Origin analysis of paleo-overpressure of source rock based on logging response characteristics: Case study of the source rocks in the 7th member of Yanchang Formation of Triassic, Ordos Basin, China
Received date: 2023-07-01
Revised date: 2023-09-11
Online published: 2023-11-24
Supported by
The National Natural Science Foundation of China(41502132)
The paleo-pressure during the accumulation period exerts a significant influence on the distribution of oil and gas, yet its origin is considerably more challenging to identify and analyze compared to present pressure. In this paper, a quantitative analysis model was proposed to investigate the existence of paleo-overpressure in the 7th member of Yanchang Formation (Chang 7 Member) of Ordos Basin and its logging response mechanism, with a focus on the influence of organic matter content. The origin of paleo-overpressure and its significance in hydrocarbon accumulation within the Chang 7 Member of the study area were discussed by employing the inversion analysis based on the classical origin identification template and the forward analysis based on the basin modeling. The findings indicate that the abundant organic matter content in Chang 7 Member exerts a significant influence on logging parameters. The quantitative analysis reveals that the increment of acoustic time difference and the reduction of density induced by organic matter are 2.56-169.78 μs/m and 0.01-0.61 g/cm3, respectively. Based on the data of acoustic time difference and density with the removal of the contribution of organic matter, and used the methods of calculated porosity contrast and sonic velocity-density crossplot, it was concluded that there is paleo-overpressure in Chang 7 Member, and the fluid expansion and pressurization caused by hydrocarbon generation is the main origin of overpressure during the accumulation period. Combined with basin modeling, it was pointed out that the overpressure due to hydrocarbon generation matches the thermal evolution of source rock in time and hydrocarbon distribution in space, which further supports the understanding that the overpressure results from the fluid expansion by hydrocarbon generation. It was considered that paleo-pressure is one of the important controlling factors of reservoir formation, and hydrocarbon accumulation is distributed in the local low excess pressure area in the high excess pressure area.
Zeyang XU , Zhen LIU , Jingzhou ZHAO , Jiacheng DANG , Jun LI , Ziyi TANG . Origin analysis of paleo-overpressure of source rock based on logging response characteristics: Case study of the source rocks in the 7th member of Yanchang Formation of Triassic, Ordos Basin, China[J]. Natural Gas Geoscience, 2023 , 34(11) : 1950 -1960 . DOI: 10.11764/j.issn.1672-1926.2023.09.009
1 |
HUNT J M.Generation and migration of petroleum from abno-rmally pressured fluid compartments[J].AAPG Bulletin,1990, 74(1):1-12.
|
2 |
张启明,董伟良.中国含油气盆地中的超压体系[J].石油学报,2000,21(6):1-11,127.
ZHANG Q M,DONG W L. Overpressure system in oil and gas basins in China[J].Acta Petrolei Sinica,2000,21(6):1-11,127.
|
3 |
李军,唐勇,吴涛,等.准噶尔盆地玛湖凹陷砾岩大油区超压成因及其油气成藏效应[J].石油勘探与开发,2020,47(4):679-690.
LI J,TANG Y,WU T,et al. Overpressure origin and its effects on petroleum accumulation in the conglomerate oil province in Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development,2020,47(4):679-690.
|
4 |
郝芳,董伟良.沉积盆地超压系统演化、流体流动与成藏机理[J].地球科学进展,2001,16(1):79-85.
HAO F,DONG W L. Evolution of,fluid flow and petroleum accumulation in overpressured systems in sedimentary basins[J]. Advances in Earth Science,2001,16(1):79-85.
|
5 |
李明诚,李剑.“动力圈闭”——低渗透致密储层中油气充注成藏的主要作用[J].石油学报,2010,31(5):718-722.
LI M C,LI J. “Dynamic trap”: A main action of hydrocarbon charging to form accumulations in low permeability-tight reservoir[J]. Acta Petrolei Sinica,2010,31(5):718-722.
|
6 |
SAYERS C M,JOHNSON G M,DENYER G. Predrill pore-pressure prediction using seismic data[J]. Geophysics,2002,67(4):1286-1292.
|
7 |
AHMED A,ELKATATNY S,ALI A, et al. Comparative analysis of artificial intelligence techniques for formation pressure prediction while drilling[J].Arabian Journal of Geosciences,2019, 12:1-13.
|
8 |
ZHANG J. Pore pressure prediction from well logs:Methods, modifications,and new approaches[J].Earth-Science Reviews,2011,108(1-2):50-63.
|
9 |
郝芳,邹华耀,姜建群.油气成藏动力学及其研究进展[J].地学前缘,2000,7(3):11-21.
HAO F,ZOU H Y,JIANG J Q. Dynamics of petroleum accumulation and its advances[J]. Earth Science Frontiers,2000,7(3):11-21.
|
10 |
迟元林,萧德铭,殷进垠.松辽盆地三肇地区上生下储“注入式”成藏机制[J].地质学报,2000,74(4):371-377.
CHI Y L,XIAO D M,YIN J Y.The injection pattern of oil and gas migration and accumulation in the Sanzhao area of Songliao Basin[J]. Acta Geologica Sinica,2000,74(4):371-377.
|
11 |
杨智,何生,何治亮,等.准噶尔盆地腹部超压层分布与油气成藏[J].石油学报,2008,29(2):199-205,212.
YANG Z,HE S,HE Z L,et al. Distribution of overpressure stratum and its relationship with hydrocarbon accumulation in the central part of Junggar Basin[J].Acta Petrolei Sinica,2008,29(2):199-205,212.
|
12 |
EATON B A. The effect of overburden stress on geopressure prediction from well logs[J]. Journal of Petroleum Technology, 1972, 24(8):929-934.
|
13 |
MAGARA K. Importance of aquathermal pressuring effect in Gulf Coast[J]. AAPG Bulletin, 1975, 59(10):2037-2045.
|
14 |
FILLIPPONE W R. On the prediction of abnormally pressured sedimentary rocks from seismic data[C]. Offshore Te-chnology Conference,OnePetro,1979.
|
15 |
BOWERS G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion,1995,10(2):89-95.
|
16 |
卢朝进. 深埋型和抬升型致密砂岩孔隙动力演化特征研究[D].北京:中国石油大学(北京),2020:1-136.
LU Z J. Differential Evolution Characteristics between Buried and Uplift of Tight Sandstone on the Porodynamics[D]. Beijing:China University of Petroleum(Beijing),2020:1-136.
|
17 |
赵靖舟,李军,徐泽阳.沉积盆地超压成因研究进展[J].石油学报,2017,38(9):973-998.
ZHAO J Z,LI J,XU Z Y. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica,2017,38(9):973-998.
|
18 |
何生,何治亮,杨智,等.准噶尔盆地腹部侏罗系超压特征和测井响应以及成因[J].地球科学(中国地质大学学报),2009,34(3):457-470.
HE S,HE Z L,YANG Z,et al. Characteristics, Well log responses and mechanisms of overpressures within the Jurassic Formation in the central part of Junggar Basin[J]. Earth Science(Journal of China University of Geosciences),2009,34(3):457-470.
|
19 |
HAN D, NUR A, MORGAN D. Effects of porosity and clay content on wave velocities in sandstones[J]. Geophysics, 1986, 51(11):2093-2107.
|
20 |
樊洪海,张传进.复杂地层地层孔隙压力求取新技术[J].石油钻探技术,2005,33(5):43-46.
FAN H H,ZHANG C J. New methods for calculation of pore pressure in complex geologic environment[J]. Petroleum Drilling Techniques,2005,33(5):43-46.
|
21 |
袁选俊,林森虎,刘群,等.湖盆细粒沉积特征与富有机质页岩分布模式——以鄂尔多斯盆地延长组长7油层组为例[J].石油勘探与开发,2015,42(1):34-43.
YUAN X J,LIN S H,LIU Q,et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development,2015,42(1):34-43.
|
22 |
李士祥. 鄂尔多斯盆地中生界异常低压成因及对成藏的影响[D].成都:成都理工大学,2017:1-119.
LI S X. Effects on Petroleum Accumulation and Genesis of the Mesozoic Abnormal Low Pressure in Ordos Basin[D].Chengdu:Chengdu University of Technology,2017:1-119.
|
23 |
郑奎,杨晋玉,胡晓雪,等.胡尖山—姬塬地区长7段油页岩定性定量评价及长9油藏勘探评价[J].长江大学学报(自然科学版),2022,19(5):27-36,80.
ZHENG K,YANG J Y,HU X X,et al. Qualitative and quantitative evaluation of Chang 7 oil shale and exploration evaluation of Chang 9 reservior in Hujianshan-Jiyuan area[J]. Journal of Yangtze University(Natural Science Edition),2022,19(5):27-36,80.
|
24 |
马立元,邱桂强,李超,等.鄂尔多斯盆地镇泾地区延长组异常压力演化及其成藏意义[J].地质通报,2020,39(4):503-511.
MA L Y,QIU G Q,LI C,et al. The evolution of abnormal pressure of Yanchang Formation in Zhenjing area of Ordos Basin and its reservoir-forming significance[J]. Geological Bulletin of China,2020,39(4):503-511.
|
25 |
李超,张立宽,罗晓容,等.泥岩压实研究中有机质导致声波时差异常的定量校正方法[J].中国石油大学学报(自然科学版),2016,40(3):77-87.
LI C,ZHANG L K,LUO X R,et al. A quantitative method for revising abnormally high sonic data in rich-organic rock during compaction study[J]. Journal of China University of Petroleum(Edition of Natural Science),2016,40(3):77-87.
|
26 |
王帅.延长油田长7段致密油生烃增压及其对成藏的控制[D].北京:中国石油大学(北京),2018:1-54.
WANG S. Overpressure Evolution Caused by Hydrocarbon Generation of Chang 7 Section in Yanchang Oilfield and its control Effect on Accumulation[D]. Beijing:China University of Petroleum, Beijing,2018:1-54.
|
27 |
李超正.鄂尔多斯盆地长7段致密砂岩储层石油充注有效性研究[D].北京:中国石油大学(北京),2020:1-126.
LI C Z. Research on Effectiveness of Oil Charging in the Tight Sandstone Reservoir of the Chang 7 Member,Ordos Basin[D]. Beijing:China University of Petroleum(Beijing),2020:1-126.
|
28 |
屈童,高岗,梁晓伟,等.鄂尔多斯盆地长7段致密油成藏机理分析[J].地质学报,2022,96(2):616-629.
QU T,GAO G,LIANG X W,et al. Analysis of tight oil accumulation mechanism of Chang 7 member in the Ordos Basin[J]. Acta Geologica Sinica,2022,96(2):616-629.
|
29 |
徐泽阳,赵靖舟,李军.松辽盆地长垣地区白垩系青山口组一段有机质含量对超压分析的影响及校正方法[J].石油与天然气地质,2019,40(4):938-946.
XU Z Y,ZHAO J Z,LI J. The impact of organic matter content on overpressure analysis and its correction method in the first member of Cretaceous Qingshankou Formation,Placanticline area,Songliao Basin[J]. Oil & Gas Geology,2019,40(4):938-946.
|
30 |
王峰,田景春,范立勇,等.鄂尔多斯盆地三叠系延长组沉积充填演化及其对印支构造运动的响应[J].天然气地球科学,2010,21(6):882-889.
WANG F,TIAN J C,FAN L Y,et al. Evolution of sedimentary fillings in Triassic Yanchang Formation and its response to Indosinian movement in Ordos Basin[J]. Natural Gas Geoscience,2010,21(6):882-889.
|
31 |
张金山.鄂尔多斯盆地构造演化及含油气展望[J].石油与天然气地质,1982,3(4):304-315.
ZHANG J S. Tectonic evolution and oil-bearing prospect of Ordos Basin[J]. Oil & Gas Geology,1982,3(4):304-315.
|
32 |
阎东启,柳波,贾梦成,等.高有机质丰度泥岩压实的计算误区及定量校正方法[J].断块油气田,2018,25(1):29-33.
YAN D Q,LIU B,JIA M C,et al. Misunderstandings of high organic matter abundance mudstone compaction and quantitative correction methods[J]. Fault-Block Oil & Gas Field,2018,25(1):29-33.
|
33 |
吴勇,侯雨庭,李会庚,等.高精度地层元素测井在页岩油储层评价中的应用——以鄂尔多斯盆地长7段为例[J].非常规油气,2016,3(2):1-10.
WU Y,HOU Y T,LI H G,et al. Application of high-precision formation elements logging to shale oil reservoir evaluation: A case study of seventh member of Yanchang Formation, Ordos Basin[J]. Unconventional Oil & Gas,2016,3(2):1-10.
|
34 |
杜江民,张小莉,钟高润,等.致密油烃源岩有机碳含量测井评价方法优选及应用——以鄂尔多斯盆地延长组长7段烃源岩为例[J].地球物理学进展,2016,31(06):2526-2533.
DU J M,ZHANG X L,ZHONG G R,et al. Analysis on the optimization and application of well logs indentification methods for organic carbon content in source rocks of the tight oil: Illustrated by the example of the source rocks of Chang 7 member of Yanchang Formation in Ordos Basin[J].Progress in Geophysics,2016,31(6):2526-2533.
|
35 |
柏杨. 致密油烃源岩TOC测井定量预测模型优选及适用规律研究[D].石家庄:河北地质大学,2021:1-73.
BAI Y. Optimization and Application of TOC Logging Quantitative Prediction Model for Tight Oil Source Rocks[D]. Shijiazhuang:Hebei GEO University,2021:1-73.
|
36 |
蔡冬梅,赵弟江,彭靖松,等.优质烃源岩识别及其多属性反演技术定量评价——以渤海海域辽东南洼陷为例[J].石油地球物理勘探,2018,53(2):330-338,222-223.
CAI D M,ZHAO D J,PENG J S,et al. High-quality hydrocarbon source rock identification and quantitative evaluation with multi-attributein-version: A case study of Liaodong south sub-sag, Bohai Bay Basin[J]. Oil Geophysical Prospecting,2018,53(2):330-338,222-223.
|
37 |
李思,代红霞,胡燕婷,等.基于广义ΔlgR技术的致密气源岩有机碳测井评价[J].长江大学学报(自科版),2018,15(23):36-41,6.
LI S,DAI H X,HU Y T,et al. Evaluation of organic carbon logging of tight gas source rocks basedon generalized-ΔlgR technology[J]. Journal of Yangtze University(Natural Science Edition),2018,15(23):36-41,6.
|
38 |
樊妍,王绪龙,向才富,等.准噶尔盆地东部二叠系平地泉组烃源岩富集规律与主控因素[J].现代地质,2022,36(4):1105-1117.
FAN Y,WANG X L,XIANG C F,et al. Enrichment patterns and main controlling factors of source rocks in the Permian Pingdiquan Formation,Eastern Junggar Basin[J]. Geoscience,2022,36(4):1105-1117.
|
39 |
LIU X, LEI Y, LUO X, et al. TOC determination of Zhangjiatan shale of Yanchang Formation, Ordos Basin, China, using support vector regression and well logs[J]. Earth Science Informatics,2021,14:1033-1045.
|
40 |
黄彦杰. 鄂尔多斯盆地槐树庄区长7致密油成藏机理与富集规律[D].西安:西安石油大学,2020:1-102.
HUANG Y J. Accumulation Mechanism and Enrichment Law of Chang 7 Tight Oil in Huaishuzhuang Area,Ordos Basin[D].Xi’an:Xi’an Shiyou University,2020:1-102.
|
41 |
韩载华. 鄂尔多斯盆地七里村油田长7烃源岩与成藏动力研究[D].西安:西安石油大学,2020:1-87.
HAN Z H. Study on Source Rock and Reservoir Forming Dynamic of Chang 7 Member in Qiicun Oilfield,Ordos Basin[D]. Xi’an:Xi’an Shiyou University,2020:1-87.
|
42 |
HERMANRUD C,WENSAAS L,TEIGE G M G,et al.Shale Porosities from Well Logs on Haltenbanken(Offshore Mid-Norway) Show No Influence of Overpressuring[J].AAPG Memoir,1998,70:87-104.
|
43 |
BOWERS G L. Detecting high overpressure[J]. The Leading Edge, 2002, 21(2):174-177.
|
44 |
TINGAY M R P, HILLIS R R, SWARBRICK R E, et al. Origin of overpressure and pore-pressure prediction in the Ba-ram province,Brunei[J].AAPG Bulletin,2009,93(1):51-74.
|
45 |
侯志强,张书平,李军,等.西湖凹陷中部西斜坡地区超压成因机制[J].石油学报,2019,40(9):1059-1068,1124.
HOU Z Q,ZHANG S P,LI J,et al. Genetic mechanism of overpressures in the west slope of central Xihu sag[J]. Acta Petrolei Sinica,2019,40(9):1059-1068,1124.
|
46 |
梁晓伟,关梓轩,牛小兵,等.鄂尔多斯盆地延长组7段页岩油储层储集性特征[J].天然气地球科学,2020,31(10):1489-1500.
LIANG X W,GUAN Z X,NIU X B,et al. Reservoir characteristics of shale oil in Chang 7 Member of Yanchang Formation,Ordos Basin[J]. Natural Gas Geoscience,2020,31(10):1489-1500.
|
47 |
DASGUPTA S, CHATTERJEE R, MOHANTY S P. Magnitude, mechanisms, and prediction of abnormal pore pressure using well data in the Krishna-Godavari Basin, east coast of India[J]. AAPG Bulletin, 2016, 100(12):1833-1855.
|
48 |
O’CONNOR S, SWARBRICK R, LAHANN R. Geologically‐driven pore fluid pressure models and their implications for petroleum exploration. Introduction to thematic set[J]. Geofluids, 2011, 11(4):343-348.
|
49 |
TINGAY M R P, MORLEY C K, LAIRD A, et al. Evidence for overpressure generation by kerogen-to-gas maturation in the northern Malay Basin[J]. AAPG Bulletin, 2013, 97(4):639-672.
|
50 |
ATHY L F. Density, porosity, and compaction of sedimentary rocks[J]. AAPG Bulletin,1930, 14(1):1-24.
|
/
〈 |
|
〉 |