Characteristics of reservoir diagenesis in the Zhuhai Formation in the southwestern Baiyun Depression, Pearl River Mouth Basin, and its influence on reservoir physical properties

  • Xiangtao ZHANG , 1, 2 ,
  • Guangrong PENG 1, 2 ,
  • Shiwen XIE 1, 2 ,
  • Zhe WEI , 1, 2 ,
  • Xuanlong SHAN 3 ,
  • Wentong HE 3 ,
  • Guoli HAO 3
Expand
  • 1. CNOOC Deepwater Development Limited,Shenzhen 518067,China
  • 2. Shenzhen Branch of CNOOC Ltd. ,Shenzhen 518067,China
  • 3. The College of Earth Sciences,Jilin University,Changchun 130061,China

Received date: 2023-09-22

  Revised date: 2023-11-20

  Online published: 2024-03-07

Supported by

The Major Science and Technology Project of CNOOC during the “14th Five-Year Plan”(KJGG2021-0100)

Abstract

High-quality reservoirs have been discovered in the southwestern part of Baiyun Depression in the Pearl River Mouth Basin of the South China Sea through new drilling wells, but there are few studies on the pore evolution and diagenetic processes of the reservoirs of the Zhuhai Formation in this region, which restricts the evaluation of high-quality reservoirs and the effective prediction of potential sweet spot zones. In this paper, the latest deep-sea drilling core of the Zhuhai Formation in Baiyun Depression was selected as the research object, and then based on a large number of thin sections, cast thin sections, X-ray diffraction, and rock physical property tests, a systematic study was carried out to investigate the rock characteristics, pore evolution, diagenesis, and the impact on reservoir properties. It is found that the sandstone reservoirs of the Zhuhai Formation are mainly feldspathic sandstone and feldspathic clastic sandstone. The pore types of the reservoir are mainly primary and secondary dissolution pores, and the primary pores are mostly modified, while the dissolution pores are more common. The sandstone reservoirs of the Zhuhai Formation in the target area have experienced strong diagenetic modification, including compaction, cementation, dissolution, and accountable action. This paper summarizes the existence of four typical diagenetic phases in the Zhuhai Formation in the southwestern Baiyun Depression, the mechanically compacted phase of medium-fine-grained sandstone, the siliceous cementation phase of medium-fine-grained sandstone, the carbonate cementation phase of fine-fine-grained sandstone, and the mixed cementation-dissolution phase of medium-fine-grained sandstone, and analyzes the coupling relationship between diagenesis, diagenetic phase and pore evolution. Through the analysis of the factors affecting the development of high-quality reservoirs, it is found that compaction is the main factor controlling the quality of reservoirs, and it controls the physical properties of reservoirs at different depths; cementation and dissolution are the secondary factors controlling the physical properties of reservoirs, and they control the differences in the physical properties of reservoirs in different phase zones; the content of carbonates and clays are obviously negatively correlated with their physical properties; reservoirs close to hydrocarbon centers receive a large amount of acidic fluids, which cause a large amount of acidic fluids, which cause the coupling relationship between the stage of formation and pore evolution. The reservoir near the hydrocarbon center receives a large amount of acidic fluids, and the secondary pores formed by dissolution greatly improve the physical properties of the reservoir. This study is beneficial to enriching the theoretical system of reservoir research in the Zhuhai Formation of the Baiyun Depression and is also conducive to the regional evaluation, prediction and description of reservoirs, as well as providing a scientific basis for oil and gas exploration under similar geological conditions.

Cite this article

Xiangtao ZHANG , Guangrong PENG , Shiwen XIE , Zhe WEI , Xuanlong SHAN , Wentong HE , Guoli HAO . Characteristics of reservoir diagenesis in the Zhuhai Formation in the southwestern Baiyun Depression, Pearl River Mouth Basin, and its influence on reservoir physical properties[J]. Natural Gas Geoscience, 2024 , 35(3) : 379 -392 . DOI: 10.11764/j.issn.1672-1926.2023.11.009

0 引言

目前,油气储层研究热点主要涉及储层孔隙演化、储层致密化机理、次生孔隙成因、成岩作用评价和储层甜点预测等领域1-7。随着最新的储层地质研究与实验方法的开展,不同角度刻画储层成岩演化路径已成为当前储层研究的一个热点问题8-12。近年来,储层成岩作用领域取得了很多进展13,尤其是各大油田开展的成岩作用和成岩相研究极大地推动了成岩作用的研究14-17;目前公认的储层成岩演化阶段分为:早期成岩作用、中成岩作用和晚期成岩作用3个阶段1518,不同的成岩演化阶段与其所处的成岩环境、流体、沉积相等因素都有密切关系19-23。本文研究区位于中国南海的珠江口盆地白云凹陷,该深水区珠海组顶部发育了低渗透性砂岩储层,是重要的深水油气勘探目标层位。前人24-25研究认为白云凹陷珠海组储层为致密储层,但随着更多新的钻井对目的层位砂岩的揭示,发现局部发育孔隙度为13.4%~14.4%,渗透率为(10.8~44.7)×10-3 μm2的优质储层26,其形成原因可能是特殊成岩地质作用在致密储层背景中形成的异常高孔隙度储层集中区,即“异常高孔带”27。目前关于该地区珠海组储层孔隙演化与成岩作用过程相关研究很少,这制约着优质储层形成理论的发展与潜在甜点区的有效预测28-29。因此,本文拟通过对3口钻井岩心的测试,对其岩石特征、孔隙演化、成岩作用及对储层物性影响等方面进行系统研究,探究白云凹陷西南珠海组存在的典型成岩相,分析各成岩阶段与孔隙演化的关系,探究优质储层发育的有利条件。研究成果既有益于丰富白云凹陷西南部珠海组储层研究理论体系,又能助力储层评价、预测和描述工作,也能为类似深水地质条件下油气勘探工作提供科学依据。

1 区域地质背景

白云凹陷位于珠江口盆地珠二坳陷,西南部与开平凹陷以云开低凸起相隔,北部以番禺低隆起与恩平凹陷相隔(图1),凹陷内部可分为东洼、主洼、西洼、南洼4个洼陷(图1),凹陷水深为300~2 000 m,最大地层厚度可达1 000 m以上30-31。古近纪早期是白云凹陷形成发展的关键时期。自新生代以来,白云凹陷经历了裂谷期、裂后拗陷期和新构造期3个演化阶段30,自底向上发育文昌组、恩平组、珠海组、珠江组、韩江组、粤海组、万山组和第四系(图1)。在珠江组沉积时期,白云凹陷基底经历了迅速的下沉过程,而珠海组以上则主要为半深海—深海沉积30-32
图1 研究区位置与珠海组上段沉积时期沉积相分布图[(a)、(b)引自中海油深圳分公司内部资料]及白云凹陷地层柱状图[(c)修改并引自文献[32]]及主干剖面图(d)

Fig.1 Location of the research area and distribution of sedimentary facies during the sedimentary period of the upper section of the Zhuhai Formation((a) and (b) are cited from internal data of CNOOC Shenzhen Branch), stratigraphic histogram of Baiyun Depression ((c) is modified and cited from Ref.[32]), and cross section of the main trunk (d)

珠海组整体表现为南翘、北倾的特征,珠海组地层向中心逐渐增厚,平面上北部以EW向断裂为主,南部以NW向断裂为主;剖面上EW向以继承性大断裂为主,NW向断裂主要为后期压扭形成的中小断裂。
珠海组整体发育6期陆架边缘三角洲进积砂体,而顶部砂体为最晚一期三角洲进积砂体。珠海组储层呈现辫状河三角洲前缘水下分流河道和河口坝微相砂体的特征,这些相带水动力条件较强,搬运砂体粒度较粗,泥质含量较少,为原始沉积环境下优质储层的形成提供了有利条件,以L-1井为例,珠海组上段以水下分流河道、水下分流间湾和河口坝为主(图1)。

2 样品采集与实验方法

本文通过对白云凹陷西南部3口珠海组取心井进行岩心观察,结合测井与地震资料对岩性特征与沉积构造特征进行初步研究,并对主要砂体进行取样(共计108件样品)。首先对岩心样品进行去离子水清洗处理,然后将每一份样品分别加工成岩石薄片、铸体薄片、铸体样与岩石粉末,之后进行岩性鉴定、岩石成分粒度分析、孔隙结构图像分析(应用西图孔隙图像分析系统软件)、成岩作用分析、XRD分析与物性分析等,进而对其岩石特征、孔隙演化、成岩作用及对储层物性影响等方面进行系统研究2533

3 砂岩储层特征

3.1 岩石特征

优质储层发育过程中受沉积和成岩作用的共同影响,而储层的评价标准亦受岩石物理参数的控制1334。根据岩心、普通薄片和铸体薄片的观测,研究区珠海组储层成分成熟度较低。其岩性主要为岩屑长石砂岩(图2)。珠海组砂岩的主要成分为石英、长石和岩屑。砂岩的颗粒组分多为岩屑(绝对含量为58%~94%,平均含量为78.10%),其次为石英(绝对含量为56%~81%,平均含量为68.51%)和长石(绝对含量为7%~17%,平均含量为8.62%),粒度从粉砂到粗砂都有分布。
图2 岩石薄片

(a)、(b)B-1井珠海组顶部砂体薄片特征指示了充足的陆源碎屑供给;(c)原生孔隙受压实作用而缩小;(d)铸模孔;

(e)长石粒内溶孔;(f)填隙物溶孔

Fig.2 Microscopic photos of rocks

岩浆岩岩屑是岩屑的主要组成部分,其中包括中酸性喷出岩屑和少量玄武岩、片岩和千枚岩碎片。长石以斜长石和少量正长石为主。珠海组砂岩基质含量主要集中在4%~28%之间,平均含量为17%。基质成分包括杂基和胶结物2130。在胶结物组分中,碳酸盐胶结的含量最高,其次是硅质胶结,高岭石、伊利石等其他胶结的含量较低(图2)。

3.2 孔隙特征

白云凹陷西南部珠海组储层孔隙类型多样,不同井之间孔隙分布与孔隙占比也存在差异,主要发育的孔隙类型有原生粒间孔、次生矿物充填后形成的剩余原生粒间孔、溶蚀作用形成的粒间溶孔和粒内溶孔以及少量生物体腔孔、铸模孔、杂基或胶结物组分内微溶孔,整体上以原生孔隙和次生溶解孔隙为主,不同类型孔隙共同构成了珠海组砂岩储层的储集空间。其中原生孔隙多受到成岩作用改造,有的因压实作用影响而粒间孔减小,也有一些因溶蚀作用影响而粒间孔增大。溶蚀孔隙也比较多见,如铸模孔、长石溶孔和填隙物溶孔,在水下分流河道微相中可见长石溶蚀形成的粒内溶孔[图2(d),图2(e),图2(f)],长石颗粒遭受溶蚀,颗粒边界可见港湾状溶蚀边缘,剧烈溶蚀时可形成铸模孔。水下分流河道微相中可见残余粒间孔被铁白云石充填[图2(a),图2(b)],残余粒间孔形态不规则,孔径变化较大,多与压实和胶结作用有关。裂缝主要表现在颗粒破裂缝上:一方面是因为水下分流河道和河口坝微相中碎屑颗粒较粗,在受力后易被压碎成小颗粒;另一方面,由于中深层存在超压35,孔隙间压力的不平衡也会造成碎屑颗粒受力不均而破碎[图2(c)],对改善储层局部孔渗性有重要意义。

3.3 成岩作用特征

3.3.1 压实作用

从珠海组岩石薄片的观察中可以发现,基本未见化学压实作用(压溶作用),压实作用下颗粒间以点接触和线接触为主,少量凹凸接触;一些塑性颗粒(云母与塑性岩屑)发生了明显的形变,一些刚性颗粒发生破碎(图3)。
图3 典型成岩作用镜下照片

(a)压实作用,颗粒受压实破碎导致凹凸接触;(b)压实作用,塑性矿物被压弯或破碎;(c)、(d)硅质胶结作用,石英次生加大边;(e)、(f)、(g)碳酸盐胶结作用;填隙物溶孔;(h)交代作用,方解石交代长石;(i)、(j)、(k)溶解作用,长石与杂基被溶解;(l)有孔虫内部被充填

Fig.3 Typical diagenesis under the microscope photo

3.3.2 胶结作用

前人936研究表明胶结含量对孔隙发育起控制作用,同时胶结作用对储层岩石物理性质也有影响。白云凹陷西南段珠海组砂岩发生明显胶结,碳酸盐矿物、石英次生加大边及黏土矿物为主要胶结物。珠海组砂岩中碳酸盐胶结在胶结物中占比最多,平均含量为4.8%。碳酸盐胶结以方解石为主(图3)。碳酸盐胶结中后期生成的铁方解石还充填于原生及次生孔隙中,交代了颗粒及早期碳酸盐胶结物。储层中的硅质胶结主要表现为石英过度生长,在大多数样品中都可见石英边缘的过度生长形成石英次生加大边(图3)。当燧石和火山碎屑颗粒被碱性流体溶解时,将产生大量的Si4+[37]。此外,当成岩环境转化为酸性环境时,Si4+开始沉淀、聚集并且沿自生石英的边缘生长2138。以胶结物的形式出现的黏土矿物成分主要包括绿泥石、伊利石、伊/蒙混合层和高岭石。其中,绿泥石最为常见,常以衬里胶结的形式发育在颗粒周围,在扫描电镜照片中能够得到较好的展现102631。伊/蒙混层代表了从蒙脱石到伊利石的过渡形式,并保留了蒙脱石的蜂窝状形态1020

3.3.3 交代和溶解作用

交代作用在研究区目的层也很常见,表现为长石和酸性岩屑中的长石等不稳定矿物被碳酸盐矿物和黏土矿物(绿泥石、高岭石等)所取代。此外,还可以观察到胶结成分之间的相互交代作用,如方解石交代为铁白云石,白云岩交代为铁白云岩等(图3)。
溶解作用在储集体中主要表现为长石矿物、岩屑、杂基及碳酸盐胶结的溶解(图3)。其中长石溶解现象较为常见。此外,溶解的碳酸盐胶结物还包括早期形成的方解石和少量的白云石。而溶蚀作用是形成优质砂岩储层的关键,其成因主要与埋藏成岩过程中来自深部烃源岩排出的有机酸热液有关38-39,其过程被解释为:随着埋深的不断加大,地下温度也愈来愈高,当达到有机质成熟温度时,有机质热降解将发生强烈的脱羧基作用而产生有机酸和CO2。恩平组与文昌组烃生成阶段后产生的有机酸由北向南方向进入珠海组储层后发生强溶解,从而产生次生孔隙40-41

4 珠海组储层成岩相

针对白云凹陷西南珠海组的成岩特征和孔隙发育状况,本文通过对不同井储层沉积环境、成岩方式和成岩流体演化3个方面进行研究,总结出白云凹陷西南珠海组存在4种典型的成岩相,并在此基础上分析各成岩阶段与孔隙演化关系,进而总结成岩相组合对储层发育的控制。

4.1 中—细粒砂岩机械压实相

该成岩相主要发育于早成岩阶段A期→中成岩阶段A期,储层发育主要受压实作用影响,胶结作用与溶蚀作用等成岩作用影响较弱,储层由于深度的不同,颗粒之间受压实作用影响效果不同。埋深较浅的中—细粒砂岩薄片显示,颗粒之间以点—点接触为主,反映压实作用较弱。而随着埋深的增加,颗粒之间接触关系转变为线接触或凹凸接触,甚至可见一些石英颗粒出现机械压碎的现象,孔隙空间大幅度减少(图4)。中—细粒砂岩机械压实相孔隙演化半定量分析选择B-1井4 279 m岩心样品,岩性为中砂岩,实测孔隙度为9.3%,通过砂岩原始孔隙度(φ0)的经验公式计算纯压实作用下的原始孔隙度为30.07%~36.17%,压实作用减孔为20.77%~26.8%14-18图4)。
图4 埋藏史—中、细粒砂岩机械压实相综合分析

Fig.4 Comprehensive analysis between burial history and mechanical compaction facies of medium-fine grained sandstone

4.2 中—细粒砂岩硅质胶结相

该成岩相主要发育于早成岩阶段A期→中成岩阶段A期,储层发育初期处于碱性成岩环境,砂岩颗粒之间受硅质胶结作用影响,原生孔隙中发育硅质胶结,不见碳酸盐胶结,硅质胶结主要体现在硅质流体在石英颗粒之间占据原生孔隙形成次生加大边,孔隙空间并未受到硅质胶结的影响大量减少,空间减少的主要因素还受控于压实作用(图5)。中—细粒砂岩硅质胶结相孔隙演化半定量分析选择B-1井4 279 m岩心样品,岩性为中—细粒砂岩,实测孔隙度为4.58%,根据成岩演化过程计算硅质作用对孔隙度的影响,计算得到:去除硅质胶结影响下面孔率:(石英次生加大)3.57%+(胶结作用后孔隙度)4.58%=(硅质胶结前孔隙度)8.15%(图5),但是应该考虑到石英碎屑局部压溶供给的SiO2,所以,本文研究认为硅质胶结相对孔隙的破坏性并不严重,而且还可能对原生粒间孔的保存提供重要的抗压实条件。
图5 埋藏史—中、细粒砂岩硅质胶结相综合分析

Fig.5 Comprehensive analysis between burial history and siliceous cementation facies of medium-fine grained sandstone

4.3 细—粉粒砂岩碳酸盐胶结相

该成岩相主要发育于早成岩阶段A期→中成岩阶段A期,储层发育初期处于弱碱性成岩环境,主要岩性为细—粉粒砂岩,砂岩颗粒之间受碳酸盐胶结作用影响强烈,碳酸盐胶结主要体现在占据所有孔隙的空间,孔隙空间受到碳酸盐胶结的影响大量减少。钙质胶结物堵塞了连通孔隙的喉道,降低了储层的物性,属于破坏性成岩作用。前人研究表明早成岩阶段的连晶状方解石胶结物和晚成岩阶段的方解石胶结对砂岩储层的破坏作用仅次于压实作用,甚至可能导致孔隙完全消失3342图6)。细—粉粒砂岩碳酸盐胶结相孔隙演化半定量分析选择L-1井4 260 m岩心样品,岩性为细—粉粒砂岩,实测孔隙度为4.17%,根据成岩演化过程计算碳酸盐岩胶结对孔隙度的影响,计算得到:去除碳酸盐胶结影响下孔隙度:7.22%+4.17%=11.39%(图6)。
图6 埋藏史—细、粉粒砂岩碳酸盐胶结相综合分析

Fig.6 Comprehensive analysis between burial history and carbonate cementation facies of fine-silty sandstone

4.4 中—细粒砂岩胶结—溶解混合相

该成岩相主要发育于早成岩阶段A期→中成岩阶段A期,储层发育初期处于弱碱性成岩环境,砂岩的颗粒之间受胶结作用影响,原生孔隙中发育硅质胶结与碳酸盐胶结,之后埋深增加,储层进入中成岩阶段A期,成岩环境发生改变,由弱碱性改变为酸性环境,溶蚀作用明显增强,被溶蚀的对象主要为碳酸盐胶结物,其次为长石及岩屑,形成次生粒间溶孔和粒内溶孔、铸模孔,局部也可见裂缝(图7)。
图7 埋藏史—胶结溶解混合相综合分析

Fig.7 Comprehensive analysis between burial history and cementation and dissolution mixed phase

中—细粒砂岩胶结—溶解混合相孔隙演化半定量分析选择B-1井4 200 m岩心样品,岩性为中—细粒砂岩,实测孔隙度为9.2%,通过孔隙分析可知各类孔隙面积占比中,粒间溶孔为33.08%,其次是铸模孔(18.42%)与填隙物溶孔(17.78%),同时还发育原生粒间孔、岩屑溶孔、胶结物内溶孔与长石溶孔。通过对成岩作用的分析发现,此类型储层首先沉积初期主要受压实作用影响,孔隙大幅度减少;在富硅质流体作用下,受硅质胶结作用影响,石英颗粒表面形成次生加大边,而在多来源的富钙铁镁离子流体作用下,形成大量钙质胶结,使孔隙空间大幅度减少,但随之后期地层埋深加大,洼陷中心烃源岩有机质成熟形成大量有机酸进入储层引发溶解作用,产生粒间溶孔、岩屑溶孔、胶结物溶孔、长石溶孔及铸模孔等,储层物性得以改善。通过对代表性储集层样品薄片进行成岩作用与孔隙变化分析可知,机械压实作用下,减孔是随着埋深的增加而变化;而破坏性成岩作用中石英次生加大使孔隙有限减小,而多来源的碳酸盐、钙铁镁离子沉淀引起的碳酸盐胶结使孔隙空间大幅减少。由于洼陷中心烃源岩有机质成熟释放有机酸,酸性流体溶解长石颗粒、碳酸盐胶结物等,建设性成岩作用的增孔量和破坏性成岩作用的减孔量基本相等(图7)。

5 影响优质储层发育的成岩因素

成岩作用对砂岩储层的质量有重要的控制作用3943-44,本文研究发现,压实作用是控制储层质量的主要因素,控制了不同深度储层物性。胶结作用和溶解作用是影响储层岩石物理性质的次要控制因素,控制着不同相带储层岩石物理性质的差异,而不同的成岩作用之间也相互影响和限制3945-46
前人346研究认为影响压实作用强度的主要因素是埋深,随着埋深的增加,储层的压实作用增强,岩石物理性质变差。压实作用使储层岩石物性变差,尤其是对分选性差、胶结物含量低的砂岩有显著的影响47-48。埋深越大,压实度越强,孔隙度降低的程度越高,例如即使对于具有相似的沉积相与岩石特征的B-1井两段储层,都主要发育以压实作用为主的中细粒机械压实相,其中3 900~3 950 m处发育的砂体与4 300~4 320 m处发育的砂体相比压实作用较弱,这是该段储层总体最佳的基本原因,而4 300~4 320 m处砂岩储层埋深较大,承受更强的压实作用,进而导致储层孔隙度和渗透性较差(图8)。随着埋深的增加,孔隙度和渗透率均明显降低,压实作用是两段储层物理性质差异的主要原因,这一特征反映了压实作用对砂岩储层的物性有显著影响26163645
图8 B-1井储层物性随深度变化

Fig.8 Variation of reservoir physical properties with depth in Well B-1

研究区储层砂岩中的胶结作用是仅次于压实作用的破坏性成岩方式,主要为硅质胶结和碳酸盐胶结,其次为黏土矿物的胶结作用。以硅质胶结作用为主的中—细粒砂岩硅质胶结相储层中石英次生加大边向粒间孔中心扩展并且占据部分粒间孔隙(图3),对孔隙度有一定影响,但由于石英碎屑局部压溶供给的SiO2含量有限,对孔隙的破坏性并不严重,而早期硅质胶结作用,为珠海组砂岩中原生粒间孔的保存提供了重要的抗压实条件。细—粉粒砂岩碳酸盐胶结相中碳酸盐胶结作用也是珠海组砂岩中较为常见的成岩方式,其分布形式与储层品质和评价依据密切相关,碳酸盐胶结物含量的逐渐增高是造成珠海组中浅层砂岩储层质量变差和非均质性加重的主要原因,通过对储层岩石碳酸盐含量与储层物性综合研究发现碳酸盐含量与物性呈明显的负相关(图9)。在珠海组砂岩中起胶结作用的填隙物还包括杂基和次生黏土矿物,含量变化很大,从2口井的测试结果来看都大于5%,最高可以达47%,黏土矿物含量同样会影响储层的物性,通过对储层岩石黏土含量与储层物性综合研究发现黏土含量与物性呈明显的负相关(图10图11)。
图9 碳酸盐含量与储层物性交会图

Fig.9 Intersection diagram of carbonate content and reservoir physical properties

图10 B-1井孔隙度、渗透率与总黏土含量随深度变化

Fig.10 Variation of porosity, permeability, and total clay content with depth in Well B-1

图11 黏土矿物含量与储层物性交会图

Fig.11 Intersection of clay mineral content and reservoir physical properties

溶蚀对次生孔隙的发育程度有很大影响1319。溶蚀作用越强,储层的岩石物性就越好9-1013。通过薄片观察发现B-1井储层相比于L-1井与L-2井储层发育更多的溶蚀现象,结合区域背景综合分析发现其成因主要与埋藏成岩过程中来自深部烃源岩排出的有机酸有关,其过程是随着埋深不断加大,地下温度也逐渐升高,当达到有机质成熟温度时,有机质热降解将发生强烈的脱羧基作用后产生有机酸和CO2,而北部恩平组与文昌组烃源岩的镜质体反射率R O值介于1.1%~1.4%之间3549-50,有机质已处于成熟—高成熟阶段,有机质热演化过程中排出大量富CO2的有机酸热液,这些酸性热液沿断裂和层面进入经早期欠压实和弱胶结的珠海组砂体的原生粒间孔中,对孔隙周围欠稳定的碎屑组分和早期钙质胶结物进行溶蚀后产生丰富的次生孔隙,而前人通过烃—水—岩模拟实验,模拟烃源岩热成熟产生的有机酸性流体通过裂隙流入砂岩储层,发现方解石被剧烈溶解,长石只溶解一小部分,石英与黏土没有受到强烈影响751,这与珠海组成岩特征极为相似,佐证了珠海组受到有机酸性流体影响。而靠近生烃中心的B-1井,从平面分布上看其储层相比于L-1井与L-2井接受大量酸性流体,所以发生更多溶解作用形成次生孔隙,所以珠海组储层中发育胶结—溶解混合相的占比更高,而L-1井与L-2井中较少发育此类成岩相,这也说明有机酸性流体随着运移距离的增大对储层的溶蚀作用逐渐减小。

6 结论

(1)以珠江口盆地白云凹陷西南部珠海组储层岩石为例,研究了岩石特征、成岩作用及对储层的影响。珠海组砂岩储层主要为中细粒长石砂岩和长石岩屑砂岩。储层孔隙类型以原生孔隙和次生溶解孔隙为主,原生孔隙大多受到成岩作用改造,溶蚀孔隙比较多见,如铸模孔、长石溶孔和填隙物溶孔。
(2)珠海组砂岩储层经历了强烈的成岩作用改造,包括压实作用、胶结作用、溶解作用和交代作用。通过对不同井储层沉积环境、成岩方式和成岩流体演化三方面进行研究,总结了白云凹陷西南珠海组存在4种典型的成岩相:中—细粒砂岩机械压实相、中—细粒砂岩硅质胶结相、细—粉粒砂岩碳酸盐胶结相与中—细粒砂岩胶结—溶解混合相,分析了成岩作用、成岩阶段与孔隙演化之间的耦合关系。
(3)通过分析影响优质储层发育的成岩因素分析,发现压实作用是控制储层质量的主要因素,控制了不同深度储层物性。胶结作用和溶解作用是储层岩石物理性质的次要控制因素,控制着不同相带储层岩石物理性质的差异,而不同的成岩作用相互影响和限制。碳酸盐矿物含量及黏土矿物含量与物性呈明显负相关。靠近生烃中心区域的储层接受大量酸性流体,引起溶解作用进而形成次生孔隙,极大改善了储层的物性。
1
CUI X, RADWAN A E. Coupling relationship between current in-situ stress and natural fractures of continental tight sandstone oil reservoirs[J]. Interpretation,2022,10(3):1-53.

2
ZHANG Y Y, JIANG S, HE Z L. Characteristics of hetero-geneous diagenesis and modification to physical properties of Upper Paleozoic tight gas reservoir in eastern Ordos Basin[J]. Journal of Petroleum Science and Engineering,2022,208:1-5.

3
LÜ T X, LI Z P. Quantitative characterization method for microscopic heterogeneity in tight sandstone[J]. Energy Exploration & Exploitation,2021,13:1-6.

4
MA S W, REN D Z, ZHOU L F, et al. Impacts of diagenesis of tight sandstone gas reservoir on reservoir physical properties: A case study of Sulige Gas Field,Ordos Basin,China[J]. Interpretation,2019,7(3):1-4.

5
QIAO J C, ZENG J H, JIANG S. Heterogeneity of reservoir quality and gas accumulation in tight sandstone reservoirs revealed by pore structure characterization and physical simulation[J]. Fuel,2019,253:1-5.

6
HAILE B G, KLAUSEN T G, CZARNIECKA U. How are diagenesis and reservoir quality linked to depositional facies? A deltaic succession, Edgeøya, Svalbard[J]. Marine and Petroleum Geology,2018,92:519-546.

7
杨升宇,张金川,黄卫东,等.吐哈盆地柯柯亚地区致密砂岩气储层“甜点”类型及成因[J].石油学报,2013,34(2): 272-282.

YANG S Y,ZHANG J C,HUANG W D,et al. “Sweet spot” types of reservoirs and genesis of tights and stone gas in Ke-keya area,Turpan-Hami Basin[J]. Acta Petrolei Sinica,2013,34(2):272-282.

8
GAO F Q. Influence of hydraulic fracturing of strong roof on mining-induced stress insight from numerical simulation[J]. Jo-urnal of Mining and Strata Control Engineering,2021,3(2):023032.

9
JABIR A, CEREPI A, LOISY C. Evaluation of reservoir systems in Paleozoic sedimentary formations of Ghadames and Jefarah basins[J]. Journal of African Earth Sciences,2021,183,104324.

10
HONG D, CAO J, WU T, et al. Authigenic clay minerals and calcite dissolution influence reservoir quality in tight sandstones: Insights from the central Junggar Basin, NW China[J]. Energy Geoscience,2020,1(1-2):8-19.

11
李凤杰,王多云,徐旭辉.鄂尔多斯盆地陇东地区三叠系延长组储层特征及影响因素分析[J].石油实验地质,2005,27(4):365-370.

LI F J, WANG D Y, XU X H. The influential factors and charactristics of Triassic Yanchang Formantion reservoir in Longdong area, Ordos Basin[J]. Petroleum Geology and Experiment,2005,27(4):365-370.

12
WANG W G, LIN C Y, ZHANG X G. Effect of burial history on diagenetic and reservoir-forming process of the Oligocene sandstone in Xihu Sag, East China Sea Basin[J]. Marine and Petroleum Geology,2020,112:1-5.

13
RADWAN A E. Provenance, depositional facies, and diagenesis controls on reservoir characteristics of the Middle Miocene Tidal sandstones, Gulf of Suez Rift Basin:Integration of petrographic analysis and gamma-ray log patterns[J]. Environmental Earth Sciences,2022,81(15):1-15.

14
ZHAO W B, HU S Y, DENG X Q, et al. Physical property and hydrocarbon enrichment characteristics of tight oil reservoir in Chang 7 division of Yanchang Formation, Xin’anbian Oilfield,Ordos Basin,China[J]. Petroleum Science,2021,18(5):1294-1304.

15
SANTOSH M, FENG Z Q. New horizons in energy geoscience[J]. Energy Geoscience,2020,1(1):1-2.

16
YIN S,WU Z. Geomechanical simulation of low-order fracture of tight sandstone[J]. Marine and Petroleum Geology,2020,100:1-10.

17
WANG A, ZHONG D K, ZHU H H, et al. Depositional and diagenetic controls on the reservoir quality of Upper Triassic Chang-7 tight oil sandstones, southwestern Ordos Basin, China[J]. Geosciences Journal,2019,23(3):471-488.

18
XI K, CAO Y, LIU K, et al. Diagenesis of tight sandstone reservoirs in the Upper Triassic Yanchang Formation, southwestern Ordos Basin, China[J]. Marine and Petroleum Geology,2019, 99:548-562.

19
SU Y, ZHA M, JIANG L. Pore structure and fluid distribution of tight sandstone by the combined use of SEM, MICP and X-ray micro-CT[J]. Journal of Petroleum Science and Engineering,2022,208:1-5.

20
HIJAZ K H, ADRIAN S, MEOR H A H. Digital core analysis: Characterizing reservoir quality through thin sandstone layers in heterolithic rocks[J]. Journal of Applied Geophysics,2020,182:1-10.

21
KHAN E U, SALEEM M, NASEEM A A. Microfacies analysis, diagenetic overprints, geochemistry, and reservoir quality of the Jurassic Samanasuk Formation at the Kahi Section, Nizampur Basin,NW Himalayas,Pakistan[J].Carbonates Eva-porites,2020,35(3):95-96.

22
XI K, CAO Y, LIU K, et al, Diagenesis of tight sandstone reservoirs in the Upper Triassic Yanchang Formation, southwestern Ordos Basin, China[J]. Marine and Petroleum Geology,2019,99:548-562.

23
XIAO Z K, DING W L, HAO S Y. Quantitative analysis of tight sandstone reservoir heterogeneity based on rescaled range analysis and empirical mode decomposition:A case study of the Chang 7 reservoir in the Dingbian Oilfield[J]. Journal of Petroleum Science and Engineering,2019,182:45-47.

24
HOLDITCH S A. Tight gas sands[J]. Journal of Petroleum Technology,2006,58(6):86-93.

25
姜振学,林世国,庞雄奇,等.两种类型致密砂岩气藏对比[J].石油实验地质,2006,28(3):210-214,219.

JIANG Z X, LIN S G, PANG X Q, et al. The comparison of two types of tight sand gas reservoirs[J]. Petroleum Geology and Experiment,2006,28(3):210-214,219.

26
谢晓军,熊连桥,白海强,等.白云凹陷中深层有利储层特征及其分布预测[J].地球科学,2022,47(5):1635-1651.

XIE X J, XIONG L Q, BAI H Q, et al. Characteristics of favorable reservoirs and its distribution prediction in middle-deep layers in Baiyun Sag, Pearl River Mouth Basin[J]. Earth Science,2022,47(5):1635-1651.

27
远光辉,操应长,贾珍臻,等.含油气盆地中深层碎屑岩储层异常高孔带研究进展[J].天然气地球科学,2015,26(1):28-42.

YUAN G H, CAO Y C, JIA Z Z, et al. Research progress on abnormally high porosity zones in deep clastic reservoirs in oil and gas bearing basins[J].Natural Gas Geoscience,2015,26(1):28-42.

28
梅啸寒,刘景彦,王武学,等.扶新隆起带泉头组层序地层格架及发育模式[J].断块油气田,2019,26(4):415-420.

MEI X H, LIU J Y, WANG W X, et al. Sequence stratigraphic framework and development model of Quantou Formation in Fuxin Uplift in Songliao Basin[J]. Fault-Block Oil Gas Field,2019,26(4):415-420.

29
赵陟君.松辽盆地构造演化[J].内蒙古石油化工,2015,41(1):139-141.

ZHAO S J.Tectonic evolution of Songliao Basin[J].Inner Mon-golia Petrochemical Industry,2015,41(1):139-141.

30
张功成,杨海长,陈莹,等.白云凹陷:珠江口盆地深水区一个巨大的富生气凹陷[J].天然气工业,2014,34(11):11-25.

ZHANG G C, YANG H C, CHEN Y, et al. Baiyun Sag: A huge gas rich sag in the deep-water area of the Pearl River River Mouth Basin[J]. Natural Gas Industry,2014,34(11):11-25.

31
田立新,张忠涛,庞雄,等.白云凹陷中深层超压发育特征及油气勘探新启示[J].中国海上油气,2020,32(6):1-11.

TIAN L X, ZHANG Z T, PANG X, et al. Development characteristics of deep overpressure in the Baiyun Depression and new insights for oil and gas exploration[J]. China Offshore Oil and Gas,2020,32(6):1-11.

32
叶青.南海北部陆缘晚中生代构造体系:动力学以及对珠江口盆地新生代构造的制约[D].武汉:中国地质大学(武汉),2018.

YE Q. Late Mesozoic Tectonic System of the Northern Continental Margin of the South China Sea:Dynamics and Constraints on the Cenozoic Structure of the Pearl River Mouth Basin[D]. Wu’han:China University of Geosciences(Wu’han),2018.

33
陈国俊,吕成福,王琪,等.珠江口盆地深水区白云凹陷储层孔隙特征及影响因素[J].石油学报,2010,31(4):566-572.

CHEN G J, LÜ C F, WANG Q, et al. Characteristics of pore evolution and its controlling factors of Baiyun Sag in deep water area of Pearl River Mouth Basin[J]. Acta Petrolei Sinica,2010,31(4):566-572.

34
JAFARI J, MAHBOUBI A, MOUSSAVI H R, et al. The effects of diagenesis on the petrophysical and geochemical attributes of the Asmari Formation, Marun Oil Field, Southwest Iran[J]. Petroleum Science,2020,17(2):292-316.

35
郭志峰,刘震,王伟,等.南海北部深水区白云凹陷地温—地压系统特征及其石油地质意义[J].地球科学,2011,36(5):831-836.

GUO Z F, LIU Z, WANG W, et al Characteristics of geotemperature-pressure systems and their implications for petroleum geology at Baiyun Depression, deep-water area of northern South China Sea[J].Earth Science,2011,36(5):831-836.

36
YIN S, DING W. Evaluation indexes of coalbed methane accumulation in the strong deformed strike-slip fault zone considering tectonics and fractures: A 3D geomechanical simulation study[J].Geological Magazine,2019,156(6):1052-1068.

37
KASHIF M, CAO Y, YUAN G, et al. Pore size distribution, their geometry and connectivity in deeply buried Paleogene Es 1 sandstone reservoir, Nanpu Sag, East China[J]. Petroleum Science,2019,16(5):981-1000.

38
MAHMI O,DYPVIK H,HAMMER E.Diagenetic influence on reservoir quality evolution: Examples from Triassic conglomerates/arenites in the Edvard Grieg Field,Norwegian North Sea[J].Marine and Petroleum Geology,2018,93:247-271.

39
张琴,朱筱敏,毛凌,等.苏北盆地金湖凹陷古近系戴南组孔隙演化及次生孔隙成因分析[J].地学前缘,2021,28(1):190-201.

ZHANG Q, ZHU X M, MAO L, et al. Pore evolution and genesis of secondary pores in the Paleogene Dainan Formation, Jinhu Sag,Subei Basin[J].Earth Science Frontiers,2021,28(1):190-201.

40
赵红静,张敏,张春明,等.珠江口盆地白云凹陷珠江组、珠海组烃源岩倾油倾气性判识[J].地质科技情报,2010,29(3):5-9.

ZHAO H J, ZHANG M, ZHANG C M, et al. Oil/gas potential identification for Zhujiang and Zhuhai Formations in Baiyun Depression, Pearl River Mouth Basin[J].Bulletin of Geological Science and Technology.2010,29(3):5-9.

41
CHEN G B, LI T, YANG L. Mechanical properties and failure mechanism of combined bodies with different coal-rock ratios and combinations[J]. Journal of Mining and Strata Control Engineering,2021,3(2):23522.

42
王琪,郝乐伟,陈国俊,等.白云凹陷珠海组砂岩中碳酸盐胶结物的形成机理[J].石油学报,2010,31(4):553-565.

WANG Q, HAO L W, CHEN G J, et al. Forming mechanism of carbonate cements in siliciclastic sandstone of Zhuhai Formation in Baiyun Sag[J].Acta Petrolei Sinica,2010,31(4):553-565.

43
BAIYEGUNHI T L, LIU K, GWAVAVA O, et al. Impact of diagenesis on the reservoir properties of the Cretaceous sandstones in the southern Bredasdorp Basin, offshore South Africa[J]. Minerals,2020,10(9):757.

44
WANG J K, FU Y X, YAN Z X, et al. Influence of sedimentation and diagenesis on reservoir physical properties:A case study of the Funing Formation, Subei Basin, eastern China[J]. Frontiers of Earth Science,2021,15(4):892-908.

45
张金岩,孙雨,田晓雷,等.松辽盆地扶新隆起带北部新庙西—新北地区扶余油层物源分析[J].科学技术与工程,2014,14(26):200-204.

ZHANG J Y, SUN Y, TIAN X L, et al. Provenance analysis on the Fuyu reservoir in Xinmiaoxi-Xinbei regions of the northern Fuxin Uplift, Songliao Basin[J]. Geology Science Technology and Engineering,2014,14(26):200-204.

46
RADWAN A E. Modeling the depositional environment of the sandstone reservoir in the Middle Miocene Sidri Member, Badri Field, Gulf of Suez Basin, Egypt: Integration of gamma-ray log patterns and petrographic characteristics of lithology[J]. Natural Resources Research,2021,30:431-449.

47
CHRISTOPHER B, KUIWU L, OSWALD G. Diagenesis and reservoir properties of the Permian Ecca Group sandstones and mudrocks in the eastern Cape Province[J]. South Africa Minerals,2017,7(6):88.

48
王钊,杨贵前.致密油气储层研究的一些热点[J].中外能源,2017,22(8):37-42.

WANG Z, YANG G Q. Some research hot spots of tight oil and gas reservoir[J]. Sino-Global Energy, 2017,22(8):37-42.

49
庞雄,陈长民,彭大钧,等.南海珠江深水扇系统及油气[M].北京:科学出版社,2007.

PANG X, CHEN C M, PENG D J, et al. The Pearl River Deep-water Fan System and Oil and Gas in the South China Sea[M]. Beijing: Science Press,2007.

50
庞雄,陈长民,陈红汉,等.白云深水区油气成藏动力条件研究[J].中国海上油气,2008,20(1):9-14.

PANG X,CHEN C M,CHEN H H,et al.A study on the dyna-mic conditions for oil and gas accumulation in the Baiyun deep-water area[J]. China Offshore Oil and Gas,2008,20(1):9-14.

51
SURDAM R C, CROSSEY L J, HAGEN E S, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin,1989,73(1):1-23.

Outlines

/