending faults (fracture zones) generated during the Himalayan period to form high-quality reservoirs. Well placement was developed around the fault and a number of industrial flow well locations were obtained. In the early stage, the seismic research of the Maokou Formation in this area focused on displaying the characteristics of Permian system, lacking an overall analysis of the Permian-deep seismic data. Therefore, based on high-quality three-dimensional seismic data, geological, and drilling and logging data, taking the Permian deep layer as an overall research object, a new seismic geological interpretation model was established, and structural evolution analysis was conducted. The main controlling factors and source reservoir matching model of the Maokou Formation reservoir in the Hebaochang area were re-recognized. The research shows that: (1) Two sets of NE and NWW directional basement faults have been newly discovered in the Hebaochang area, both of which are vertical and flower shaped strike-slip in nature. Both sets of basement faults developed in the pre-Sinian rift uplift and sag transition zone, formed during the Jinning period, and mostly disappeared upward in the interior of the Middle Permian. (2) Due to the Dongwu Movement, a NE trending Permian interlayer detachment mode cap fracture was formed at the top of the NE trending basement fault (in the early deployment area of the Maokou Formation well site). The cap fracture was finalized during the Himalayan period rather than generated during the Himalayan period. This cap fracture is conducive to the dissolution of the Maokou Formation limestone along the fault during the Dongwu period, and is the main controlling factor for the formation of the Maokou Formation fracture pore type reservoir. (3) The NWW trending basement fault inherited movement during the Dongwu period, resulting in a paleostructural slope break zone (poor paleogeomorphology), which may be a high energy sedimentary area of the Maokou Formation. Superimposed karst can form high-quality reservoirs, and the seismic profile of the Maokou Formation shows obvious “mound like, interior chaotic” reflection characteristics. (4)The basement fault connects the Silurian hydrocarbon source rock and the Maokou Formation reservoir. The main hydrocarbon expulsion period Hebao field is located in the Luzhou paleouplift region, with little structural adjustment in the late stage and good hydrocarbon accumulation conditions. This study provides a new idea for expanding exploration results of the Maokou Formation in southern Sichuan Basin.

Cite this article

Liu YANG , Yadong ZHU , Yongbo DIAO , Rongrong YANG , Chao GENG , Jisheng SONG , Jiao XU , Hong ZHENG . Re-understanding of the oil and gas geological conditions of the Maokou Formation in the Hebaochang area of southern Sichuan Basin based on a new seismic geological interpretation model[J]. Natural Gas Geoscience, 2024 , 35(3) : 529 -541 . DOI: 10.11764/j.issn.1672-1926.2023.07.023

0 引言

中二叠统茅口组是四川盆地主要油气产层之一,也是盆地最早勘探的层系之一,自1957年在四川盆地南部(以下简称“川南”)圣灯山构造钻探的L10井测试获高产工业气流以来,勘探已长达60余年1-2。盆地茅口组早期勘探主要集中于川南地区,以灰岩缝洞型储层为目标。20世纪90年代以前,针对背斜构造区,勘探思路由“一占一沿”逐渐发展至“三占三沿”1-3,自流井、阳高寺等一批茅口组气田被发现;90年代以后,勘探重点逐渐转向斜坡区,根据钻井和生产经验,总结出“断层六项布井原则”2-3,发现了以荷包场为代表的茅口组气田。据中国石油第四次油气资源评价结果显示,中二叠统天然气资源量为1.47×1012 m3,重点勘探区带川南地区茅口组已获探明储量仅852×108 m3,资源探明率不足7%,剩余资源量十分丰富3-5。近年来,川南云锦地区YJ2井、得胜地区ST1井、泸州地区LT1井在茅口组向斜—斜坡区相继钻遇岩溶缝洞型灰岩储层,茅口组测试均获高产工业气流,向斜—斜坡区亦是茅口组勘探有利区。川南地区总面积2.4×104 km2,向斜—斜坡区总面积占比高达3/4,且茅口组已钻井主要集中于背斜区,向斜—斜坡区茅口组勘探潜力巨大。
针对川南荷包场等茅口组典型气藏,地质方面,学者们前期研究多集中于沉积相、岩溶古地貌、储层特征及主控因素等方面6-15,茅口组储层的主控因素、天然气富集主要归结于“东吴期广覆式岩溶”及“喜马拉雅期产生的断裂及裂缝”;地震方面,研究偏重于展示地震资料二叠系特征、刻画二叠系NE向断裂及裂缝分布25716-17,缺少对资料二叠系—深层的整体展示与解释,鲜有与源储匹配相关的地震资料分析。为此,本文基于荷包场地区地质及钻测井资料、重新处理的高品质三维地震资料,以二叠系—深层为整体研究对象,建立新的地震地质解释模式,并进行构造演化分析,重新认识了荷包场地区茅口组储层主控因素及源储匹配模式,以期为川南广阔向斜—斜坡区茅口组天然气勘探提供新思路。

1 区域地质概况

荷包场地区处于重庆市荣昌、大足县境内,区域构造位于川南低陡构造带与川中低缓构造带的过渡区[图1(a)],东至螺观山构造,西邻界市场构造,北抵大足—安岳向斜。华蓥山断裂带往川南呈马尾状撒开,荷包场地处华蓥山断裂带西翼,区内三维资料面积为760 km2,地表无断裂,地腹断裂较发育。前人18-19研究及近年来重力异常勘探揭示,四川盆地发育NE向和NW向2组基底断裂,研究区2组基底断裂交会发育[图1(a)]。三维地震精细构造解释表明,研究区二叠系构造为向NW下倾褶皱单斜,发育多条NE向断裂[图1(b)],前期针对茅口组钻井主要位于该NE向断裂附近,近期新发现区内发育多条NE向及NWW向基底断裂。截至2024年1月,荷包场地区钻遇中二叠统井位共47口,钻井过程中茅口组显示级别较高,以气侵、井漏为主,茅口组测试获工业气流井共32口,其中9口井测试日产气量均在50×104 m3以上,5口井累计产气量均超过1×108 m3
图1 研究区构造特征

(a)四川盆地构造纲要及荷包场区位图;(b)川南荷包场地区茅口组顶界构造图

Fig.1 Structural characteristics of the study area

四川盆地茅口组主要为开阔海台地相沉积,岩性以生物碎屑灰岩为主3,厚度约为200~400 m,自下而上分为茅一段、茅二段、茅三段、茅四段共4段,茅一段和茅二段从下到上均划分为c、b、a 共3个亚段,茅口组底部和栖霞组呈整合接触。中—晚二叠世之交,东吴运动导致茅口组遭受长时间流水淋滤13-15,广泛发育了岩溶储层,和上覆龙潭组形成了区域不整合面。荷包场地区茅口组发育茅一段—茅三段,储层主要位于易受岩溶改造的茅二段—茅三段。
此后川南地区经历多期构造运动影响,在喜马拉雅期强烈褶皱活动后基本定型,形成现今隆凹相间的构造格局。

2 地震地质解释新模式

荷包场地区前期油气勘探开发层系以上三叠统须家河组、中二叠统茅口组为主,目的层埋深相对较浅。随着该区震旦系灯影组勘探的突破,三维地震采集进一步强化观测系统参数,同时针对中深层开展了目标性地震资料处理,使得原二叠系及下伏地层、基底断裂等资料成像改善明显,为建立精细的中深层构造样式奠定了坚实的地震资料基础。

2.1 断裂特征及构造样式

研究区三叠系—震旦系各标志层地震反射特征清晰,其中三叠系飞仙关组底界、二叠系茅口组顶界及底界、二叠系底界、奥陶系五峰组底界、寒武系底界、震旦系灯影组底界均为连续强振幅反射[图2(a),图2(b)];震旦系陡山坨组碎屑岩与前震旦系基底波阻抗差较大,研究区陡山坨组底界地震反射特征通过和区域统层对比,为较连续强振幅反射。四川盆地隶属的上扬子板块在震旦纪之前,以“前震旦系裂谷”为主要存在形态,前人20-22对此已有初步研究,裂谷内以火山岩、碎屑岩、冰碛岩等沉积充填为主,与裂谷相邻的隆起地层为澄江期侵入花岗岩体(四川盆地W28井等已钻揭此岩体并经过同位素测年23)。研究区地震剖面前震旦系存在明显强振幅斜反射[图2(a),图2(b)],由于裂谷内与相邻隆起地层充填岩性相差较大,故地震剖面强振幅斜反射表征了裂谷边界不连续界面,研究区相邻川中地区亦存在类似的裂谷地震反射特征24
图2 荷包场地区典型地震剖面[位置见图4(e)]

(a)NE向地震剖面(二叠系—前震旦系);(b)NW向地震剖面(二叠系—前震旦系);(c)NW向地震剖面局部放大; (d)NW向地震剖面局部放大

Fig.2 Typical seismic section in the Hebaochang area [see Fig.4(e) for location]

荷包场地区基底断裂近直立状,位于前震旦系裂谷内构造坡折处,向下切穿基底,向上主要消失于中二叠统中下部,部分消失于奥陶系—志留系[图2(a),图2(b)]。研究区灯影组底界地震双程旅行时在2.5 s左右,通过前震旦系3 s等时地震切片可见(图3),NE向和NWW向裂谷产状特征清晰。基底断裂的走滑活动通常在盖层内引起各种伴生构造(Associated Structure)25-26,控制盖层变形的称为“盖层断裂”27,美国伊利诺斯盆地和威利斯顿盆地,我国准噶尔盆地和鄂尔多斯盆地均发育此类基底断裂及与之相关的盖层断裂27-28。研究区基底断裂中上部多呈现正花状走滑特征[图2(a)—2(d)],控制了断裂区褶皱变形,研究区NE向基底断裂活动性较强[图2(a)—2(d)],在主干基底断裂顶部伴生发育薄皮样式脊状微幅构造,控制此构造的二叠系层间断裂为基底断裂的盖层断裂,滑脱于栖霞组底部泥灰岩—梁山组泥页岩塑性层中,荷包场地区茅口组已部署井位围绕此组NE向盖层断裂展开。在沿灯影组底界、寒武系底界、奥陶系五峰组底界、二叠系底界、茅口组顶界、飞仙关组底界地震相干切片(图4)上可见,基底断裂主要为NE和NWW方向,相干切片上基底断裂位于前震旦系裂谷地层坡折处[图2(a),图2(b)]。各层系相干切片对比,低相干值表征的同一条基底断裂平面位移量小,表明剖面基底断裂呈直立特征。地震剖面基底断裂花状特征明显的寒武系—志留系层段,在相应的相干切片上雁列状断裂较多[图4(b),图4(c)];基底断裂的二叠系盖层伴生构造,在相应的相干切片上雁列状断裂相对减少[图4(d),图4(e)]。飞仙关组底界附近为盖层断裂应力向上释放区,其相干切片上[图4(f)]规模较小、断裂数量比下伏地层增多。与NE向基底断裂相比,NWW向基底断裂亦具有走滑特征,但花状规模较小,其顶部无牵引伴生的薄皮滑脱二叠系层间断裂[图2(a)]。
图3 荷包场地区前震旦系3 s等时地震切片

Fig.3 Isochronous sesmic slices of 3 s of the Pre-Sinian in the Hebaochang area

图4 荷包场地区各层系地震相干切片

(a)沿灯影组底界; (b)沿寒武系底界; (c)沿五峰组底界; (d)沿二叠系底界; (e)沿龙潭组底界; (f)沿飞仙关组底界

Fig.4 Seismic coherence slices of various layers in the Hebaochang area

2.2 构造演化分析

四川盆地位于扬子地台西北侧,震旦系—第四系发育较齐全,经历了多期复杂的构造沉积演化。震旦纪—中三叠世盆地整体为海相沉积,晚三叠世—第四纪转为陆相沉积,是典型的叠合盆地19
晚元古代晋宁运动期,四川盆地地幔柱活动强烈并导致热沉降29,伸展应力下产生基底薄弱带,断至壳幔的NE、NW向基底断裂形成,在盆地呈“棋盘格” 组合样式,深大断裂成为火山岩喷发(侵入)通道,前震旦系裂谷形成于该时期。陡山沱组沉积后经澄江运动,地壳逐渐稳定,构成完整的基底。荷包场地区位于NE和NWW方向2组基底断裂交会处,基底断裂位于前震旦系裂谷内坡折带[图2(a),图2(b)],B35井及B37井分别紧邻主干基底断裂F3、F5,相距分别为290 m、510 m;基底断裂F1规模较小,且HB1井距F1断裂较远(2 450 m)。
晚元古代—新生代,受控于扬子地台周缘板块动力学演化,盆缘应力向盆内传递,四川盆地NE、NW向基底断裂在拉张—挤压应力背景下继承性活动。震旦纪—寒武纪,扬子板块位于冈瓦纳超大陆外围,并随着原特提斯洋闭合向冈瓦纳超大陆汇聚19,受原特提斯洋的斜向俯冲—闭合影响,扬子地台出现顺时针旋转,四川盆地受兴凯旋回30产生的伸展应力影响,先存的NE和NWW方向2组基底断裂活化,尤其是NE向断裂显性活动,并产生走滑特征,伴随着斜拉张作用,形成了贯穿盆地的近SN向德阳—安岳裂陷槽,荷包场地区紧邻裂陷槽东侧边缘,NE向基底断裂张性活动[图5(a)];加里东旋回期盆地处于挤压状态,川南地区位于川中古隆起和黔中古隆起之间凹陷区,沉积了奥陶系五峰组和志留系龙马溪组优质页岩,荷包场地区先存主干基底断裂F3、F5等压扭性活动,寒武系—志留系走滑断裂正花状特征明显[图5(b),图5(c)]。晚古生代,随着扬子北缘勉略洋的打开与扩张25,四川盆地主要处于NE—SW向拉张应力背景,盆地先存NE和NWW方向2组基底断裂活化,研究区NWW向基底断裂错开早期灯影组四段台缘[图4(b)],NE向基底断裂产生左行雁列状走滑,早期NE向基底走滑断裂F3、F5规模大,在中晚二叠世之交,东吴运动(四川盆地内谓之峨眉地裂运动31-32)导致二叠系沿先存NE向基底断裂F3、F5薄弱带发生牵引滑脱[图5(d)],此NE向二叠系盖层断裂也是荷包场地区茅口组井位部署区。
图5 荷包场地区震旦纪—现今主要时期构造演化

Fig.5 Structure evolution of the Hebaochang area from the Sinian to the present main period

印支期,随着雪峰山往四川盆地内挤压,其前缘—川南泸州地区继承性隆起33,荷包场地区位于泸州古隆起核部西北翼,研究区东侧地层进一步抬升[图5(e)]。燕山及喜马拉雅期,在区域挤压作用下,荷包场地区先存基底断裂及盖层断裂进一步活动,构造定型[图5(f)]。

3 茅口组成藏条件新认识

3.1 优质储层主控因素

川南地区已发现茅口组优质储层以裂缝—孔洞型为主5-8。中二叠世晚期,川南茅口组以开阔海台地相沉积为主,沉积的一套厚层生屑灰岩是岩溶储层广泛发育的物质基础;东吴运动导致四川盆地抬升遭受广覆式淡水淋滤,茅口组普遍发育岩溶型储层。四川盆地茅口组岩溶古地貌刻画一般采用印模法或残厚法13-1434,荷包场地区通过印模法(茅口组上覆地层龙潭组厚度)井震刻画,东吴期岩溶古地貌相差细微,其中茅口组实钻揭示岩溶储层十分发育的B35井、B41井龙潭组厚度分别为155 m、158 m,岩溶储层不发育的HB1井龙潭组厚度为148 m,与前者十分相近;荷包场地区井位多未钻穿茅口组,但茅口组地震顶底界面均为强振幅连续反射,通过精细层位解释,残厚法(茅口组厚度)刻画的岩溶古地貌亦相差不大。荷包场地区茅口组重点部署井位的中西部NE向断裂区,基底断裂及其伴生二叠系盖层断裂规模大,在东吴期荷包场地区普遍遭受淡水淋滤的同时,沿此组盖层断裂分布的茅口组灰岩更易经垂直渗流、水平潜流产生岩溶改造,茅口组岩溶储层孔隙十分发育(图6),后经印支、燕山及喜马拉雅运动的褶皱挤压,产生大量裂缝,提高了原储层孔隙的渗滤性,最终形成裂缝—孔洞型储层。钻井过程中沿此NE向断裂带常发生放空、强烈井喷或钻井液大量漏失等显示,录井过程中亦观察到较多的次生方解石,均揭示了茅口组裂缝—孔洞型储层的发育。
图6 荷包场地区茅口组岩溶成储模式

Fig.6 Karst reservoir forming model of Maokou Formation in Hebaochang area

HB1井旁NE向基底断裂规模小,二叠系无盖层断裂,茅口组岩溶储层发育差,茅口组岩心致密[图7(a)],缝洞明显不如NE向井位集中部署区的B30井[图7(b)];HS101井距离NE向主干基底断裂和相应二叠系盖层断裂远(3.8 km),茅口组岩溶储层亦不发育。荷包场地区茅口组已钻揭岩性以生屑灰岩为主、岩溶古地貌亦相差不大,裂缝—孔洞型储层发育主要受断层相关的淡水岩溶控制。地震剖面上,裂缝—孔洞型储层,茅口组内部呈杂乱、抖动、波峰数增多的反射特征,储层不发育时为平行连续反射[图2(d)]。
图7 荷包场地区茅口组致密储层与裂缝—孔洞型储层岩心对比

(a)HB1井,茅二段,3 487.82~3 488.03 m; (b)B30井,茅三段,3 139.09~3 139.20 m

Fig.7 Comparison of rock cores between dense reservoir and karst fractured reservoir of Maokou Formation in Hebaochang area

近年来,四川盆地川中、川北、川东北多地区勘探已证实,NW向断裂对中上二叠统构造—沉积分异具有明显控制作用35-38,川中八角场地区JT1井、南充地区NC1井、合川—潼南地区TS1井、川北元坝地区YB7井等在茅口组均钻遇厚层、优质白云岩(云质灰岩)储层,测试均获日产超百万方高产气流,生产效果好,展现出四川盆地茅口组沉积型白云岩储层较大的勘探开发潜力。中二叠世茅口组沉积中期,峨眉地幔柱隆升加剧,NW向广元—巴中拉张槽形成,茅口组沉积开始出现分异36;中晚二叠世,峨眉地裂运动导致的拉张作用达到鼎盛,NW向开江—梁平海槽和蓬溪—武胜台凹形成,奠定了茅口组及其上覆吴家坪组(龙潭组)、长兴组、飞仙关组沉积格局。川南与川中、川北、川东北地区类似,亦受峨眉地裂运动波及,荷包场位于NW向蓬溪—武胜台凹南侧,除已钻揭的NE向茅口组岩溶—裂缝储层发育区,茅口组可能还发育受NWW向断裂控制的较高能沉积带,叠加东吴期岩溶,可能发育新类型优质储层,风险勘探潜力大。研究区地震剖面NWW向基底断裂特征明显,紧邻基底断裂F4、F5南侧茅口组内幕呈明显杂乱、丘状隆起反射特征,可能为台内较高能沉积区[图8(a),图8(b)],与YB7井茅口组台缘带地震反射特征38-41相似,断裂F4、F5北侧茅口组内幕呈平行连续反射,表征低能稳定沉积环境(HS101井茅口组钻揭为泥晶灰岩)。
图8 荷包场地区茅口组高能沉积—岩溶储层地震响应特征(位置见图10)

(a) NE向地震剖面;(b)NW向地震剖面

Fig.8 Seismic response characteristics of high-energy sedimentary karst reservoirs in the Maokou Formation of the Hebaochang area (see Fig.10 for location)

由于川南地区峨眉地裂拉张程度在盆地内相对较弱,不同于川中和川北地区形成的NW向槽台沉积分异格局,川南地区更多的是台内区的NWW向高带与洼地间沉积差异。断裂F4、F5在茅口组沉积期引起局部构造分异,断裂南侧古地貌相对北侧较高,有利于茅口组较高能沉积形成白云质储层,叠加淡水岩溶后储层物性可进一步改善(图9)。提取荷包场地区茅口组波形分类地震属性(图10),预测地震反射杂乱、波峰数较多所表征的较高能沉积有利区面积为195 km2,沿NWW向断裂带分布,较高能沉积区非均质性较强;NWW向较高能沉积叠加NE东吴期岩溶区面积60 km2
图9 荷包场地区茅口组高能沉积岩溶成储模式

Fig.9 High energy sedimentary karst reservoir forming model of Maokou Formation in Hebaochang area

图10 荷包场地区茅口组高能沉积—岩溶储层平面分布

Fig.10 Plane distribution of high-energy sedimentary karst reservoirs in the Maokou Formation of the Hebaochang area

荷包场地区茅口组岩心较破碎,取心资料较少(仅5口井),主要结合钻井显示、录井岩屑、测井、生产等信息分析:研究区NE、NWW方向2组基底断裂交会处[图1(b)],茅口组钻井灰岩储层伴有云化,云质灰岩储层叠加东吴期岩溶,物性更好,测试产量高,生产稳定且累产更高,如B41井、B003-1井、B31井云质灰岩储层厚5~11 m,B41井茅口组测试获气38.11×104 m3/d,已累计产气3.66×108 m3;B003-1井茅口组测试获气51.4×104 m3/d,已累计产气1.83×108 m3;B31井茅口组测试获气79.08×104 m3/d,已累计产气1.67×108 m3。非2组基底断裂方向交会的NE向断裂区,茅口组储层非均质性较强,测试产量有高有低,整体稳产能力相对较差,如B9井茅口组测试获气2.18×104 m3/d,累计仅产气352.6×104 m3,已停产;B37井茅口组测试获气达19.5×104 m3/d,累产气高达1.11×108 m3,B37井与B9井相比,前者位于2组NE向雁列断裂交会处、断裂规模较大[图1(b)],茅口组裂缝—孔洞型储层发育程度更高。

3.2 源储匹配关系

川南是四川盆地龙马溪组页岩沉积厚度最大、生烃能力最强地区,除该区西北局部龙马溪组地层剥蚀外,龙马溪组在川南大部广覆式发育,该区茅口组天然气主要来源于志留系龙马溪组优质烃源岩,茅一段自身烃源岩亦有部分贡献42-43。在志留系生油高峰期(印支期)川南存在泸州古隆起,荷包场地区位于泸州古隆起范围内(图11),是油气的有利指向区,基底断裂和其二叠系盖层断裂组成“接力棒”式油气疏导通道,沟通了龙马溪组烃源岩和茅口组优质储层,源储配置好;龙潭组厚层泥页岩作为茅口组直接盖层,形成“三明治”式成藏组合。燕山期—喜马拉雅期,先存原油进一步裂解成气,荷包场地区构造幅度调整较小,地表出露白垩系年轻地层,保存条件佳,形成沿基底断裂带分布的茅口组天然气富集区(图12),NE向断裂带已钻井证实勘探开发效果好[图1(b)]。NWW向基底断裂带亦可沟通龙马溪组烃源岩与茅口组滩相岩溶储层,风险勘探潜力大。
图11 泸州古隆起区域(过荷包场)茅口组源储匹配模式(成藏期)

Fig.11 Source reservoir matching model of Maokou Formation in the Luzhou ancient uplift area (cross the Hebaochang) (reservoir formation period)

图12 荷包场地区茅口组油气成藏模式(现今)

Fig.12 Hydrocarbon accumulation model of Maokou Formation in Hebaochang area(current)

4 结论

(1)川南荷包场地区发育NE和NWW方向2组基底走滑断裂,断裂发育于前震旦系裂谷内构造坡折处,向上主要消失于中二叠统中下部;断裂形成于晋宁期,在后期构造运动时不同程度活化,东吴期伴生形成的NE向二叠系盖层断裂,是茅口组NE向裂缝—孔洞型储层形成的主控因素。
(2)NWW向基底断裂可能控制茅口组局部构造沉积分异。茅口组丘状、内幕杂乱地震反射可能为较高能沉积区,叠加东吴期岩溶,有利于形成云质岩溶储层,勘探程度低、潜力大。
(3)基底断裂沟通志留系烃源岩与茅口组储层,龙潭组泥页岩作为直接盖层,晚期构造调整幅度小,茅口组油气成藏条件佳。
1
张健,周刚,张光荣,等.四川盆地中二叠统天然气地质特征与勘探方向[J].天然气工业,2018,38(1):10-20.

ZHANG J,ZHOU G,ZHANG G R,et al.Geological characteristics and exploration orientation of Middle-Permian natural gas in the Sichuan Basin[J].Natural Gas Industry,2018,38(1):10-20.

2
张光荣,张旋,喻颐,等.四川盆地深层海相碳酸盐岩缝洞型储层预测关键技术——以SN地区茅口组为例[J].天然气地球科学,2017,28(8):1235-1242.

ZHANG G R,ZHANG X,YU Y,et al.Key techniques for prediction of fractured carbonate reservoirs in deep marine carbonate rocks in Sichuan Basin:A case study of the Maokou Formation in SN area[J].Natural Gas Geoscience,2017,28(8):1235-1242.

3
汪泽成,江青春,黄士鹏,等.四川盆地中二叠统茅口组天然气大面积成藏的地质条件[J].天然气工业,2018,38(1):30-38.

WANG Z C,JIANG Q C,HUANG S P,et al.Geologica conditions for massive accumulation of natural gas in the Middle-Permian Maokou Fm of the Sichuan Basin[J].Natural Gas Industry,2018,38(1):30-38.

4
郑志红,李登华,白森舒,等.四川盆地天然气资源潜力[J].中国石油勘探,2017,22(3):12-20.

ZHENG Z H,LI D H,BAI S S,et al.Resource potentials of natural gas in Sichuan Basin[J].China Petroleum Exploration,2017,22(3):12-20.

5
陈晓月,李建忠,江青春,等.四川盆地荷包场地区二叠系岩溶储层地球物理特征与分布预测[J].天然气工业,2019,39(7):41-48.

CHEN X Y,LI J Z,JIANG Q C,et al.Geophysical characteristics and distribution prediction of the Permian karst reservoirs in the Hebaochang area,South Sichuan Basin[J].Natural Gas Industry,2019,39(7):41-48.

6
黄士鹏,江青春,冯庆付,等.川南地区中二叠统茅口组岩溶储集层类型与分布规律[J].石油勘探与开发,2019,46(2):281-289.

HUANG S P,JIANG Q C,FENG Q F,et al.Type and distribution of Mid-Permian Maokou Formation karst reservoirs in southern Sichuan Basin, SW China[J].Petroleum Exploration and Development, 2019, 46(2):281-289.

7
沈华,杨光,屈卫华,等.四川盆地自贡地区中二叠统茅口组多类型储层特征及分布预测[J].中国石油勘探,2023,28(3):49-63.

SHEN H, YANG G, QU W H, et al. Characteristics and prediction of multi-type reservoirs in the Middle Permian Maokou Formation in Zigong area, Sichuan Basin[J].China Petroleum Exploration, 2023,28(3):49-63.

8
王国峰,张大伟,邓守伟,等.四川盆地自贡区块茅口组岩溶储层发育特征及其主控因素[J].天然气工业,2022,42(9):63-75.

WANG G F,ZHANG D W, DENG S W,et al.Development characteristics and main controlling factors of Maokou Formation karst reservoirs in Zigong Block of the Sichuan Basin[J]. Natural Gas Industry,2022,42(9):63-75.

9
李其荣,杜本强,隆辉,等.蜀南地区天然气地质特征及勘探方向[J].天然气工业,2019,29(10):21-23.

LI Q R,DU B Q,LONG H,et al.Geological characteristics of gas reservoirs and exploration direction in southern Sichuan Basin[J].Natural Gas Industry,2019,29(10):21-23.

10
杨光,汪华,沈浩,等.四川盆地中二叠统储层特征与勘探方向[J].天然气工业,2015,35(7):10-16.

YANG G,WANG H,SHEN H,et al.Characteristics and exploration prospects of Middle Permian reservoirs in the Sichuan Basin[J].Natural Gas Industry,2015,35(7):10-16.

11
陈宗清.四川盆地中二叠统茅口组天然气勘探[J].中国石油勘探,2007,12(5):1-11.

CHEN Z Q.Exploration for natural gas in Middle Permian Maokou Formation of Sichuan Basin[J].China Petroleum Exploration,2007,12(5):1-11.

12
沈平,张健,宋家荣,等.四川盆地中二叠统天然气勘探新突破的意义及有利勘探方向[J].天然气工业,2015,35(7):1-9.

SHEN P,ZHANG J,SONG J R,et al.Significance of new breakthrough in and favorable targets of gas exploration in the Middle Permian system,Sichuan Basin[J].Natural Gas Industry,2015,35(7):1-9.

13
张亚,陈双玲,张晓丽,等.四川盆地茅口组岩溶古地貌刻画及油气勘探意义[J].岩性油气藏,2020,32(3):44-55.

ZHANG Y,CHEN S L,ZHANG X L,et al.Restoration of paleokarst geomorphology of Lower Permian Maokou Formation and its petroleum exploration implication in Sichuan Basin[J].Lithologic Reservoirs,2020,32(3):44-55.

14
肖笛,谭秀成,山述娇,等.四川盆地南部中二叠统茅口组古岩溶地貌恢复及其石油地质意义[J].地质学报,2014,88(10):1992-2002.

XIAO D,TAN X C,SHAN S J,et al.The restoration of palaeokarst geomorphology of Middle Permian Maokou Formation and its petroleum geological significance in South Sichuan Basin[J].Acta Geologica Sinica,2014,88(10):1992-2002.

15
肖迪,谭秀成,郗爱华,等.四川盆地南部中二叠统茅口组碳酸盐岩岩溶特征:古大陆环境下层控型早成岩期岩溶实例[J].古地理学报,2015,17(4):457-476.

XIAO D,TAN X C,XI A H,et al.Palaeokarst characteristics of carbonate rocks of the Middle Permian Maokou Formation in southern Sichuan Basin:Example of strata-bound eogenetic karst in palaeo-continental setting[J].Journal of Palaeogeography,2015,17(4):457-476.

16
程莉莉.蜀南地区HBC区块茅口组缝洞型储层描述技术研究[D].成都:成都理工大学,2009.

CHENG L L.Fracture-Cavity Reservoir Description Technique Research in Maokouzu of HBC Block in Shunan Area[D].Chengdu:Chengdu University of Technology,2009.

17
蒋晓迪.蜀南荷包场地区碳酸盐岩缝洞型储层地震预测研究[D].成都:西南石油大学,2014.

JIANG X D.The Prediction Of Fracture-Cave Carbonate Reservoirs of HBC Area in South Sichuan Basin[D].Chengdu:Southwest Petroleum University,2014.

18
罗志立.四川盆地基底结构的新认识[J].成都理工学院学报,1998,5(2):85-92.

LUO Z L.A new understanding of basal structure in Sichuan Basin[J].Journal of Chengdu University of Technology,1998,5(2):85-92.

19
焦方正,杨雨,冉崎,等.四川盆地中部地区走滑断层的分布与天然气勘探[J].天然气工业,2021,41(8):92-101.

JIAO F Z,YANG Y,RAN Q,et al.Distribution and gas exploration of the strike-slip faults in the central Sichuan Basin[J].Natural Gas Industry,2021,41(8):92-101.

20
魏国齐,杨威,张健,等.四川盆地中部前震旦系裂谷及对上覆地层成藏的控制[J].石油勘探与开发,2018,45(2):179-189.

WEI G Q,YANG W,ZHANG J,et al.The Pre-Sinian rift in central Sichuan Basin and its control on hydrocarbon accumulation in the overlying strata[J].Petroleum Exploration and Development, 2018,45(2):179-189.

21
杨志如,王学军,冯许魁,等.川中地区前震旦系裂谷研究及其地质意义[J].天然气工业,2014,34(3):80-85.

YANG Z R,WANG X J,FENG X K,et al.Geological research and significance of a rift valley in the Presinian Period in central Sichuan Basin[J].Natural Gas Industry,2014,34(3):80-85.

22
张健,沈平,杨威,等.四川盆地前震旦纪沉积岩新认识与油气勘探的意义[J].天然气工业,2012,32(7):1-6.

ZHANG J,SHEN P,YANG W,et al.New understanding of Pre-Sinian sedimentary rocks in the Sichuan Basin and the significance of oil and gas exploration significance[J].Natural Gas Industry,2012,32(7):1-6.

23
罗志立,孙玮,代寒松,等.四川盆地基准井勘探历程回顾及地质效果分析[J].天然气工业,2012,32(4):9-12.

LUO Z Z,SUN W,DAI H S,et al.Reviews of the exploration history of stratigraphic wells in the Sichuan Basin and analysis of the obtained geological significance[J].Natural Gas Industry,2012,32(4):9-12.

24
杨柳,臧殿光,王伦,等.川中地区基底断裂对震旦系-古生界沉积控制作用及油气地质意义[J].石油物探,2023,62(4):751-763.

YANG L,ZANG D G, WANG L,et al.Control of basement faults on Sinian-Paleozoic sedimentation in the central Sichuan Basin and its petroleum geological significance[J].Geophysical Prospecting for Petroleum,2023,62(4):751-763.

25
管树巍,姜华,鲁雪松,等.四川盆地中部走滑断裂系统及其控油气作用[J].石油学报,2022,43(11):1542-1557.

GUAN S W,JIANG H,LU X S,et al.Strike-slip fault system and its control on oil & gas accumulation in central Sichuan Basin[J].Acta Petrolei Sinica,2022,43(11):1542-1557.

26
SYLVESTER A G.Strike-slip faults[J].GSA Bulletin,1988,100(11):1666-1703.

27
胡素云,蔚远江,董大忠,等.准噶尔盆地腹部断裂活动对油气聚集的控制作用[J].石油学报,2006,27(1):1-7.

HU S Y,YU Y J,DONG D Z,et al.Control of fault activity on hydrocarbon accumulation in central Junggar Basin[J].Acta Pe-trolei Sinica,2006,27(1):1-7.

28
赵文智,胡素云,汪泽成,等.鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用[J].石油勘探与开发,2003,30(5):1-5.

ZHAO W Z,HU S Y,WANG Z C,et al.Key role of basement fault control on oil accumulation of Yanchang Formation,Upper Triassic,Ordos Basin[J].Petroleum Exploration and Development,2003,30(5):1-5.

29
刘静江,刘惠荣,李文皓,等.四川盆地裂陷槽研究新进展:关于裂陷槽成因机制与形成时间的探讨[J].地质论评,2021,67(3):767-786.

LIU J J,LIU H R,LI W H,et al.New progress in the study of aulacogen in Sichuan Basin:A discussion on the genetic mechanism and formation time of the aulacogen[J].Geological Review, 2021,67(3):767-786.

30
刘树根,孙玮,罗志立,等.兴凯地裂运动与四川盆地下组合油气勘探[J].成都理工大学学报(自然科学版),2013,40(5):511-520.

LIU S G,SUN W,LUO Z L,et al.Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian Strata in Sichuan Basin,China[J].Journal of Chengdu University of Te-chnology(Science & Technology Edition),2013,40(5):511-520.

31
罗志立.峨眉地裂运动和四川盆地天然气勘探实践[J].新疆石油地质,2009,30(4):419-424.

LUO Z L.Emei Taphrogeneis and natural gas prospecting practices in Sichuan Basin[J].Xinjiang Petroleum Geology,2009,30(4):419-424.

32
杨柳,赵容容,梁虹,等.川西南部二叠系火山岩相地震预测及分布主控因素[J].成都理工大学学报(自然科学版),2022,49(1):94-103.

YANG L,ZHAO R R,LIANG H,et al.Study on seismic prediction and main controlling factors of Permian volcanic facies in southwestern Sichuan Basin, China[J].Journal of Chengdu University of Technology(Science &Technology Edition), 2022,49(1):94-103.

33
黄涵宇,何登发,李英强,等.四川盆地东南部泸州古隆起的厘定及其成因机制[J].地学前缘,2019,26(1):102-120.

HUANG H Y,HE D F,LI Y Q,et al.Determination and formation mechanism of the Luzhou paleo-uplift in the southeastern Sichuan Basin[J].Earth Science Frontiers,2019,26(1):102-120.

34
杨柳,臧殿光,徐宝亮,等.川东北开江地区茅口组凹陷异常体分布特征及成因[J].新疆石油地质,2020,41(5):542-549.

YANG L,ZANG D G,XU B L,et al.Distribution and genesis of abnormal bodies in Maokouzu Sag in Kaijiang area,northeastern Sichuan Basin[J].Xinjiang Petroleum Geology,2020,41(5):542-549.

35
杨雨,谢继容,赵路子,等.四川盆地茅口组滩相孔隙型白云岩储层天然气勘探的突破及启示:以川中北部地区JT1井天然气立体勘探为例[J].天然气工业,2021,41(2):1-9.

YANG Y,XIE J R,ZHAO L Z,et al.Breakthrough of natural gas exploration in the beach facies porous dolomite reservoir of Middle Permian Maokou Formation in the Sichuan Basin and its enlightenment:A case study of the tridimensional exploration of Well JT1 in the central-northern Sichuan Basin[J].Natural Gas Geoscience,2021,41(2):1-9.

36
张玺华,陈聪,黄婕,等.四川盆地中二叠世广元-巴中拉张槽的发现及其油气地质意义[J].中国石油勘探,2019,24(4):466-475.

ZHANG X H,CHEN C,HUANG J,et al.The discovery of Middle Permian Guangyuan-Bazhong extensional trough in the Sichuan Basin and its petroleum geological significance[J].China Petroleum Exploration,2019,24(4):466-475.

37
印长海,师江波,郑剑锋,等.四川盆地合川-潼南地区茅二段滩相白云岩储层特征、主控因素及勘探意义[J].大庆石油地质与开发,2023,42(1):1-10.

YIN C H,SHI J B,ZHENG J F,et al.Characteristics, controlling factors and exploration significance of shoal facies dolomite reservoirs in 2nd member of Maokou Formation in Hechuan⁃Tongnan area of Sichuan Basin[J].Petroleum Geology & Oilfield Development in Daqing,2023,42(1):1-10.

38
胡东风.四川盆地元坝地区茅口组台缘浅滩天然气勘探的突破与启示[J].天然气工业,2019,39(3):1-10.

HU D F.Breakthrough in natural gas exploration in the platform margin shoal at the Maokou Fm in the Yuanba area,Sichaun Basin,and its implications[J].Natural Gas Industry,2019,39(3):1-10.

39
秦贞超,缪志伟,魏建新,等.四川盆地元坝地区茅口组台缘浅滩相储层物理模型[J].石油与天然气地质,2022,43(3):652-746.

QIN Z C,MIU Z W,WEI J X,et al.Seismic physical model of the Maokou Formation reservoirs of platform-margin shoal in Yuanba area,Sichuan Basin[J].Oil & Gas Geology, 2022,43(3):652-746.

40
曾德铭,谢晓斌,黄董,等.四川盆地北部二叠系茅口组沉积特征及油气意义[J].西南石油大学学报(自然科学版),2023,45(1):1-12.

ZENG D M, XIE X B, HUANG D, et al. Sedimentary characteristics of the Maokou Formation of the Permian in northern Sichuan Basin and its petroleum significance[J].Journal of Sou-thwest Petroleum University (Science & Technology Edition), 2023, 45(1):1-12.

41
胡欣,王宇峰,裴森奇,等.川西北地区中二叠统茅口组沉积演化及其对岩溶储层发育的控制[J].天然气地球科学,2022.33(4):572-587.

HU X,WANG Y F,PEI S Q,et al.Sedimentary evolution and its influence on karst reservoir development of the Middle Permian Maokou Formation in the northwestern Sichuan Basin,China[J].Natural Gas Geoscience,2022.33(4):572-587.

42
张宇,曹清古,罗开平,等.四川盆地二叠系茅口组油气藏勘探发现与启示[J].石油与天然气地质,2022,43(3):610-620.

ZHANG Y, CAO Q G, LUO K P, et al. Reservoir exploration of the Permian Maokou Formation in the Sichuan Basin and enligh-tenment obtained[J]. Oil & Gas Geology,2022,43(3):610-620.

43
江青春,汪泽成,苏旺,等.四川盆地中二叠统茅口组一段泥灰岩源内非常规天然气成藏条件及有利勘探方向 [J].中国石油勘探,2021,26(6):82-97.

JIANG Q C, WANG Z C, SU W, et al. Accumulation conditions and favorable exploration orientation of unconventional natural gas in the marl source rock of the first member of the Middle Permian Maokou Formation, Sichuan Basin[J]. China Petroleum Exploration, 2021,26(6):82-97.

Outlines

/