Lower limits of effective gas source rock and reservoir grading evaluation of tight sandstone in the Upper Paleozoic in the northeastern margin of the Ordos Basin

  • Ziyi WANG , 1, 2 ,
  • Yancheng LIU 3 ,
  • Liming LIN 3 ,
  • Lan XIE 3 ,
  • Nengwu ZHOU 4, 5 ,
  • Yang LIU 1, 2 ,
  • Fan LIU 6 ,
  • Shuangfang LU , 4, 5
Expand
  • 1. School of Geosciences,China University of Petroleum (East China),Qingdao 266580,China
  • 2. Key Laboratory of Deep Oil and Gas,China University of Petroleum (East China),Qingdao 266580,China
  • 3. China United Coalbed Methane Corporation Ltd. ,Beijing 100016,China
  • 4. Sanya Offshore Oil & Gas Research Institute,Northeast Petroleum University,Sanya 572025,China
  • 5. Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development,Ministry of Education,Northeast Petroleum University,Daqing 163318,China
  • 6. Yulin University,Yulin 719000,China

Received date: 2023-04-14

  Revised date: 2023-07-04

  Online published: 2023-10-08

Supported by

The National Natural Science Foundation of China(42272156)

the Project of China United Coalbed Methane Corporation(ZZGSECCYWG2021-322)

Abstract

The expulsion gas intensity of Upper Paleozoic source rocks in the Linxing-Shenfu Gas Field at the eastern margin of the Ordos Basin is quantitatively evaluated based on the material balance method. The lower limits of TOC for effective source rocks of the Benxi, Taiyuan, and Shanxi formations in the Linxing region were determined to be 2.2%, 3.3%, and 6.3%, respectively; the lower limits of TOC for effective source rocks of the Benxi and Taiyuan formations in the Shenfu area were 6.3% and 9.0%, respectively, and the source rocks of the Shanxi Formation were ineffective source rocks because they can not be effectively expel gas. Based on the test gas capacity method and mechanical balance method, the Upper Paleozoic tight sandstone reservoir quality boundaries of the Linxing-Shenfu Gas Field were determined, and the reservoir grading was evaluated based on this method. Among them, conventional sandstone reservoir: porosity>15%, permeability >0.78×10-3 μm2; Class I tight sandstone reservoir: porosity 8%-15%, permeability(0.3-0.78)×10-3 μm2; Class II tight sandstone reservoir: porosity 6%-8%, permeability (0.1-0.3)×10-3 μm2; Class III tight sandstone reservoir: porosity <6%, permeability <0.1×10-3 μm2. The comprehensive gas source rock lower limit, reservoir grading evaluation, logging evaluation, and well production capacity analysis show that the differential configuration of the three elements of hydrocarbon source rock quality, reservoir quality, and inter stratigraphic fault migration channels in the Upper Paleozoic of the Linxing-Shenfu Gas Field is the controlling factor of differential gas enrichment. The gas saturation of conventional/class I tight sandstone reservoirs in the in-source rock and near-source rock formations near the effective source rocks is usually high and easy to obtain production capacity; the gas saturation of conventional reservoirs in the distant-source rock formations matching the inter stratigraphic fault transport channels is relatively high and can be used as exploration targets, and the exploration potential of distant-source rock formations in areas with sparse development of inter stratigraphic fault migration channels is limited.

Cite this article

Ziyi WANG , Yancheng LIU , Liming LIN , Lan XIE , Nengwu ZHOU , Yang LIU , Fan LIU , Shuangfang LU . Lower limits of effective gas source rock and reservoir grading evaluation of tight sandstone in the Upper Paleozoic in the northeastern margin of the Ordos Basin[J]. Natural Gas Geoscience, 2023 , 34(10) : 1710 -1725 . DOI: 10.11764/j.issn.1672-1926.2023.07.002

0 引言

致密砂岩气是指富集于低渗透—特低渗透致密砂岩储层中的天然气资源,是我国非常规天然气勘探和生产的重要组成部分,对改善能源结构和保障国家能源安全具有重要战略意义1-3。鄂尔多斯盆地上古生界致密砂岩气资源丰富,约占全国致密气资源量的61%,位于盆地内中、东部的苏里格、大牛地、榆林、乌审旗和子洲等气田储量在1 000×108 m3 以上4-7。随着鄂尔多斯盆地上古生界致密砂岩气的勘探程度不断加深,勘探主战场从盆地内部拓展至盆地边缘区域。近年来位于盆地东北缘的临兴—神府气田上古生界致密气的勘探开发取得了突破,成为鄂尔多斯盆地又一个探明地质储量超过1 010×108 m3 的大气田8-12。但目前临兴—神府气田上古生界致密砂岩气探明率整体较低,且气田靠近盆地边缘,地质条件相较于盆地中、东部大气田更为复杂,勘探过程中发现不同区带气藏聚集规律与规模均存在差异13-21
通常致密砂岩气藏的分布差异主要受控于储层物性、分布的非均质性以及其含气性的非均质性322-27。前者主要表现在储层孔隙度、渗透率、微观孔隙结构,以及空间分布的非均质性,而后者取决于烃源岩与储层在空间上的组合关系以及在时间上的耦合关系。有效气源岩(能否有效排气)是否发育及其优劣,决定了盆地或区块能否存在工业天然气藏2228-31。目前,关于烃源岩品质及有效性评价多是依据其生烃能力判断,但对于致密气藏而言,排气能力/排气量更为重要,天然气只有排出烃源岩后才有可能对致密气成藏做出贡献。烃源岩层在埋藏演化过程中何时排出天然气、排出多少、通过什么途径运移、哪些可以有效运移到致密砂岩储层中,控制了气藏的形成过程和分布规律2332-35。除了源岩外,作为气体运移和储集的主要场所,储层质量是致密砂岩气成藏研究中的另一重点,它决定了气体的储集能力、成藏的难易程度 42736-39。因此,要明确区域致密砂岩气成藏的规律及其分布差异,需要综合、全面地对区域烃源岩条件(决定天然气充注/成藏动力大小)和储集条件(决定天然气充注/成藏的难易程度)的组合关系进行系统的研究。对于临兴—神府气田上古生界致密砂岩气藏,目前未见有针对性的系统研究和报道。
本文通过定量评价气源条件与源岩排气能力、厘定了临兴—神府气田不同区块上古生界不同层位致密砂岩气源岩的下限;基于试气产能法与力学平衡法厘定临兴—神府气田上古生界致密砂岩气储层界限,以此为依据对储层质量进行分级评价,结合测试分析表征了不同级别储层的物性特征。综合测井评价与试气产能资料,进一步尝试将源岩下限与储层分级标准应用于勘探靶区的气藏评价,优选有利勘探目标,旨在为临兴—神府气田上古生界致密砂岩气拓展勘探提供新依据。

1 地质概况

临兴—神府气田主体位于靠近鄂尔多斯盆地边缘的次级构造单元晋西挠褶带北段[图 1(a)],西部地层平缓,地层倾角为1°~2°,东部隆起,地层倾角为12°~23°11。临兴—神府气田属于低产、特低丰度、中浅层、特大型致密砂岩气藏11。受构造沉降、海平面变化、沉积物供给影响,气田在晚古生代多种沉积体系共存,晚石炭世本溪期为障壁海岸沉积体系,早二叠世太原期和山西期为曲流河三角洲沉积体系,中二叠世石盒子期以及晚二叠世石千峰期转变为辫状河三角洲沉积体系[图1(b)]11-12。烃源岩在上古生界本溪组、太原组、山西组发育[图1(b)];储层在上古生界各层系——石炭系本溪组、二叠系太原组、山西组、石盒子组、石千峰组均有发育[图1(b)]40-43。根据储层与烃源岩的距离,划分出3套成藏组合:本溪组、太原组和山西组组成的源内层系成藏组合,下石盒子组近源层系成藏组合,以及由上石盒子组和石千峰组组成的远源层系成藏组合[图1(b)]11
图1 临兴—神府气田构造位置与典型成藏组合类型(修改自文献[1140])

(a)临兴—神府气田断层分布与钻井分布特征;(b)临兴—神府气田上古生界综合柱状图

Fig.1 Tectonic location and typical reservoir formation type in the Linxing-Shenfu Gas Field(modified from Refs.[1140])

2 气源条件评价

2.1 烃源岩展布与有机地球化学特征

烃源岩最大热解峰温和氢指数图版可以用于T max值低于450 ℃的数据进行干酪根类型判别44-45,结果显示,临兴—神府气田上古生界烃源岩中干酪根类型主要为Ⅲ型(腐殖型)和Ⅱ2型(腐泥—腐殖型),表明上古生界烃源岩可以成为有利的生气来源[图2(a)]。
图2 临兴—神府气田上古生界烃源岩有机地球化学特征

(a)有机质类型判别图版;(b)不同源岩类型的TOC分布;(c)不同层位的煤岩厚度;(d)不同层位的炭质泥岩厚度;

(e)不同层位的泥岩厚度;(f)临兴地区不同层位平均R O;(g)神府地区不同层位平均R O

Fig.2 Organic geochemical characteristics of the Upper Paleozoic hydrocarbon source rocks in the Linxing-Shenfu Gas Field

根据有机质丰度(TOC),将烃源岩划分为暗色泥岩(TOC<6%)、炭质泥岩(6%<TOC<40%)、煤岩(TOC>40%)46。据统计临兴—神府气田暗色泥岩TOC值平均为2.4%,炭质泥岩TOC平均值为15.2%,煤岩TOC平均值为64.1%[图2(b)]。3种类型的烃源岩在临兴—神府气田全区均有分布,其中煤岩主要分布在埋深较大的本溪组(平均为9.1 m)和太原组(平均为7.2 m),山西组煤岩厚度较薄(平均为1.9 m)[图2(c)];炭质泥岩在本溪组(平均为5.6 m)和太原组(平均为9.2 m)较厚,山西组较薄(平均为3.2 m)[图2(d)];暗色泥岩在本溪组(平均为23.8 m)和太原组(平均为27.1 m)相对较薄,山西组泥岩最厚(平均为43.4 m)[图2(e)]。
烃源岩的有机质成熟度在纵向上存在规律变化,埋深最大的本溪组的镜质体反射率最高,临兴地区本溪组R O值平均为1.30%,神府地区R O值平均为1.06%[图2(f),图2(g)];太原组镜质体反射率相较于本溪组发生降低,临兴地区太原组R O值平均为1.20%,神府地区R O值平均为0.97%[图2(f), 图2(g)];埋深最浅的山西组镜质体反射率最低,临兴地区山西组R O值平均为1.07%,神府地区R O值平均为0.88%[图2(f),图2(g)]。
根据上述结果,临兴和神府2个地区烃源岩类型和厚度分布差异较小,2个地区烃源岩的差异主要在于有机质成熟度[图2(f),图2(g)]。临兴地区烃源岩同层位烃源岩有机质成熟度高于神府地区[图2(f),图2(g)],临兴地区本溪组和太原组烃源岩整体处于高成熟阶段(1.2%<R O <2.0%),临兴地区山西组及神府地区的烃源岩整体处于成熟阶段(0.7%<R O <1.2%)。

2.2 有效烃源岩界限厘定

只有从源岩中排出的天然气才能对致密气的成藏有贡献,因此对于烃源岩排气量的评价比生气量的评价具有更重要的意义。有效烃源岩下限可以通过确定TOC与排气量的关系来进行划分2945-46。根据排气的物质平衡原理,通过将生气量减去残气量,定量评价临兴—神府地区烃源岩的排气能力,残气包括吸附气、油溶气、水溶气和孔隙中的游离气46-47
排气量=生气量-残气量
残气量=吸附气量+游离气量+水溶气量+油溶气量
其中不同类型烃源岩的生气量基于密封金管热解实验获得;吸附气量的通过甲烷等温吸附实验获得,选择不同类型,TOC差异明显的源岩,在定温升压的条件下获得样品的兰氏体积和兰氏压力(表1),在此基础上通过Langmuir吸附模型确定排气时期地质条件下源岩的吸附气量;游离气量结合源岩所处地层的温度、压力条件由气体状态方程确定(nRT=PV);水溶气量的计算使用了天然气在溶液中的溶解度模型48-50
表1 临兴—神府气田上古生界烃源岩等温吸附数据

Table 1 Isothermal adsorption data of Upper Paleozoic hydrocarbon source rocks in the Linxing-Shenfu Gas Field

样品编号

TOC

/%

兰氏体积

/(cm3/g)

兰氏压力

/MPa

原位吸附气量

/(cm3/g岩石

A1 1.22 2.03 3.44 1.73
A2 1.78 1.41 1.76 1.30
A3 2.67 0.77 6.60 0.58
A4 2.80 1.21 4.76 0.98
A5 3.03 1.52 3.02 1.32
A6 5.46 1.79 2.63 1.58
A7 7.39 2.00 2.45 1.78
A8 8.91 2.25 2.28 2.02
A9 22.30 3.38 9.23 2.31
A10 37.00 5.00 3.10 4.33
A11 45.00 7.00 3.80 5.88
A12 55.20 10.69 3.91 8.94
A13 69.10 19.35 2.91 16.89
A14 78.80 19.70 2.78 17.30
A15 84.20 51.15 12.07 31.90
A16 84.70 78.69 28.81 32.24
A17 58.00 11.78 2.69 10.38
通过拟合R OTOC与排气量关系,结果显示,烃源岩排气强度正比于TOC与热演化程度,具体表现为:相同TOC的烃源岩热演化程度越高,排气量越大;相同热演化程度的源岩,TOC含量越高,通常排气量越大[图3(a),图3(b),图3(c)]。由于临兴—神府地区纵向和平面上源岩热演化程度之间存在差异,源岩排气量与残余有机碳含量关系会有所不同,因此不同地区不同层位有效烃源岩下限也会随热演化程度的变化而发生改变[图3(d)]。临兴地区本溪组、太原组、山西组有效源岩TOC下限随着热演化程度的下降而升高,分别为2.2%、3.3%、6.3%;神府地区同层系源岩热演化程度低于临兴地区,本溪组和太原组有效烃源岩TOC下限分别为6.3%和9.0%,山西组烃源岩热演化程度过低,无法有效排气[图3(d)]。
图3 临兴—神府气田不同层位有效源岩TOC下限划分

(a)源岩排气量与TOC关系;(b)源岩排气量与R O关系;(c)源岩排气量与R OTOC关系;(d)不同层位的有效源岩TOC下限

Fig.3 The lower limit of TOC of effective source rocks in different formations in the Linxing-Shenfu Gas Field

3 成储上下限划分与储层分类

成储下限指岩石能否作为油气的有效储集层的界限,成储上限是指常规储集层和致密储集层的界限51-53。分别利用试气产能法和力学平衡法对临兴—神府气田上古生界致密砂岩的有效渗流下限、高产下限和致密岩石上限进行了厘定。

3.1 试气产能法厘定有效渗流下限

成储下限可分为理论成藏下限和有效渗流下限51-53。理论下限界定了理论上可以成藏的致密储层下限,而在实际勘探中更关心在现今开采条件下油气能不能有效渗流形成工业价值,因此相较于理论下限,有效渗流下限在致密砂岩的勘探开发中更具实际指导意义。将压裂后能获得产能的井段对应的储层物性下限定为有效渗流下限。临兴—神府气田上古生界致密砂岩气藏直井段试气结果关系显示,压裂试气段致密砂岩储层的平均气测孔隙度大于6%[图4(b)],对应气测渗透率大于0.1×10-3 μm2是获得产能的物性下限[图4(b)]。因此临兴—神府气田上古生界致密砂岩气藏的有效渗流下限气测孔隙度为6%,气测渗透率为0.1×10-3 μm2图4)。
图4 试气产能法厘定临兴—神府气田上古生界致密砂岩气储层有效渗流下限

(a)试气产能与孔隙度关系;(b)试气产能与渗透率关系

Fig.4 Lower limit of effective seepage in the Upper Paleozoic tight gas reservoir of the Linxing-Shenfu Gas Field determined by the gas test capacity method

3.2 试气产能法厘定高产下限

根据临兴—神府气田生产情况,高产下限的厘定标准为直井段压裂后能获得无阻流量高于5×104 m3/d。直井段试气结果显示,只有压裂试气段致密砂岩储层的平均气测孔隙度大于8%[图4(a)],对应气测渗透率大于0.3×10-3 μm2图4(b)]时可获得高产。因此高产下限对应的储层物性界限为气测孔隙度为8%,气测渗透为率0.3×10-3 μm2 图4)。

3.3 力学平衡法厘定致密岩石上限

天然气在储层中运移和成藏的过程主要受两种力作用:①由于地层水和天然气密度差而形成的使天然气上升的浮力;②由于岩石较窄喉道形成的阻止天然气向上运移的毛细管阻力。常规砂岩储层物性好、喉道宽,因此天然气受到的毛管阻力小于浮力,可以受浮力的驱动运移成藏;致密储层物性差、喉道窄,毛细管阻力远大于油气的浮力,难以依靠浮力有效成藏2732。当浮力与毛细管阻力相等时,所对应的孔喉半径为形成致密储集层的临界孔喉半径上限,即致密岩石上限52
驱动天然气运移成藏的浮力正比于地层倾角,根据力学平衡法绘制临兴—神府气田的临界孔喉半径图版,结合临兴—神府地区平均地层倾角为5°的情况下11,求取的储层原位埋藏条件下的临界喉道半径平均为0.4 μm[图5(a)]。临界喉道半径为0.4 μm时对应原位埋藏条件下的渗透率约为0.4×10-3 μm2图5(b)]。根据覆压孔渗数据,原位埋藏压力条件下渗透率为0.4×10-3 μm2的储层对应气测孔隙度平均为15%,气测渗透率平均为0.78×10-3 μm2表2)。因此,我们将气测孔隙度15%,气测渗透率0.78×10-3 μm2厘定为致密上限。
图5 临兴—神府气田上古生界致密砂岩气储层物性上限临界图版

(a)物性上限临界图版;(b)平均孔喉半径与渗透率交互图版

Fig.5 Upper Paleozoic tight sandstone reservoir upper limit critical plate of the Linxing-Shenfu Gas Field

表2 临兴—神府气田上古生界典型常规储层样品覆压孔渗数据

Table 2 Overpressure porosity and permeability data of typical conventional Upper Paleozoic reservoir samples of the Linxing-Shenfu Gas Field

样品编号 上覆压力/MPa 孔隙度/% 渗透率/(10-3 μm2
B1 0.00 16.15 0.78
5.52 14.04 0.65
6.90 13.70 0.61
9.66 13.14 0.51
13.10 12.59 0.40
15.86 12.48 0.37
B2 0.00 14.13 0.81
5.52 12.28 0.67
6.90 12.14 0.63
10.34 12.00 0.55
13.79 11.91 0.49
17.24 11.84 0.42
综合上述信息,临兴—神府气田上古生界致密储层有效渗流下限:气测孔隙度为6%,气测渗透率为0.1×10-3 μm2;高产下限:气测孔隙度为8%,气测渗透率为0.3×10-3 μm2;致密岩石上限:气测孔隙度15%,气测渗透率为0.78×10-3 μm2。根据这3个界限将临兴—神府气田上古生界储层分为4个级别(图6),常规储层:气测孔隙度>15%,气测渗透率>0.78×10-3 μm2;一类致密储层:气测孔隙度为8%~15%,气测渗透率为(0.3~0.78)×10-3 μm2;二类致密储层:气测孔隙度为6%~8%,气测渗透率为(0.1~0.3)×10-3 μm2;三类致密储层:气测孔隙度<6%,气测渗透率<0.1×10-3 μm2
图6 临兴—神府气田上古生界致密砂岩储层级别划分

Fig.6 Classification of the Upper Paleozoic sandstone reservoir grading in the Linxing-Shenfu Gas Field

3.4 储层发育特征

常规储层中通常保留有一定比例的原生粒间孔[图7(a)],进汞饱和度(90%)和退汞饱和度(70%)高,排驱压力低(0.1 MPa)[图7(b)],高压压汞孔径分布显示常规储层的右峰峰值接近10 μm[图7(c)], 指示常规储层中存在较大且相互连通的孔喉,孔喉结构良好。储层的渗透率更多地受孔喉尺寸的控制,而不是受总孔隙度的控制54-55。不同的孔隙类型对渗透率的贡献不同,原生粒间孔通常由大喉道连接,对渗透率的贡献显著56-59。因此原生粒间孔发育的常规储层的物性好,喉道宽,毛细管阻力小,可以依靠浮力成藏。
图7 临兴—神府气田上古生界不同级别储层物性特征

(a)常规储层铸体薄片镜下观察特征;(b)常规储层高压压汞曲线特征;(c)常规储层高压压汞孔径分布特征;(d)一类致密储层铸体薄片镜下观察特征;(e)一类致密储层高压压汞曲线特征;(f)一类致密储层高压压汞孔径分布特征;(g)二类致密储层铸体薄片镜下观察特征;(h)二类致密储层高压压汞曲线特征;(i)二类致密储层高压压汞孔径分布特征;(j)三类致密储层铸体薄片镜下观察特征;(k)三类致密储层高压压汞曲线特征;(l)三类致密储层高压压汞孔径分布特征

Fig.7 Physical characteristics of different grading of reservoirs in the Upper Paleozoic of Linxing-Shenfu Gas Field

相较于常规储层,一类致密储层原生孔隙度大量损失,孔隙类型主要是长石溶孔和黏土矿物晶间孔[图7(d)]。一类致密储层的进汞饱和度(81%)和退汞饱和度(56%)较常规储层降低[图7(e)],排驱压力升高(4.6 MPa)[图7(e)],高压压汞孔径分布显示右峰峰值在2 μm左右[图7(f)],表明孔喉连通性与孔隙结构差于常规储层。石英次生加大、碳酸盐胶结物、黏土矿物的发育堵塞了孔喉[图7(d)],导致一类致密储层相较于常规储层的物性变差,喉道变窄,毛细管阻力增大,无法依靠浮力有效成藏。
二类致密储层中的孔隙类型也主要为长石溶孔和黏土矿物晶间孔,镜下观察结果显示,相较于一类致密储层,二类致密储层的面孔率和溶孔尺寸下降明显[图7(g)]。二类致密储层的进汞饱和度约为80%,退汞饱和度约为59%,排驱压力为8.5 MPa,高压压汞孔径分布显示右峰在0.8 μm左右,表明孔喉连通性与孔隙结构差于一类致密储层[图7(h),图7(i)]。二类致密储层通常含有一定比例的碎屑黏土杂基和云母等塑性矿物[图7(g)],受压实作用的影响充填在孔喉中,加上各类成岩胶结物的发育,导致二类储层相较于一类致密储层的物性变差,喉道变窄,毛细管阻力增大。
三类致密储层在镜下面孔率很低,少量发育粒内溶孔和黏土矿物晶间孔[图7(j)]。三类致密储层的进汞饱和度低(67%),退汞饱和度低(45%),排驱压力高(8.5 MPa),高压压汞孔径分布呈单峰型,说明三类致密储层的孔喉尺寸很小,孔喉连通性差[图7(h),图7(l)]。三类致密储层的粒度通常较细,并含有大量的碎屑黏土杂基和高比例的云母等塑性矿物,更易受压实作用的影响导致孔隙度大量损失,使得储层的物性差,喉道窄,毛细管阻力大。

4 评价标准的应用

4.1 源内层系勘探成效

源内层系本溪组、太原组、山西组中储层与烃源岩叠置发育,具“源—储共生”特征[图1(b)]。因为源内层系储层埋深大,成岩改造强,在天然气大量充注之前,绝大部分储层已经致密化60,致密储层占比高(图8),需要烃源岩排气过程中产生的“源—储”压差驱动天然气充注进致密储层中61-70
图8 临兴—神府气田上古生界不同成藏组合储层类型占比

Fig.8 Percentage of reservoir types in different reservoir formation types in the Upper Paleozoic of the Linxing-Shenfu Gas Field

单井源—储配置解释[图9(a)—图9(d)]与1 562个储层段的测井评价结果[图10(a),图10(b)]表明,在临兴地区与神府地区源内层系有效源岩广泛发育的基础上,物性较好的常规储层/一类致密储层含气饱和度通常较高,气层占比大;物性较为一般的二类致密储层段整体含气饱和度下降明显,极少有气层发育;储层质量最差的三类致密储层段不发育气层。勘探井直井段压裂试气结果显示,源内层系主要获产层段集中在常规/一类储层中,并有物性越好,产能越高的趋势[图10(c)]。
图9 临兴—神府气田上古生界源内、近源层系单井综合评价结果

(a)LD-13井山2段综合评价结果;(b)LD-13井本1段,太2段综合评价结果 ;(c)S-32井本1段综合评价结果;(d)S-30井太2段综合评价结果;(e)LD-13井盒8段综合评价结果;(f)LD-4井盒8段综合评价结果;(g)S2-37井盒8段综合评价结果;(h)S-32井盒8段综合评价结果

Fig.9 Integrated evaluation results of single wells in the Upper Paleozoic in-source rock and near-source rock formation in the Linxing-Shenfu Gas Field

图10 临兴—神府气田不上古生界同层系不同级别储层含气饱和度差异与直井段试气产能信息

(a)临兴地区源内层系不同级别储层含气饱和度特征;(b)神府地区源内层系不同级别储层含气饱和度特征 ;(c)源内层系试气产能与储层物性关系;(d)临兴地区近源层系不同级别储层含气饱和度特征;(e)神府地区近源层系不同级别储层含气饱和度特征;(f)近源层系试气产能与储层物性关系;(g)临兴地区远源层系不同级别储层含气饱和度特征;(h)神府地区远源层系不同级别储层含气饱和度特征;(i)远源层系试气产能与储层物性关系。参考临兴—神府气田勘探开发数据,气层:含气饱和度>50%的储层段;气水同层:含水饱和度50%~70%的储层段;含气水层:含水饱和度70%~90%的储层段;水层:含气饱和度<10%的储层段

Fig.10 Gas saturation difference between reservoirs of different grading in the same formation in the Linxing-Shenfu Gas Field in the Upper Paleozoic and gas test production information in the straight well section

4.2 近源层系勘探成效

近源层系储层覆于烃源岩层之上[图1(b)]。一方面,近源层系中储层的埋深相对较大,储层成岩改造较强,物性较差,在天然气大量充注之前,储层普遍已经致密化,致密储层占比高(图8),因此难以依靠浮力大规模成藏。另一方面,由于储层的“先致密”60,天然气在储层中也很难发生长距离侧向运移,烃源岩中天然气排出提供的“源—储”压差提供了主要充注动力61-70
单井源—储配置解释结果[图9(e)—图9(h)]与1 853个储层段测井评价结果[图10(d),图10(e)]显示,临兴地区源岩生气强度大,特别是山西组源岩可以有效排气[图3(d)],提供了相对充足的气源,近源层系中物性较好的常规储层/一类致密储层含气饱和度通常较高;神府地区源岩生气强度低,山西组源岩热演化程度低,无法有效排气,属于无效源岩[图3(d)],近源层系储层普遍含气饱和度低。压裂试气结果显示[图10(f)],近源层系内几乎所有获产层段都集中在临兴地区的常规储层/一类致密储层段。

4.3 远源层系勘探成效

远源层系上石盒子组和石千峰组储层远离烃源岩[图1(b)]。远源层系储层的埋深相对较浅,成岩改造相对较弱,因此远源储层在整体致密的背景下还发育有一定比例的常规储层(图8)。烃源岩生烃膨胀提供的源—储剩余压差通常仅能在短距离内为天然气成藏做出贡献24-2770,远源层系与烃源岩层段的距离在350~550 m之间,难以依靠源—储剩余压差成藏。大规模、长距离的天然气成藏需要有较好输导能力的输导体系存在371-76。基于1 752个远源层系储层段的测井评价结果显示,绝大部分的气层集中在常规储层中,且层间断裂大量发育的临兴地区,远源层系常规储层中气层的占比远高于层间断裂稀疏发育的神府地区[图10(g),图10(h)]。
过井地震剖面显示,L-33井目标层段位于远源层系中局部构造高部位,层间断裂分布于目标层段附近[图11],目标层段物性测试结果属于常规储层(表3),直井段未压裂就获得3.1×104 m3/d的产能;L-157井目标层段根据物性测试结果同样属于常规储层,但无层间断层发育在目标层段附近(图11),压裂后无产能(表3)。
图11 临兴—神府气田上古生界远源层系典型气藏过井地震剖面

Fig.11 Typical seismic section of the gas reservoir in the Upper Paleozoic distant-source rock formation of the Linxing-Shenfu Gas Field

表3 临兴—神府气田上古生界远源层系典型井测试数据

Table 3 Typical wells test data in the Upper Paleozoic distant-source rock formation of the Linxing-Shenfu Gas Field

井号 层位

孔隙度

/%

渗透率

/(10-3 μm2

输导

通道

储层

物性

产能

/(104 m3/d)

L-33 上石盒子组 15.5 6.9 断层 常规储层 3.1(压裂前)
L-157 上石盒子组 14.8 4.9 常规储层 无产能
据统计结果,远源层系内获产层段都为常规储层,一些气井无需压裂就可获产,且产能较高,具有“常规”气藏特征,而致密储层普遍压裂后无产能(图11)。上述分析结果表明层间断层可以作为输导通道,使得天然气从下部烃源岩运移进远源层系的常规储层中聚集成藏;无层间断层发育区域,远源层系储层与烃源岩距离远,缺少输导通道的情况下,天然气难以运移进储层中成藏;由于长距离的断层输导导致的源储压差衰减,在较低压差下天然气难以在致密储层中成藏,因此远源层系中绝大部分的气层都集中在常规储层中[图10(g),图10(h)]。
综合致密砂岩气源岩下限,储层分级评价,测井解释与产能分析结果,在盆缘地区上古生界致密砂岩气勘探中,对不同地质条件下的气藏应采取不同的勘探对策。在生排气强度低的地区,应重视源内层系优质储层的分布的刻画;在生排气能力较强的地区,优质储层分布的刻画除了在源内层系进行外,还需扩展至近源层系;在层间断裂发育区域,致密砂岩气的勘探重点除了刻画近源、源内层系优质储层的分布,还应聚焦远源层系物性好的常规储层与断层的匹配情况,有利的构造部位或圈闭也是值得考虑的重要因素。

5 结论

(1) 通过对源岩排气量的定量评价,厘定了鄂尔多斯盆地东缘临兴—神府气田上古生界不同区块不同层位致密砂岩有效气源岩TOC下限。临兴地区本溪组、太原组、山西组有效源岩TOC下限分别为2.2%、3.3%、6.3%;神府地区本溪组和太原组有效源岩TOC下限分别为6.3%和9.0%,山西组源岩无法有效排气,属于无效源岩。
(2) 基于试气产能法与力学平衡法厘定了临兴—神府气田上古生界致密砂岩气储层界限,以此为依据对储层质量进行分级评价。常规储层:气测孔隙度>15%,气测渗透率>0.78×10-3 μm2;一类致密储层:气测孔隙度为8%~15%,气测渗透率为(0.3~0.78)×10-3 μm2;二类致密储层:气测孔隙度为6%~8%,气测渗透率为(0.1~0.3)×10-3 μm2;三类致密储层:气测孔隙度<6%,气测渗透率<0.1×10-3 μm2
(3) 综合致密砂岩气源岩下限,储层分级评价,测井解释与产能分析结果,临兴—神府气田上古生界的致密砂岩气藏:紧邻有效源岩的常规/一类致密储层含气饱和度通常较高,易获得产能;远源层系中和断层输导通道匹配的常规储层的含气饱和度相对较高,可作为勘探目标。
1
戴金星, 倪云燕, 吴小奇. 中国致密砂岩气及在勘探开发上的重要意义[J]. 石油勘探与开发, 2012, 39(3): 277⁃284.

DAI J X, NI Y Y, WU X Q. Tight gas in China and its significance in exploration and exploitation[J]. Petroleum Exploration and Development, 2012, 39(3): 277⁃284.

2
赵靖舟, 付金华, 姚泾利, 等. 鄂尔多斯盆地准连续型致密砂岩大气田成藏模式[J].石油学报, 2012, 33(S1): 37⁃52.

ZHAO J Z, FU J H, YAO J L, et al. Quasi⁃continuous accumulation model of large tight sandstone gas field in Ordos Basin[J]. Acta Petrolei Sinica, 2012, 33(S1): 37⁃52.

3
魏国齐, 张福东, 李君, 等. 中国致密砂岩气成藏理论进展[J]. 天然气地球科学, 2016, 27(2): 199⁃210.

WEI G Q, ZHANG F D, LI J, et al. New progress of tight sand gas accumulation theory and favorable exploration zones in China[J]. Natural Gas Geoscience, 2016, 27(2):199⁃210.

4
李建忠, 郭彬程, 郑民, 等. 中国致密砂岩气主要类型, 地质特征与资源潜力[J]. 天然气地球科学, 2012, 23(4): 607⁃615.

LI J Z, GUO B C, ZHENG M, et al. Main types, geological features and resource potential of tight sandstone gas in China[J]. Natural Gas Geoscience, 2012, 23(4): 607⁃615.

5
杨华, 付金华, 刘新社, 等. 鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J]. 石油勘探与开发,2012,39(3):315⁃324.

YANG H, FU J H, LIU X S, et al. Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin[J]. Petroleum Exploration and Development, 2012, 39(3): 315⁃324.

6
席胜利, 刘新社, 孟培龙. 鄂尔多斯盆地大气区的勘探实践与前瞻[J]. 天然气工业, 2015, 35(8): 1⁃9.

XI S L, LIU X S, MENG P L. Exploration practices and prospect of Upper Paleozoic giant gas fields in the Ordos Basin[J]. Natural Gas Industry, 2015, 35(8): 1⁃9.

7
姚泾利, 王怀厂, 裴戈, 等. 鄂尔多斯盆地东部上古生界致密砂岩超低含水饱和度气藏形成机理[J]. 天然气工业,2014,34(1):37⁃43.

YAO J L, WANG H C, PEI G, et al. The formation mechanism of Upper Paleozoic tight sand gas reservoirs with ultra⁃low water saturation in eastern Ordos Basin[J]. Natural Gas Industry, 2014, 34(1): 37⁃43.

8
傅宁, 杨树春, 贺清, 等. 鄂尔多斯盆地东缘临兴—神府区块致密砂岩气高效成藏条件[J].石油学报,2016,37(S1):111⁃120.

FU N, YANG S C, HE Q, et al. High⁃efficiency reservoir formation conditions of tight sandstone gas in Linxing⁃Shenfu blocks on the east margin of Ordos Basin[J]. Acta Petrolei Sinica, 2016, 37(S1): 111⁃120.

9
李勇, 许卫凯, 高计县, 等. “源—储—输导系统” 联控煤系气富集成藏机制——以鄂尔多斯盆地东缘为例[J]. 煤炭学报, 2021, 46(8): 2440⁃2453.

LI Y, XU W K, GAO J X, et al. Mechanism of coal measure gas accumulation under integrated control of “source reservoir⁃transport system”: A case study from east margin of Ordos Basin[J]. Journal of China Coal Society, 2021, 46(8): 2440⁃2453.

10
刘畅, 张道旻, 李超, 等. 鄂尔多斯盆地临兴区块上古生界致密砂岩气藏成藏条件及主控因素[J]. 石油与天然气地质, 2021, 42(5): 1146⁃1158.

LIU C, ZHANG D M, LI C, et al. Upper Paleozoic tight gas sandstone reservoirs and main controls, Linxing block, Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1146⁃1158.

11
米立军,朱光辉.鄂尔多斯盆地东北缘临兴—神府致密气田成藏地质特征及勘探突破[J].中国石油勘探,2021,26(3):53⁃67.

MI L J,ZHU G H. Geological characteristics and exploration breakthrough in Linxing⁃Shenfu tight gas field,northeastern Ordos Basin[J].China Petroleum Exploration,2021,26(3):53⁃67.

12
杜佳, 朱光辉, 吴洛菲, 等. 临兴地区致密气“多层系准连续”成藏模式与大气田勘探实践[J].天然气工业,2021,41(3):58⁃71.

DU J, ZHU G H, WU L F, et al. Multi⁃series and quasi⁃continuous” tight gas accumulation pattern and giant gas field exploration practice in Linxing area[J]. Natural Gas Industry, 2021, 41(3): 58⁃71.

13
曹青, 赵靖舟, 付金华, 等. 鄂尔多斯盆地上古生界准连续型气藏气源条件[J]. 石油与天然气地质, 2013, 34(5): 584⁃591.

CAO Q, ZHAO J Z, FU J H, et al. Gas source conditions of quasi⁃continuous accumulation of the Upper Paleozoic in Ordos Basin[J]. Oil & Gas Geology, 2013, 34(5): 584⁃591.

14
李军, 赵靖舟, 凡元芳, 等. 鄂尔多斯盆地上古生界准连续型气藏天然气运移机制[J]. 石油与天然气地质, 2013, 34(5): 592⁃600.

LI J, ZHAO J Z, FAN Y F, et al. Gas migration mechanism of quasi⁃continuous accumulation in the Upper Paleozoic of Ordos Basin[J]. Oil & Gas Geology, 2013, 34(5): 592⁃600.

15
李剑, 魏国齐, 谢增业, 等. 中国致密砂岩大气田成藏机理与主控因素——以鄂尔多斯盆地和四川盆地为例[J]. 石油学报, 2013, 34 (S1): 14⁃28.

LI J, WEI G Q, XIE Z Y, et al. Accumulation mechanism and main controlling factors of large tight sandstone gas fields in China: Cases study on Ordos Basin and Sichuan Basin[J]. Acta Petrolei Sinica, 2013, 34 (S1): 14⁃28.

16
WANG Z Y, ZHOU N W, LU S F, et al. Generation, accumulation, and distribution of Upper Paleozoic tight sandstone gas in the northeastern margin of the Ordos Basin[J]. Marine and Petroleum Geology, 2023, 156: 106463.

17
郭迎春, 宋岩, 庞雄奇, 等. 连续型致密砂岩气近源累计聚集的特征及成因机制[J]. 地球科学, 2016, 41(3): 433⁃440.

GUO Y C, SONG Y, PANG X Q, et al. Characteristics and genetic mechanism of near source accumulated accumulation for continuous type tight sand gas[J]. Earth Science, 2016, 41(3): 433⁃440.

18
彭威龙, 庞雄奇, 向才富, 等. 苏里格地区上古生界连续型致密砂岩气成藏条件及过程分析[J]. 地质科技情报, 2016, 35(3): 180⁃185.

PENG W L, PANG X Q, XIANG C F, et al. Conditions and process of continuous tight sandstone gas accumulation of the Upper Paleozoic in Sulige area[J].Geological Science and Te⁃chnology Information, 2016, 35(3): 180⁃185.

19
刘晓鹏, 赵会涛, 闫小雄, 等. 克拉通盆地致密气成藏地质特征与勘探目标优选——以鄂尔多斯盆地上古生界为例[J]. 天然气地球科学, 2019, 30(3): 331⁃343.

LIU X P, ZHAO H T, YAN X X, et al. The geological characteristics of tight sandstone gas and exploration target evaluation in the craton basin: Case study of the Upper Palaeozoic of Ordos Basin[J]. Natural Gas Geoscience,2019,30(3):331⁃343.

20
葛岩, 朱光辉, 万欢, 等. 鄂尔多斯盆地东缘紫金山侵入构造对上古生界致密砂岩气藏形成和分布的影响[J]. 天然气地球科学, 2018, 29(4): 491⁃499.

GE Y, ZHU G H, WAN H, et al. The influence of Zijinshan structural belt to the formation and distribution of tight sandstone gas reservoir in Upper Paleozoic, in the eastern Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(4): 491⁃499.

21
宋平, 郭明强, 赵靖舟, 等. 鄂尔多斯盆地东缘临兴地区上古生界烃源岩特征及其对天然气成藏的控制作用[J]. 西安石油大学学报: 自然科学版, 2019, 34(1): 22⁃28.

SONG P, GUO M Q, ZHAO J Z, et al. Characteristics of Upper Paleozoic source rocks in Linxing area, eastern margin of Ordos Basin and their controlling effect on accumulation of natural gas[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2019, 34(1): 22⁃28.

22
SCHWARZER D, LITTKE R. Petroleum generation and migration in the ‘Tight Gas’ area of the German Rotliegend natural gas play:A basin modelling study[J].Petroleum Geoscience, 2007, 13(1): 37⁃62.

23
MECKEL L D, THOMASSON M R. Pervasive Tight⁃gas Sandstone Reservoirs: An Overview[M]. American: American Association of Petroleum Geologists, 2008.

24
邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型, 特征, 机理及展望——以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173⁃187.

ZOU C N,ZHU R K, WU S T, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations:Taking tight oil and tight gas in China as an instance[J].Acta Petrolei Sinica,2012,33(2):173⁃187.

25
宋岩, 姜林, 马行陟. 非常规油气藏的形成及其分布特征[J]. 古地理学报, 2013, 15(5): 605⁃614.

SONG Y, JIANG L, MA X Z. Formation and distribution characteristics of unconventional oil and gas reservoirs[J]. Journal of Palaeogeography, 2013, 15(5): 605⁃614.

26
郭迎春, 庞雄奇, 陈冬霞, 等. 致密砂岩气成藏研究进展及值得关注的几个问题[J].石油与天然气地质,2013,34(6):717⁃724.

GUO Y C, PANG X Q, CHEN D X, et al. Progress of research on hydrocarbon accumulation of tight sand gas and several issues for concerns[J]. Oil & Gas Geology,2013,34(6):717⁃724.

27
曾溅辉, 杨智峰, 冯枭, 等. 致密储层油气成藏机理研究现状及其关键科学问题[J]. 地球科学进展, 2014, 29(6): 651⁃661.

ZENG J H,YANG Z F,FENG X, et al. Study status and key scientific issue of tight reservoir oil and gas accumulation mecha⁃nism[J]. Advances in Earth Science,2014, 29(6): 651⁃661.

28
卢双舫, 李宏涛, 付广, 等. 天然气富集的主控因素剖析[J]. 天然气工业, 2003, 23(6): 7⁃11.

LU S F, LI H T, FU G, et al. Analysis of the main control factors of natural gas enrichment[J]. Natural Gas Industry,2003, 23(6):7⁃11.

29
卢双舫, 马延伶, 曹瑞成, 等. 优质烃源岩评价标准及其应用: 以海拉尔盆地乌尔逊凹陷为例[J]. 地球科学, 2012, 37(3): 535⁃544.

LU S F, MA Y L, CAO R C, et al. Evaluation criteria of high⁃quality source rocks and its applications: Taking the Wuerxun Sag in Hailaer Basin as an example[J]. Earth Science, 2012, 37(3): 535⁃544.

30
赵文智,卞从胜,徐兆辉,等.苏里格气田与川中须家河组气田成藏共性与差异[J]. 石油勘探与开发,2013,40(4):400⁃408.

ZHAO W Z,BIAN C S, XU Z H, et al. Similarities and differences between natural gas accumulations in Sulige Gas Field in Ordos Basin and Xujiahe Gas Field in central Sichuan Basin[J]. Petroleum Exploration and Development,2013,40(4):400⁃408.

31
赵靖舟, 王大兴, 孙六一, 等. 鄂尔多斯盆地西北部奥陶系气源及其成藏规律[J]. 石油与天然气地质,2015,36(5):711⁃720.

ZHAO J, WANG D X, SUN L Y, et al. Origin of the Ordovician gas and its accumulation patterns in northwestern Ordos Basin[J]. Oil & Gas Geology, 2015, 36(5): 711⁃720.

32
姜福杰, 庞雄奇, 武丽. 致密砂岩气藏成藏过程中的地质门限及其控气机理[J]. 石油学报, 2010, 31(1): 49⁃54.

JIANG F J,PANG X Q,WU L,et al.Geologic thresholds and its gas⁃controlling function during forming process of tight sandstone gas reservoir[J]. Acta Petrolei Sinica,2010,31(1): 49⁃54.

33
PANG X, PENG J, JIANG Z, et al. Hydrocarbon accumulation processes and mechanisms in Lower Jurassic tight sandstone reservoirs in the Kuqa subbasin, Tarim Basin,Northwest China: A case study of the Dibei tight gas field[J]. AAPG Bulletin, 2019, 103(4): 769⁃796.

34
赵力彬, 张同辉, 杨学君, 等. 塔里木盆地库车坳陷克深区块深层致密砂岩气藏气水分布特征与成因机理[J]. 天然气地球科学, 2018, 29(4): 500⁃509.

ZHAO L B, ZHANG T H, YANG X J, et al. Gas⁃water distribution characteristics and formation mechanics in deep tight sandstone gas reservoirs of Keshen block, Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience,2018,29(4):500⁃509.

35
任战利, 祁凯, 李进步, 等. 鄂尔多斯盆地热动力演化史及其对油气成藏与富集的控制作用[J]. 石油与天然气地质, 2021, 42(5): 1030⁃1042.

REN Z L, QI K, LI J B, et al. Thermodynamic evolution and hydrocarbon accumulation in the Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1030⁃1042.

36
于兴河, 李顺利, 杨志浩. 致密砂岩气储层的沉积⁃成岩成因机理探讨与热点问题[J]. 岩性油气藏, 2015, 27(1): 1⁃13.

YU X H, LI S L, YANG Z H. Discussion on deposition⁃diagenesis genetic mechanism and hot issues of tight sandstone gas reservoir[J]. Lithologic Reservoirs, 2015, 27(1): 1⁃13.

37
杨华,刘新社, 闫小雄. 鄂尔多斯盆地晚古生代以来构造—沉积演化与致密砂岩气成藏[J]. 地学前缘,2015,22(3):174⁃183.

YANG H, LIU X S, YAN X X. The relationship between tectonic sedimentary evolution and tight sandstone gas reservoir since the Late Paleozoic in Ordos Basin[J]. Earth Science Frontiers, 2015, 22(3): 174⁃183.

38
赖锦, 王贵文, 黄龙兴, 等. 致密砂岩储集层成岩相定量划分及其测井识别方法[J]. 矿物岩石地球化学通报, 2015, 34(1): 128⁃138.

LAI J, WANG G W, HUANG L X, et al. Quantitative classification and logging identification method for diagenetic facies of tight sandstones[J].Bulletin of Mineralogy,Petrology and Geo⁃chemistry, 2015, 34(1): 128⁃138.

39
LAI J, WANG G, WANG Z, et al. A review on pore structure characterization in tight sandstones[J]. Earth⁃Science Reviews, 2018, 177: 436⁃457.

40
朱光辉, 李本亮, 李忠城, 等. 鄂尔多斯盆地东缘非常规天然气勘探实践及发展方向——以临兴—神府气田为例[J]. 中国海上油气, 2022, 34(4): 16⁃29.

ZHU G H, LI B L, LI Z C, et al. Practices and development trend of unconventional natural gas exploration in eastern margin of Ordos Basin: Taking Linxing⁃Shenfu Gas Field as an example[J]. China Offshore Oil and Gas, 2022, 34(4): 16⁃29.

41
刘琴琴, 陈桂华, 陈晓智, 等. 鄂尔多斯盆地 L 地区上古生界上石盒子组物源特征及其对储层的控制作用[J]. 天然气地球科学, 2018, 29(8): 1094⁃1101.

LIU Q Q, CHEN G H, CHEN X Z, et al. Characteristic of provenance and its impact on reservoir quality of Upper Shihezi Formation, L block, Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(8): 1094⁃1101.

42
刘喜杰, 马遵敬, 韩冬, 等. 鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4): 481⁃490.

LIU X J, MA Z J, HAN D, et al. Research on the main factors of high quality tight sandstone reservoir in Linxing block, Ordos Basin[J]. Natural Gas Geoscience,2018,29(4): 481⁃490.

43
刘玲, 汤达祯, 王烽. 鄂尔多斯盆地临兴区块太原组致密砂岩黏土矿物特征及其对储层物性的影响[J]. 油气地质与采收率, 2019, 26(6): 28⁃35.

LIU L, TANG D Z, WANG F. Clay minerals characteristics of tight sandstone and its impact on reservoir physical properties in Taiyuan Formation of block Linxing in Ordos Basin[J]. Petroleum Geology and Recovery Efficiency,2019,26(6):28⁃35.

44
DIECKMANN V. Modelling petroleum formation from heterogeneous source rocks:The influence of frequency factors on activation energy distribution and geological prediction[J]. Marine and Petroleum Geology, 2005, 22(3): 375⁃390.

45
卢双舫, 黄文彪, 李文浩, 等. 松辽盆地南部致密油源岩下限与分级评价标准[J]. 石油勘探与开发, 2017, 44(3): 473⁃480.

LU S F, HUANG W B, LI W H, et al. Lower limits and grading evaluation criteria of tight oil source rocks of southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2017, 44(3): 473⁃480.

46
卢双舫, 张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2008: 236⁃243.

LU S F,ZHANG M. Hydrocarbon Geochemistry[M].Beijing: Petroleum Industry Press, 2008: 236⁃243.

47
庞雄奇, 陈章明. 排油气门限的基本概念、研究意义与应用[J]. 现代地质, 1997, 11(4): 510⁃521.

PANG X Q, CHEN Z M. Basic concept of hydrocarbon expulsion threshod and its research significance and application[J]. Geoscience, 1997, 11(4): 510⁃521.

48
付晓泰, 王振平, 卢双舫,等. 气体在水中的溶解机理及溶解度方程[J]. 中国科学(B辑), 1996, 26(2): 124⁃130.

FU X T, WANG Z P, LU S F, et al. Mechanism of gas dissolution in water and solubility equation[J]. Science in China (Series B),1996,26(2): 124⁃130.

49
付晓泰, 王振平, 夏国朝,等. 天然气组分的水合常数, 水合热及理论溶解度[J]. 石油学报, 1998, 19(1): 79⁃84.

FU X T, WANG Z P, XIA G C, et al. Aquo constant, aquo heat of gas components and their theoretical solubilities[J]. Acta Petrolei Sinica, 1998, 19(1): 79⁃84.

50
付晓泰, 王振平, 卢双舫, 等. 天然气在盐溶液中的溶解机理及溶解度方程[J]. 石油学报, 2000, 21(3): 89⁃94.

FU X T, WANG Z P, LU S F, et al. Mechanism of natural gas dissolving in brines and the dissolving equation[J]. Acta Petrolei Sinica, 2000, 21(3): 89⁃94.

51
卢双舫, 李俊乾, 张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018, 45(3): 436⁃444.

LU S F, LI J Q, ZHANG P F, et al. Classification of microscopic pore⁃throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development,2018,45(3): 436⁃444.

52
周磊, 王永诗, 于雯泉, 等. 基于物性上, 下限计算的致密砂岩储层分级评价——以苏北盆地高邮凹陷阜宁组一段致密砂岩为例[J]. 石油与天然气地质, 2019, 40(6): 1308⁃1316, 1323.

ZHOU L, WANG Y S, YU W Q, et al. Classification assessment of tight sandstone reservoir based on calcution of lower and upper limits of physical properties: A case study of the tight sandstone reservoir in the 1st member of Funing Formation in Gaoyun Sag, North Jiangsu Basin[J]. Oil and Gas Geology, 2019, 40(6): 1308⁃1316.

53
周能武, 卢双舫, 王民, 等. 中国典型陆相盆地致密油成储界限与分级评价标准[J]. 石油勘探与开发,2021,48(5):939⁃949.

ZHOU N W, LU S F, WANG M, et al. Limits and grading evaluation criteria of tight oil reservoirs in typical continental basins of China[J].Petroleum Exploration and Development,2021,48(5): 939⁃949.

54
REZAEE R, SAEEDI A, CLENNELL B. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data[J]. Journal of Petroleum Science and Engineering, 2012, 88: 92⁃99.

55
SCHMITT M, FERNANDES C P, WOLF F G, et al. Characterization of Brazilian tight gas sandstones relating permeability and Angstrom⁃to micron⁃scale pore structures[J]. Journal of Natural Gas Science and Engineering, 2015, 27(2): 785⁃807.

56
BLOCH S, LANDER R H, BONNELL L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability[J]. AAPG Bulletin, 2002, 86(2): 301⁃328.

57
DUTTON S P, LOUCKS R G. Diagenetic controls on evolution of porosity and permeability in Lower Tertiary Wilcox sandstones from shallow to ultradeep(200⁃6700 m) burial,Gulf of Mexico Basin,USA[J].Marine and Petroleum Geology,2010, 27(1): 69⁃81.

58
SHANLEY K W, CLUFF R M, ROBINSON J W. Factors controlling prolific gas production from low⁃permeability sandstone reservoirs: Implications for resource assessment, prospect development, and risk analysis[J]. AAPG Bulletin, 2004, 88(8): 1083⁃1121.

59
LI J, W S, LU S, et al. Microdistribution and mobility of water in gas shale: A theoretical and experimental study[J]. Marine and Petroleum Geology, 2019, 102: 496⁃507.

60
HUYAN Y, PANG X, JIANG F, et al. Coupling relationship between tight sandstone reservoir and gas charging: An example from Lower Permian Taiyuan Formation in Kangning field,northeastern Ordos Basin,China[J].Marine and Petroleum Geology, 2019, 105: 238⁃250.

61
庞雄奇, 周新源, 董月霞, 等. 含油气盆地致密砂岩类油气藏成因机制与资源潜力[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 28⁃37.

PANG X Q, ZHOU X Y, DONG Y X, et al. Formation mechanism classification of tight sandstone hydrocarbon reservoirs in petroliferous basin and resources appraisal[J]. Journal of China University of Petroleum(Natural Science Edition),2013, 37(5): 28⁃37.

62
JIANG Z X, LI Z, LI F, et al. Tight sandstone gas accumulation mechanism and development models[J]. Petroleum Science,2015, 12(4): 587⁃605.

63
邓秀芹, 刘新社, 李士祥. 鄂尔多斯盆地三叠系延长组超低渗透储层致密史与油藏成藏史[J]. 石油与天然气地质, 2009, 30(2): 156⁃161.

DENG X Q, LIU X S, LI S X. The relationship between coMPacting history and hydrocarbon accumulating history of the super⁃low permeability reservoirs in the Triassic Yanchang Formation in the Ordos Basin[J]. Oil & Gas Geology, 2009, 30(2): 156⁃161.

64
卢双舫, 谷美维, 张飞飞, 等. 徐家围子断陷沙河子组致密砂砾岩气藏的成藏期次及类型划分[J]. 天然气工业, 2017, 37(6): 12⁃21.

LU S F, GU M W, ZHANG F F, et al. Hydrocarbon accumulation stages and type division of Shahezi Formation tight glutenite gas reservoirs in the Xujiaweizi Fault Depression, Songliao Basin[J]. Natural Gas Industry, 2017, 37(6): 12⁃21.

65
付金华, 邓秀芹, 王琪, 等. 鄂尔多斯盆地三叠系长 8 储集层致密与成藏耦合关系——来自地球化学和流体包裹体的证据[J]. 石油勘探与开发, 2017, 44(1): 48⁃57.

FU J H,DENG X Q,WANG Q,et al. Densification and hydrocarbon accumulation of Triassic Yanchang Formation Chang 8 Member,Ordos Basin,NW China: Evidence from geochemistry and fluid inclusions[J]. Petroleum Exploration and Development, 2017, 44(1): 48⁃57.

66
斯尚华, 胡张明, 刘吉, 等. 储层致密化与油气充注的关系: 以三肇凹陷白垩系扶余油层为例[J]. 现代地质, 2021, 35(6): 1854⁃1863.

SI S H, HU Z M, LIU J, et al. Relationship between reservoir densification and hydrocarbon charging: A case study of Cretaceous Fuyu reservoir of the Sanzhao Sag[J]. Geoscience, 2021, 35(6): 1854⁃1863.

67
郭明强, 宋平, 张兵, 等. 鄂尔多斯盆地东缘临兴地区上古生界古超压成因及其演化[J]. 西安石油大学学报(自然科学版), 2020, 35(4): 19⁃25.

GUO M Q, SONG P, ZHANG B, et al. Origin and evolution of paleo⁃overpressure in the Upper Paleozoic in Linxing area, the eastern margin of Ordos Basin,China[J]. Journal of Xi'an Shiyou University (Natural Science Edition),2020,35(4):19⁃25.

68
SHANLEY K W,CLUFF R M,ROBINSON J W.Factors controlling prolific gas production from low⁃permeability sandstone reservo⁃irs:Implications for resource assessment,prospect development,and risk analysis[J].AAPG Bulletin,2004,88(8):1083⁃1121.

69
SUN L D, ZOU C N, JIA A L, et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46: 1073⁃1087.

70
邹才能, 陶士振, 张响响, 等. 中国低孔渗大气区地质特征、控制因素和成藏机制[J]. 中国科学(D辑:地球科学),2009,39(11): 1607⁃1624.

ZOU C N, TAO S Z, ZHANG X X, et al. Geologic characteristics, controlling factors and hydrocarbon accumulation mechanisms of China’s Large Gas Provinces of low porosity and permeability[J].Science in China(Series D:Earth Sciences),2009, 39(11): 1607⁃1624.

71
庞雄奇, 金之钧, 左胜杰. 油气藏动力学成因模式与分类[J]. 地学前缘, 2000, 7(4): 507⁃514.

PANG X Q, JIN Z J, ZUO S J. Dynamics, models and classification of hydrocarbon accumulations[J]. Earth Science Frontiers, 2000, 7(4): 507⁃514.

72
李忠平,冉令波,黎华继,等.窄河道远源致密砂岩气藏断层特征及天然气富集规律——以四川盆地中江气田侏罗系沙溪庙组气藏为例[J]. 天然气工业, 2016, 36(7): 1⁃7.

LI Z P, RAN L B, LI H J, et al. Fault features and enrichment laws of narrow⁃channel distal tight sandstone gas reservoirs: A case study of the Jurassic Shaximiao Fm gas reservoir in the Zhongjiang Gas Field, Sichuan Basin[J]. Natural Gas Industry, 2016, 36(7): 1⁃7.

73
HU T, PANG X, JIANG F, et al. Dynamic continuous hydrocarbon accumulation (DCHA): Existing theories and a new unified accumulation model[J]. Earth⁃Science Reviews, 2022, 232: 104109.

74
WANG Z Y, GAO Z Q, FAN T L, et al. Structural characterization and hydrocarbon prediction for the SB5M strike⁃slip fault zone in the Shuntuo Low Uplift, Tarim Basin[J]. Marine and Petroleum Geology,2020,117:104418.

75
WANG Z Y, LIU Y C, LU S F, et al. Characterizations of Middle⁃Lower Triassic Reservoir quality and gas accumulations in the northeastern margin of the Ordos Basin, China[J]. Energy & Fuels, 2023, 37(11), 7823⁃7833

76
WANG Z Y, GAO Z Q, FAN T L, et al. Architecture of strike⁃slip fault zones in the central Tarim Basin and implications for their control on petroleum systems[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110432.

Outlines

/