Shallow-water fine-grained sediments evolution and control of marine black shale in the Late Ordovician-Early Silurian: Case study of the Wufeng Formation in southern Sichuan Basin, China

  • Zhensheng SHI , 1 ,
  • Tianqi ZHOU , 1 ,
  • Hongyan WANG 2 ,
  • Qun ZHAO 1 ,
  • Yuan YUAN 3 ,
  • Ling QI 1 ,
  • Shasha SUN 1 ,
  • Feng CHENG 1
Expand
  • 1. Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China
  • 2. PetroChina National Institute of Excellence Engineers,Beijing 100096,China
  • 3. PetroChina Zhejiang Oilfield Company,Hangzhou 310023,China

Received date: 2023-04-17

  Revised date: 2023-05-16

  Online published: 2023-09-01

Supported by

The 14th Five-Year Plan of the Ministry of Science and Technology of PetroChina(2021DJ1901)

Abstract

The sediment type and evolution are the response of peripheral plate tectonic activities, and profoundly affect the reservoir quality of shale. The sediment types and evolution of marine shale at the turn of Late Ordovician-Early Silurian were revealed by detailed description of the Wufeng Formation shale core, full-scale imaging of large thin sections and field emission scanning electron microscopy analysis of argon ion polished sections in southern Sichuan. Marine shale mainly develops three shallow-water fine-grained sediments: fine-grained turbidites, source mixing sediments and in-situ mixing sediments. The fine-grained turbidite is dominated by clastic quartz (45.5%-54.5%) and clay minerals (29.0%-38.9%), and nine typical sedimentary sequences can be clearly seen. The source mixing sediment is mainly composed of quartz (36.5%), carbonate (24.3%) and clay minerals (39.3%), and carbonate minerals are mainly exogenous transport deposits. In-situ mixing sediments is dominated by clay minerals (30.5%), ankerite (39.5%) and calcite (26.5%), and carbonate minerals are mainly derived from in-situ. The fine-grained turbidite are mainly developed in the graptolite zone WF1-2, the source mixing sediment is mainly developed in the graptolite zone WF3, and the in-situ mixing sediment is mainly developed in the graptolite zone WF4. The sediment type and distribution reflect the characteristics and evolution of the tectonic activity of the surrounding plate. During the sedimentary period of the graptolite zone WF1-2, fine-grained turbidite developed, indicating that the tectonic compression of the surrounding plate was strong, and the terrestrial supply was sufficient. During the sedimentary period of the graptolite zone WF3, the source mixing sediment developed, indicating that the tectonic activity of the surrounding plate was weakened, and the terrestrial supply was reduced. During the sedimentary period of graptolite zone WF4, the in-situ mixing sediment developed, indicating that the tectonic activity of the surrounding plate was further weakened, and the terrestrial supply was further reduced. The sediment type directly affects the reservoir quality of shale. The porosity and total organic carbon content of fine-grained turbidite sediment are the lowest, while those of in-situ mixing sediment are the highest.

Cite this article

Zhensheng SHI , Tianqi ZHOU , Hongyan WANG , Qun ZHAO , Yuan YUAN , Ling QI , Shasha SUN , Feng CHENG . Shallow-water fine-grained sediments evolution and control of marine black shale in the Late Ordovician-Early Silurian: Case study of the Wufeng Formation in southern Sichuan Basin, China[J]. Natural Gas Geoscience, 2023 , 34(9) : 1565 -1580 . DOI: 10.11764/j.issn.1672-1926.2023.05.007

0 引言

沉积物存在着多种沉积类型,其起源、沉积过程及类型演化不仅反映了周缘板块构造演化特征1-2,更深刻影响着沉积岩储层品质3。细粒沉积物体积占比可达陆地搬运至海洋总碎屑物体积的70%4,其沉积物起源、沉积过程及演化的研究对理解地质历史时期全球碳循环、古气候变化及古海洋变迁具有更大意义5-6。海相细粒沉积发育深水型和浅水型2大类型7,其中,深水型存在细粒浊积沉积8、碎屑流沉积9、滑动和滑塌沉积10、等深流沉积11、远洋和半远洋沉积12等类型,而浅水型存在潮坪沉积、三角洲沉积13、陆棚浅滩沉积14等类型。不同类型沉积物的起源、沉积过程及演化存在巨大差异15-16
晚奥陶世—早志留世之交,全球发生大规模火山喷发、大洋缺氧17、海平面快速下降18、气候短暂变冷19、2期生物大灭绝19等重大地质事件,这些重大地质事件均在细粒沉积物中留下沉积记录。精细解读这些细粒沉积记录,不仅可以增加人们对深层构造演化及其他重大地质事件的了解,更能为现今能源勘探提供重要帮助。
川南地区晚奥陶世五峰期—早志留世龙马溪期细粒沉积大面积发育,是解读全球该时期深层构造演化及其他地质事件的重要素材。该套细粒沉积主要形成于陆棚沉积环境20-21,发育三角洲、潮坪、重力流和浅海陆棚等沉积相类型22。根据矿物组成、粒度、纹层及层理等特征,这些相类型可进一步细分出多种亚相和微相22。然而,关于该细粒沉积物的起源、沉积过程及演化,目前研究相对较少。本文以川南地区五峰组细粒沉积为例,重点分析细粒沉积物的类型、形成过程及演化,并探讨其页岩气勘探意义。

1 地质背景

川南地区位于上扬子地块东南部(图1)。扬子地块是前寒武纪华南板块的重要组成部分,早古生代与塔里木板块和华北板块分离。五峰组—龙马溪组形成于华南盆地消亡和华南造山带形成时期23-25。寒武纪末期,由于广西造山运动的影响,华夏地块和扬子地块发生会聚,扬子板块东南和江南盆地相继抬升25-27,扬子地区进入被动大陆边缘发展阶段25。早奥陶世至中奥陶世,扬子地区主要发育碳酸盐岩台地沉积28-29。从晚奥陶世开始,扬子地区碳酸盐岩—碎屑岩混合沉积广泛发育。奥陶纪—志留纪转折期,全球海平面大幅波动30-31。志留纪早期,伴随着华夏板块扩张和华南大部分地区的隆升,华南古陆和海洋分布发生重大变化[图1(b)]。区域构造作用形成古陆和水下高地,上扬子地区变成半封闭的海洋1831。由于古陆和水下高地的阻隔,上扬子地区水体整体处于缺氧停滞状态31-33
图1 研究区古地理背景(据文献[3134],有修改)

(a)志留纪早期的全球古地理;(b)川南地区早志留世扬子陆表海古地理图;(c)上奥陶统—下志留统黑色页岩分布

Fig.1 The paleogeographic background of the study area(modified from Refs.[3134])

上扬子地区五峰组—龙马溪组广泛发育,厚度为0~550 m[图1(c)]。其中,五峰组厚度相对较薄,一般为0~13 m34。五峰组除顶部观音桥段发育薄层生物碎屑灰岩外,其他部分均为黑色富含笔石页岩(图2)。五峰组与下伏宝塔组为平行不整合接触,与上覆龙马溪组为整合接触。五峰组由下至上发育4个笔石带,分别是Dicellograptus complanatus(WF1)、Dicellograptus complexus(WF2)、Paraortho⁃graptus pacificus(WF3)和Metabolograptus extraordinarius(WF4)35-37。其中,笔石带WF4对应于观音桥层。
图2 川南地区五峰组地层综合柱状图及典型层理特征

Fig.2 Comprehensive chart and typical bedding characteristics of Wufeng Formation in the southern Sichuan Basin

2 研究资料与方法

2.1 研究方法及样品制备

黑色页岩沉积类型的确定有3个步骤:岩心精细描述、大薄片成像分析和氩离子抛光片分析。岩心精细描述重点明确页岩的颜色、页理及沉积构造;大薄片成像重点明确页岩的成层性及层理;氩离子抛光片分析重点明确页岩的矿物组成、结构及组构特征。本文样品取自川南地区阳101H3-8井、大安2井和长宁双河剖面,取样层位为五峰组。阳101H3-8井制作大薄片24块、氩离子抛光片7块,大安2井制作大薄片10块、氩离子抛光片7块,长宁双河剖面制作大薄片116块、氩离子抛光片17块。大薄片尺寸为5 cm×7 cm×30 μm,物性分析样品尺寸为25 mm×10 mm。大薄片制作和成像由北京天和信有限公司完成,物性分析测试在国家能源页岩气研发(实验)中心完成,氩离子抛光片分析由中国石油勘探开发研究院实验中心完成。

2.2 大薄片成像和显微镜观察

层理描述主要借助于大薄片全尺度照相和偏光显微镜观察。选用德国Leica4500P显微高精度数字平台开展全薄片照相,每张大薄片一共采集图像3 200张。图像采集完成后,利用Adobe Photoshop CS5及以上版本图形处理软件在高配制工作站上对采集的3 200张图像开展无缝拼接,从而完成全薄片照相。完成全薄片照相后,根据纹层组成、形态、连续性及相互交切关系开展层理特征描述,并选用配备有Leica DFC450照相系统的Leica DMIP偏光显微镜开展标准薄片岩石学特征研究。

2.3 氩离子抛光片扫描电镜分析

为明确黑色页岩的矿物组成特征,采用氩离子抛光片扫描电镜分析。氩离子抛光片尺寸为10 mm×10 mm×5 mm,图像采集选用携带冷排放的Hitachi场发射扫描电镜,并配备二次电子探针和X射线能谱仪(EDS)。扫描电镜放大倍数为30×103倍(单张照片最大分辨率为9 nm)。根据氩离子抛光片扫描电镜图像分析页岩的矿物组成、含量、形态、分选性、磨圆性及粒序特征等,从而明确其成因机制。

3 结果

3.1 沉积类型及特征

依据STOW等71538的和SHANMUGAM等39划分方案,可将川南地区五峰组黑色页岩划分为细粒浊流沉积、半远洋沉积和陆棚浅滩沉积3种沉积类型。不同沉积类型页岩的层理类型、矿物组成、颗粒粒度、沉降方式、成因机制等存在明显差异(表1)。
表1 川南地区五峰组黑色页岩沉积类型及特征

Table 1 Sedimentary types and characteristics of black shale in the Wufeng Formation in the southern Sichuan Basin

沉积类型 沉积构造 矿物组成 颗粒粒度 结构 分布层位
细粒浊流沉积 冲刷—充填构造、爬升波纹层理、水平层理、包卷层理、束状层理、递变层理、生物扰动 石英、方解石、黏土矿物、长石、黄铁矿等 细粉砂 混杂堆积、基底式胶结 WF1—WF2
半远洋沉积 递变型水平层理 石英(碎屑石英和自生石英)、方解石、白云石、黏土矿物等

细粉砂

细粒泥

杂基支撑、颗粒随机排列、分选差 WF3
陆棚浅滩沉积 均质型块状层理 黏土矿物、铁白云石、方解石,基底式胶结,生物碎屑发育 细粒泥 混杂堆积、基底式胶结 WF4

3.1.1 细粒浊流沉积

细粒浊流沉积岩心呈浅灰色至灰黑色,局部发育薄层粉砂岩,可见低振幅、长波长爬升波纹层理[图3(a)]和透镜状层理[图3(b)]。光学显微镜下,页岩粒度由粗变细,构成正递变,可清晰见到Stow细粒浊流沉积序列的9个层段8图4):
图3 岩心照片展示川南地区五峰组不同类型沉积特征

(a) 浊流沉积,阳101H3-8井,3 791.20 m;(b)浊流沉积,阳101H3-8井,3 793.40 m;

(c)半远洋沉积,长宁双河剖面,五峰组,样品号:4-11;(d)灰质陆棚浅滩沉积,长宁双河剖面,观音桥段

Fig.3 Core photos showing different types of sedimentary characteristics of the Wufeng Formation in the southern Sichuan Basin

图4 粗粒浊积岩、经典浊积岩和细粒浊积岩序列对比(据SHANMUGAM39,有修改)

Fig.4 Sequences comparison among coarse-grained turbidite, classical turbidite and fine-grained turbidite (modified from SHANMUGAM39

T0(底部透镜纹层段):层厚2.8~3.5 cm,底部发育微冲刷构造,与下伏层段呈突变接触[图5(a)],顶界面部为不规则波状,与上覆层段突变接触[图5(b)]。主要由粉砂纹层组成,生物碎屑化石丰富,小型沟槽中发育少量泥质沉积物[图5(b)]。该段通常发育小型波状交错纹理、较小型波状交错纹理和水平纹理,向上逐渐过渡为衰减的波纹交错层理。小型波状纹理段厚度为2 cm,较小型波状纹理段厚度为1.5 cm,水平纹理段厚度为0.5 cm。
图5 大安2井大薄片照片展示川南地区五峰组细粒浊流沉积特征

(a)大安2井,4 114.44 m;(b)大安2井,4 115.94 m;(c)大安2井,4 113.89 m;(d)大安2井,4 115.30 m

Fig.5 Large thin section photo of Well Da′an 2 showing the sedimentary characteristics of fine-grained turbidity current in the Wufeng Formation in the southern Sichuan Basin

T1(包卷纹层段):层厚0.9~1.9 cm,与下伏T0呈突变接触[图5(b)],与上覆T2呈渐变接触[图5(c),图5(d),图6(a)]。由粉砂纹层组成,含有少量泥纹层,粉砂纹层中含有大量生物碎片。发育不同规模的卷曲构造,中间夹有混杂堆积的暗色条带。
图6 大薄片照片展示阳101H3-8井五峰组细粒浊流沉积构造特征

(a)阳101H3-8井,3 791.30 m;(b)阳101H3-8井,3 792.11 m;(c)阳101H3-8井,3 790.72 m

Fig.6 Large thin section photo shows the characteristics of fine-grained turbidite sedimentary structures in Wufeng Formation of Well Yang 101H3-8

T2(爬升波纹层段):层厚1.1~3.4 cm,与下伏T1和上覆T3均为渐变接触[图5(c),图5(d),图6(a),图6(b)]。由粉砂纹层构成,中间夹有薄层泥纹层。由下至上,粉砂含量降低、粒度变细,整体构成正递变。发育低振幅长波长爬升波纹层理,有时纹层不连续而呈透镜状,小型沟槽中常发育泥纹层40
T3(砂泥递变型水平纹层段):层厚0.5~1 cm,与下伏T2和上覆T4均为渐变接触[图6(c)]。由多个近水平产出的砂泥递变层构成41-42,层与层相互平行,整体向上变薄。单个砂泥递变层内部,由下至上,粉砂含量降低,构成正递变。砂泥递变层底部常发育小型侵蚀构造,内部发育小型波状层理或前积层[图6(c)]。
T4(递变型水平纹层段):层厚1.2 cm,与下伏T3和上覆T5均为渐变接触[图7(b)]。以泥纹层为主,夹有极少量条带状或透镜状粉砂纹层,粉砂纹层整体连续性差。发育递变型水平纹理,纹理界面不清晰,界面上下存在着微弱的粒度、颜色和矿物组成差异。
图7 大薄片照片展示细粒浊流沉积沉积构造特征

(a)阳101H3-8井,3 791.20 m;(b)阳101H3-8井,3 790.98 m;(c)阳101H3-8井,3 789.95 m;(d)阳101H3-8井,3 790.26 m

Fig. 7 Large thin section photos show the characteristics of fine-grained turbidite sedimentary structures

T5(束状纹层和包卷层理段):层厚0.5~1.7 cm,多数为1.2 cm,与下伏T4段和上覆T6均为渐变接触(图7)。以泥纹层为主,粉砂纹层含量低,多呈束状或杂乱状分布。整体呈现正递变,底部常发育包卷层理,向上包卷层理减少,束状纹层增加。
T6(递变纹层泥段):层厚0.3~0.5 cm,少数可达1.4 cm,与下伏T5和上覆T7均为渐变接触[图7(a)—图7(c)]。泥纹层和粉砂纹层互层:泥纹层含量较高;粉砂纹层呈透镜状,透镜体含量及大小向上逐渐减少[图7(c)]。整体呈现微弱的正递变,底部发育少量小型低振幅长波状纹层,向上逐渐演变为透镜状纹层。
T7(均质泥岩段):层厚0.2~0.6 cm,与下伏T6和上覆T8均为渐变接触[图7(a), 图7(b)]。该层段由泥质层构成,不含粉砂纹层,泥质层中常发育波状或断续状暗色条带。页岩整体呈均质状,局部发育小型波状纹层,递变层理和生物扰动构造不发育。
T8(生物扰动泥岩段):层厚0.2~7 cm,与下伏T7段渐变接触关系[图7(a),图7(b),图8]。该层段由泥质层构成,不含粉砂纹层,泥质层中发育少量波状或断续状暗色条带。页岩整体呈均质状,强烈的生物扰动造成整体呈斑点状,颜色相对较浅[图7图8],局部可见清晰的个体遗迹化石[图8(b)]。
图8 大薄片照片展示五峰组生物扰动构造

(a)阳101H3-8井,3 789.70 m;(b)阳101H3-8井,3 790.10 m

Fig.8 Large thin section photos showing bioturbation structure in the Wufeng Formation

扫描电镜下,细粒浊流沉积常见矿物有石英(45.5%~54.5%)、黏土矿物(29.0%~38.9%)、方解石(8.6%~11.8%)、斜长石(4.3%~6.1%)、铁白云石(3.6%~6.0%)和黄铁矿等。石英颗粒粒径为4.5~17.1 μm(平均为8.8 μm),黏土矿物颗粒粒径为7.4~23.1 μm(平均为15.3 μm),方解石颗粒粒径为9.5~17.6 μm(平均为14.2 μm),颗粒整体为细粉砂,混杂堆积,基底式胶结[图9(a)]。细粒浊流沉积中,发育大量生物扰动构造[图9(a)]和清晰的个体遗迹化石[图9(b)],表明水体含氧量较高。
图9 扫描电镜照片展示五峰组浊流沉积特征

(a)阳101H3-8井,3 791.30 m;(b)阳101H3-8井,3 792.84 m

Fig.9 Scanning electron microscopy photos showing the characteristics of the fine-grained turbidite of the Wufeng Formation

3.1.2 半远洋沉积

半远洋沉积岩心呈灰黑色至黑色,有轻微的明暗相间[图3(c)]。光学显微镜下,页岩发育递变型水平层理,层界面上下以渐变接触为主,浅色层和深色层之间缺失界面或者界面不清晰(图10),层界面呈亚平行状或波状。单层厚度为1.5~15 mm,一般厚度为4.5 mm,由下至上颜色逐渐变浅再变深,粒径逐渐变粗再变细。页岩矿物组成及含量纵向变化造成颜色旋回性变化,碳酸盐矿物(方解石和白云石)含量相对较高、有机质含量相对较低的层段颜色相对较浅,而石英和有机质含量相对较高的层段颜色相对较深。页岩整体呈块状,缺失任何生物扰动和水流作用标志。
图10 大薄片照片展示五峰组半远洋沉积特征

(a)4-2-2;(b)4-19-1;(c)4-27-1;(d)4-37-1;(e)5-5-2;(f)5-19-1;(g)5-22-2

Fig.10 Large thin section photos showing the characteristics of hemipelagites in the Wufeng Formation

半远洋沉积以陆源成因矿物和自生矿物混合为特征。扫描电镜下,常见的陆源成因矿物有碎屑石英(12.3%)、方解石(平均14.1%)和黏土矿物(平均为39.3%),自生矿物有自生石英(平均为24.2%)和白云石(10.2%)等。整体呈杂基支撑结构(图11),颗粒随机排列、分选差,粒度呈现双峰和多峰分布。碎屑石英呈不规则粒状,粒径为8~12 μm(平均为9.4 μm);方解石粒径为2.1~11.5 μm(平均为5.4 μm),粒度差异较大,呈浅灰色,次圆状,边缘呈港湾状,溶蚀孔隙发育;黏土矿物粒径为3.1~8.1 μm(平均为4.7 μm),呈浅灰色条带状,压实作用常造成弯曲。自生石英呈自形或半自形状,粒径小于4 μm;白云石粒径为5.5~32.9 μm(平均为14.5 μm),粒度差异大,呈深灰色,次棱角状,发育白色斑点和溶蚀孔隙。黑色页岩中,常发育少量黄铁矿,粒径为4.1~6.1 μm(平均为5.3 μm),呈草莓状和团块状。
图11 扫描电镜照片展示五峰组半远洋沉积特征

(a)阳101H3-8井,3 791.2 m;(b)阳101H3-8井,3 791.2 m

Fig.11 Scanning electron microscope photos showing the characteristics of hemipelagites in the Wufeng Formation

3.1.3 陆棚浅滩沉积

该页岩岩心呈浅灰色至灰黑色,肉眼可见浅色生物碎屑成层状分布[图3(d)]。光学显微镜下,页岩为泥灰岩或泥灰岩与钙质泥岩或粉砂质泥岩互层。页岩富含生物化石,个体相对完整(图12),常见腕足类Triplesia sp.、Fardenia sp.、Oxoplecia sp.、Dalmanella sp.、Tetrephalerella sp.、Plectothyrella sp.等,三叶虫 Dalmanitina nanchengensis Lu、Leonaspis sp.等以及营浮游生活的笔石Climacograptus sp.、Paraorthograptus sp.、DiplograptusOrthograptus sp.、Akidograptus sp.等43,以典型的冷水动物群赫南特贝(Hirnantia cf. magna)为代表的腕足类尤其繁盛。矿物组成主要为白云石,余为黏土矿物、有机质、石英、长石、云母等陆源矿物碎屑。白云石普遍呈自形—半自形晶,微—粉晶结构,晶体直径一般为0.02~0.1 mm,少数直径大于0.1 mm,晶体直径具微晶—粉晶双峰结构44
图12 大薄片照片展示长宁双河剖面陆棚浅滩沉积特征(观音桥段)

(a)7-2-1;(b)7-2-2;(c)7-3-1;(d)7-4-1

Fig.12 Large thin section photos showing the sedimentary characteristics of the shelf shoal in the Shuanghe profile of Changning (Guanyinqiao section)

陆棚浅滩沉积主要由陆生物质和原地成因物质混合而成。扫描电镜下,页岩主要由细粒泥组成,常见陆生矿物有黏土矿物(30.5%)和少量斜长石,原地成因矿物有铁白云石(39.5%)和方解石(26.5%),基底式胶结,白云石边缘多发生方解石化(图13)。黏土矿物呈长条状或片状分布,粒径为1.2~4.6 μm(平均为2.4 μm)。白云石粒径为3.2~7.6 μm(平均为5.8 μm),呈深灰色,棱角状。方解石粒径为1.8~7.3 μm(平均为3.4 μm),呈浅灰色,棱角状,发育少量溶蚀孔隙。黄铁矿粒径为4.1~6.1 μm(平均为5.3 μm),呈草莓状和团块状。
图13 扫描电镜照片展示陆棚浅滩沉积特征

(a)阳101H3-8井,3 789.70 m;(b)阳101H3-8井,3 789.70 m

Fig. 13 Scanning electron microscope photos showing sedimentary characteristics of shelf shoals

3.2 沉积演化及火山灰层厚度

川南地区细粒浊流沉积、半远洋沉积和陆棚浅滩沉积在五峰组内部由下至上依次出现(图14)。五峰组笔石带WF1—WF2发育细粒浊流沉积,沉积物主要为陆源成因,以牵引搬运和侧向平流方式沉降于盆地内。笔石带WF3发育半远洋沉积,沉积物以陆源物质和内源物质混合沉积为主,陆源物质多以侧向平流的方式搬运至盆地内。笔石带WF4发育陆棚浅滩沉积,水体相对较浅,大量浅水生物在此殖居,造成生物碎屑发育。陆棚浅滩沉积物以碳酸盐矿物和黏土矿物为主,方解石和白云石颗粒多呈棱角状。
图14 川南地区五峰组沉积特征及演化(火山灰层厚度据文献[51])

Fig.14 Sedimentary characteristics and evolution of Wufeng Formation in the southern Sichuan Basin (volcanic ash layer thickness according to Ref. [51])

川南地区五峰组不同沉积类型的发育与火山灰层厚度有一定的对应关系(图14)。细粒浊流沉积发育时期,火山灰层厚度相对较大,一般为0.5~2 cm,平均厚度为0.8 cm。半远洋沉积发育时期,火山灰层厚度明显减薄,一般为0.2~0.6 cm,平均厚度为0.4 cm。陆棚浅滩沉积发育时期,火山灰层厚度为0.1~0.5 cm,平均厚度为0.3 cm。整体上,五峰组由下至上,随着火山灰层厚度逐渐减薄,沉积类型也发生相应变化。

4 讨论

4.1 不同沉积类型的成因

4.1.1 细粒浊流沉积成因

黑色页岩发育9个完整的浊积岩沉积构造序列,整体构成一个正递变,代表了一次完整的细粒浊流沉积事件。T0段和T1段主要由细砂—粉砂构成,沟槽中发育泥质纹层,表明其为低浓度、低沉积速率的细粒浊流悬浮沉降成因。波状交错层理、水平层理和爬升波纹层理等发育,表明流体流速较大(>25 cm/s)45,牵引流作用较强46。随着流体流速降低,波状交错层理、水平层理和爬升波纹层理依次出现47。波纹的形成与沉积物粒度、沉积速率和流动状态持续时间密切相关。波纹交错层理一般只形成于粒度为50~180 μm的沉积物中48。过高的沉积速率(>0.4~0.6 mm/s)会抑制波纹的形成。在层状流或湍流活动被黏性泥抑制的流体中,波纹交错层理不发育。同时,为确保波纹的形成,该流动状态至少要持续几分钟,且沉积物粒度越细,所需持续时间越长49。T1段包卷层理的形成与沉积物低渗透率有关,来自下伏层段的流体注入造成沉积物液化及层间流动,从而引起原生层理的弯曲950-51
T2段、T3段均为粉砂纹层和泥纹层互层,表示浊流流速降低。T2段低振幅长波长爬升波纹层理的发育,表明了流速相对较低(15~25 cm/s)、粉砂质颗粒含量相对较高的浊流性质45。T3段为粉砂纹层和泥纹层互层,发育砂泥正递变层,表明浊流流速低于15 cm/s952-54。砂泥递变层的形成与浊流底部的边界层剪切分选有关。浊流活动过程中,粉砂颗粒和絮凝颗粒以相似的速率沉降。当它们进入边界层内时,絮凝颗粒发生边界层剪切破裂,而粉砂颗粒正常沉降形成粉砂纹层。随着边界层泥质浓度逐渐升高,泥质颗粒重新絮凝沉降形成泥纹层55。上述过程循环往复,从而形成多个砂泥递变层叠置56
T4段至T6段以泥纹层为主,含有少量粉砂纹层,表明浊流流速进一步降低(<15 cm/s),浊流黏性增大57。递变型水平层理发育,表明浊流底部边界剪切层已经不能有效地分离粉砂和泥质9。大量束状纹层发育,表明浊流流速和浓度都非常低。包卷层理大量发育,表明沉积物粒度较细、渗透率低。
T7段均质层反映了近乎静止的沉积物云(或雾状层)沉积58-59,而微弱的波状纹层反映了十分微弱的水体流动。T8段可能形成于浊流停止活动之后的水体相对静止期,该时期沉积物云(或雾状层)沉降,形成泥质块状层58-59。浊流活动带来了大量营养物质和富氧水体,从而有利于机会种群生物在此殖居,造成原生沉积构造完全破坏60-61

4.1.2 半远洋沉积成因

半远洋沉积是指由泥和粉砂组成的沉积物或沉积岩,沉积物为陆源和生物混合成因,陆源的物质多为粉砂颗粒1538。半远洋沉积物多由垂直沉降和极慢的侧向平流沉积形成62。川南地区沉积物陆源成因石英、方解石和黏土矿物大量发育,自生石英主要为生物成因63-64,整体表现为陆源和生物混合成因65;颗粒粒径均小于16 μm,整体为泥和粉砂组成;页岩发育递变型水平层理,表明其主要由静水垂直沉降作用形成。陆源石英、方解石和黏土矿物等颗粒由水流从浅水区携带至深水斜坡和深水平原位置,然后发生缓慢沉降形成细粒沉积物。当携带悬浮沉积物的季节性径流进入盆地时,根据其密度与盆地水体密度的关系,可划分为层面流、层间流和潜流66。其中,潜流易在河口地区形成浊流沉积;层面流和层间流可将陆源物质搬运至盆地内部,使其长时间处于悬浮状态,直至水动力(接近)完全消失后在静水环境下沉积。侧向平流作用的驱动力可能为河流羽状体惯性和浊流羽状体15。半远洋沉积中,黏土矿物也有可能为火山碎屑来源66,而粒度小于4 μm的颗粒多为生物成因或成岩成因67- 68
陆地径流入盆强度会发生季节性变化。雨量相对充沛的春夏季节,地表径流相对较强,所携带的陆源石英、碳酸盐矿物等的含量及粒度相对较大;雨量相对不足的秋冬季节,地表径流相对较弱,所携带的沉积物含量及粒度相对较低。地表径流的周期性变化,从而造成沉积物岩性及沉积构造周期性变化65

4.1.3 陆棚浅滩沉积成因

陆棚浅滩沉积是指在陆棚相对浅水位置,陆生物质和原地成因物质混合而形成的沉积物14。陆棚浅滩沉积以垂向沉降为主,少量来源于极缓慢的侧向平流作用。川南地区页岩中白云石和方解石均呈棱角状,大量双壳类、腕足类等生物化石保存完整,表明其以原地沉积为主,经历的搬运距离非常有限;页岩含量大量的细粒黏土矿物,表明其主要来源于陆生成因。页岩中黏土矿物与方解石和白云石混杂堆积,表明其为混合沉积成因69。综合分析认为该页岩为陆棚浅滩沉积成因,形成环境为浅水陆棚位置22。陆棚浅滩沉积中,黏土矿物可能为陆源成因,由火山或底流等作用搬运至盆地内悬浮沉降堆积而成70。方解石和白云石可能来源于原地、准原地死亡的钙质生物。

4.2 不同沉积类型演化的成因

晚奥陶世周缘板块构造演化可能是造成五峰组不同沉积类型纵向演化的主要原因。晚奥陶世,川南地区位于南半球环冈瓦纳大陆中低纬度地区71,受广西运动影响,扬子陆块与华夏陆块发生汇聚26,扬子地区也由被动大陆边缘盆地转化为前陆盆地2532。构造演化可分为①逆冲构造加载挠曲沉降、②构造—沉积物加载挠曲—黏弹性挠曲均衡沉降和③晚期缓慢沉降、应力松弛、剥蚀回弹隆起等阶段6671,五峰组处于逆冲构造加载挠曲沉降阶段。强烈的构造加载,不仅造成五峰组与下伏宝塔组之间的角度不整合,而且造成川南地区以清水碳酸盐沉积体系为主转变为以浑水细粒碎屑岩沉积为主22。五峰组沉积早期,由于周缘板块构造活动强烈、火山活动强烈、源区供应充分,故浊流沉积发育,在盆地较深水位置形成大量细粒浊流沉积,并形成大量火山灰夹层。五峰组沉积中期和晚期,由于周缘板块构造活动变弱,盆地整体进入均衡沉降阶段,陆源供给相对减少,故形成大量混合沉积,火山灰夹层厚度也相应减少。前人研究认为,火山灰主要来源于3处:一是扬子地块北侧的秦岭古洋壳在华北地块之下向北俯冲72-73;二是扬子地块北缘地块内的伸展和拆离74;三是冈瓦纳大陆碎片自东南向华南地块俯冲碰撞6675。火山喷发作用形成的火山灰不仅造成页岩有机质富集,更造成全球海平面下降、海水温度降低及海盆底水上涌6676。五峰组观音桥段形成时期,由于海水变浅及温度降低17,故浅水壳相生物的繁盛,尤其是赫南特贝动物群富产,碳酸盐岩沉积发育,从而形成大量陆棚浅滩沉积。

4.3 页岩气意义

沉积类型直接影响页岩储层品质。分析化验资料表明,半远洋沉积成因页岩孔隙度和TOC含量最高,陆棚浅滩沉积次之,细粒浊流沉积最差(图2表2)。
表2 川南地区五峰组不同沉积类型储层特征

Table 2 Reservoir characteristics of different sedimentary types in the Wufeng Formation in the southern Sichuan Basin

沉积类型 井号 深度/m

孔隙度

/%

TOC含量

/%

陆棚浅滩沉积 阳101H3-8 3 787.57 3.92 3.25
半远洋沉积 阳101H3-8 3 788.54 4.15 3.11
阳101H3-8 3 788.79 3.34 4.10
阳101H3-8 3 788.96 4.05 2.91
细粒浊流沉积 阳101H3-8 3 789.13 3.20 2.6
阳101H3-8 3 789.65 3.81 2.4
阳101H3-8 3 790.49 3.50 0.37
阳101H3-8 3 791.58 2.66 0.30
阳101H3-8 3 792.29 1.58 0.15
页岩孔隙度和TOC含量可能与内源细粒物质含量呈正相关关系。半远洋沉积内源物质含量最高,页岩TOC含量越高和孔隙度越大。细粒浊流沉积以外源物质为主,故页岩TOC含量最低、孔隙度最小。

5 结论

(1)川南地区五峰组主要发育细粒浊流沉积、半远洋沉积和陆棚浅滩沉积3种沉积类型:细粒浊流沉积以陆源碎屑沉积为主,可清晰见到9个典型沉积序列;半远洋沉积以陆源碎屑和生物成因物质混合沉积为主,沉降方式包括悬浮沉降和侧向平流;陆棚浅滩沉积由陆源成因与原生成因物质混合而成,沉降方式以悬浮沉降为主。
(2)细粒浊流沉积主要发育于上奥陶统五峰组笔石带WF1—WF2,半远洋沉积主要发育于五峰组笔石带WF3,而陆棚浅滩沉积主要发育于五峰组笔石带WF4。
(3)浅水细粒沉积类型及分布反映了周缘板块构造活动特征及演化:细粒浊流沉积发育,表明周缘板块构造挤压强烈,陆源供给充分,半远洋沉积发育,表明周缘板块构造活动减弱,陆源供给减少,陆棚浅滩沉积发育,表明周缘板块构造活动进一步减弱,陆源供给进一步减少。
(4)沉积类型直接影响页岩的储层品质,细粒浊流沉积孔隙度和总有机碳含量最低,而半远洋沉积孔隙度和总有机碳含量最高。
1
林畅松, 夏庆龙, 施和生, 等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘, 2015, 22(1): 9-20.

LIN C S,XIA Q L,SHI H S,et al.Geomorphic evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20.

2
ALLEN P A. From landscapes into geological history[J]. Nature, 2008, 451(7176): 274-276.

3
WANG J L, WU C D, ZHOU T Q, et al. Source and sink evolution of a Permian-Triassic rift-drift basin in the southern Central Asian Orogenic Belt: Perspectives on sedimentary geochemistry and heavy mineral analysis[J]. Journal of Asian Earth Sciences, 2019, 181: 103905.

4
APLIN A C, MACQUAKER J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin,2011,95(12):2031-2059.

5
LAZAR O R, BOHACS K M, MACQUAKER J, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research,2015,85(3): 230-246.

6
STOW D A V, HOWELL D G, NELSON C H. Sedimentary, tectonic, and sea-level controls on submarine fan and slope-apron turbidite systems[J]. Geo-Marine Letters, 1983, 3(2): 57-64.

7
STOW D A V, PIPER D J W. Deep-water fine-grained sediments: Facies models[J]. Geological Society London,Special Publications,1984,15(1):611-646.

8
STOW D A V, SHANMUGAM G. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments[J]. Sedimentary Geology,1980,25(1): 23-42.

9
TALLING P J, MASSON D G, SUMNER E J, et al. Subaqueous sediment density flows:Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.

10
MULDER T, SYVITSKI J P, MIGEON S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6-8): 861-882.

11
STOW D, FAUGÈRES J. Contourite facies and the facies model[J]. Developments in Sedimentology,2008,60:223-256.

12
BANKOLE S, STOW D, SMILLIE Z, et al. Mudrock microstructure: A technique for distinguishing between deep-water fine-grained sediments[J]. Minerals, 2021, 11(6): 653.

13
LEGLER B, JOHNSON H D, HAMPSON G J, et al. Facies model of a fine-grained, tide-dominated delta: Lower Dir Abu Lifa Member (Eocene), western Desert, Egypt[J]. Sedimentology, 2013, 60(5): 1313-1356.

14
TWICHELL D C, MCCLENNEN C E, BUTMAN B. Morphology and processes associated with the accumulation of the fine-grained sediment deposit on the southern New England shelf[J]. Journal of Sedimentary Petrology,1981,51(1):269-280.

15
STOW D, SMILLIE Z. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites[J]. Geosciences, 2020, 10(2): 68.

16
STOW D A, FAUGÈRES J, HOWE J A, et al. Bottom currents, contourites and deep-sea sediment drifts: Current state-of-the-art[J]. Geological Society, London, Memoirs, 2002, 22(1): 7-20.

17
MELCHIN M J, MITCHELL C E, HOLMDEN C, et al. Environmental changes in the Late Ordovician-Early Silurian: Review and new insights from black shales and nitrogen isotopes[J]. GSA Bulletin, 2013, 125(11-12): 1635-1670.

18
RONG J Y, HARPER D A T, HUANG B, et al. The latest Ordovician Hirnantian brachiopod faunas: New global insights[J]. Earth-Science Reviews, 2020, 208: 103280.

19
BRENCHLEY P J, MARSHALL J D, CARDEN G, et al. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period[J]. Geology, 1994, 22(4): 295-298.

20
牟传龙, 王秀平, 王启宇, 等. 川南及邻区下志留统龙马溪组下段沉积相与页岩气地质条件的关系[J]. 古地理学报, 2016, 18(3): 457-472.

MOU C L, WANG X P, WANG Q Y, et al. Relationship between sedimentary facies and shale gas geological conditions of the Lower Silurian Longmaxi Formation in southern Sichuan Basin and its adjacent areas[J].Journal of Palaeogeography,2016, 18(3):457-472.

21
郭英海, 李壮福, 李大华, 等. 四川地区早志留世岩相古地理[J]. 古地理学报, 2004, 6(1): 20-29.

GUO Y H, LI Z F, LI D H, et al. Lithofacies palaeogeography of the Early Silurian in Sichuan area[J]. Journal of Palaeogeography, 2004, 6(1): 20-29.

22
王红岩, 施振生, 孙莎莎, 等. 陆表海页岩沉积微相类型及微相分布模式——以川南地区五峰组—龙马溪组为例[J]. 石油勘探与开发, 2023, 50(1): 51-64.

WANG H Y,SHI Z S,SUN S S, et al. Microfacies types and distribution of epicontinental shale:A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin,China[J]. Petroleum Exploration and Development,2023, 50(1): 51-64.

23
ZHANG C L,SANTOSH M,ZUO Q B,et al.The Gondwana connection of South China:Evidence from monazite and zircon geochronology in the Cathaysia block[J].Gondwana Research, 2015, 28(3): 1137-1151.

24
YAO W H, LI Z X, LI W X, et al. Detrital provenance evolution of the Ediacaran-Silurian Nanhua foreland basin,South China[J]. Gondwana Research, 2015, 28(4): 1449-1465.

25
YU J H, REILLY O,SUZANNE Y O, et al. Where was South China in the Rodinia supercontinent?[J].Precambrian Research, 2008,164(1-2):1-15.

26
WU H R. Reinterpretation of the Guangxian orogeny[J]. Chinese Science Bulletin, 2000, 45(13): 1244-1248.

27
ZHOU L, KANG Z H, WANG Z X, et al. Sedimentary geochemical investigation for paleoenvironment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform[J]. Journal of Petroleum Science and Engineering,2017,159:376-386.

28
MUNNECKE A, CALNER M, HARPER D A, et al. Ordovician and Silurian sea-water chemistry, sea level, and climate:A synopsis[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2010, 296(3-4): 389-413.

29
ZHANG T G, SHEN Y N, ALGEO T J. High-resolution carbon isotopic records from the Ordovician of South China: Links to climatic cooling and the Great Ordovician Biodiversification Event (GOBE)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 289(1-4): 102-112.

30
HAQ B U, SCHUTTER S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.

31
CHEN X, RONG J Y, LU Y, et al. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204(3-4): 353-372.

32
YAN O T,CHEN D Z,WANG Q C,et al.Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, South China[J]. Geology, 2011, 38(7): 599-602.

33
ZOU C N, QIU Z, POULTON S W, et al. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction[J]. Geology, 2018, 46(6): 535-538.

34
SHI Z S, WANG H Y, SUN S S, et al. Graptolite zone calibrated stratigraphy and topography of the Late Ordovician-Early Silurian Wufeng-Lungmachi shale in Upper Yangtze area, South China[J]. Arabian Journal of Geosciences, 2021, 14(3): 213.

35
王红岩, 施振生, 孙莎莎. 四川盆地及周缘奥陶系五峰组—志留系龙马溪组页岩生物地层及其储集层特征[J]. 石油勘探与开发, 2021, 48(5): 879-890.

WANG H Y, SHI Z S, SUN S S. Biostratigraphy and reservoir characteristics of the Ordovician Wufeng-Silurian Longmaxi shale in the Sichuan Basin and surrounding areas, China[J]. Petroleum Exploration and Development,2021,48(5):879-890.

36
樊隽轩, MELCHIN M J, 陈旭, 等. 华南奥陶—志留系龙马溪组黑色笔石页岩的生物地层学[J]. 中国科学: 地球科学, 2012, 42(1): 130-139.

FAN J X, MELCHIN M J, CHEN X, et al. Biostratigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China[J]. Science China:Earth Science,2012, 42(1): 130-139.

37
陈旭, 樊隽轩, 张元动, 等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 2015, 39(4): 351-358.

CHEN X, FAN J X, ZHANG Y D, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy, 2015, 39(4): 351-358.

38
STOW D A V, TABREZ A R. Hemipelagites: Processes, facies and model[J]. Geological Society,London,Special Publications,1998,129:317-337.

39
SHANMUGAM G. 50 years of the turbidite paradigm (1950s—1990s): Deep-water processes and facies models-a critical perspective[J]. Marine and Petroleum Geology, 2000,17(2): 285-342.

40
STOW D. Sedimentary Rocks in the Field-A Colour Guide[M]. Australia: CSIRO Publishing, 2010:320.

41
施振生, 邱振. 海相细粒沉积层理类型及其油气勘探开发意义[J]. 沉积学报, 2021, 39(1): 181-196.

SHI Z S, QIU Z. Main bedding types of marine fine-grained sediments and their significance for oil and gas exploration and development[J]. Acta Sedimentologica Sinica, 2021, 39(1): 181-196.

42
SHI Z S, ZHOU T Q, WANG H Y, et al. Depositional structures and their reservoir characteristics in the Wufeng-Longmaxi shale in southern Sichuan Basin,China[J]. Energies,2022,15(5): 1618.

43
王远翀, 梁薇, 牟传龙, 等. 渝东南—黔北地区赫南特期冰川事件的沉积响应[J]. 沉积学报, 2015, 33(2): 232-241.

WANG Y C, LIANG W, MOU C L, et al. The sedimentary response to Gondwana Glaciation in Hirnantian (Ordovician) of the eastern Chongqing and the northern Guizhou Region,South China[J].Acta Sedimentologica Sinica,2015,33(2):232-241.

44
时志强, 彭深远, 赵安坤, 等. 重庆綦江观音桥剖面观音桥层的岩性新认识[J]. 古地理学报, 2023, 25(1): 43-55.

SHI Z Q,PENG S Y,ZHAO A K, et al. New lithological cognition of Guanyinqiao bed at Guanyinqiao section in Qijiang area, Chongqing, Southwest China[J]. Journal of Palaeogeography (Chinese Edition), 2023, 25(1): 43-55.

45
YAWAR Z, SCHIEBER J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34.

46
BAAS J H, BEST J L, PEAKALL J. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows[J]. Sedimentology, 2011, 58:1953-1987.

47
BANERJEE I. Experimental study on the effect of deceleration on the vertical sequence of sedimentary structures in silty sediments[J]. Journal of Sedimentary Petrology,1977,47(5): 442-444.

48
JOBE Z R,LOWE D R,MORRIS W R.Climbing-ripple succe-ssions in turbidite systems:Depositional environments,sedimen-tation rates and accumulation times[J]. Sedimentology,2012,59(3): 867-898.

49
SUMNER E J, AMY L A, TALLING P J. Deposit structure and processes of sand deposition from a decelerating sediment suspension[J].Journal of Sedimentary Research,2008,78:529-547.

50
冯增昭. 沉积岩石学[M]. 第二版.北京: 石油工业出版社, 1994:286-298.

FENG Z Z. Sedimentary Petrology[M]. Second Edition. Beijing: Petroleum Industry Press, 1994:286-298.

51
杜学斌, 贾冀新, 赵珂, 等. 扬子地区奥陶纪—志留纪过渡期深时火山灰层发育特征及其对富有机质页岩沉积的影响[J]. 中南大学学报(自然科学版), 2022, 53(9): 3509-3521.

DU X B, JIA J X, ZHAO K, et al. Development characteristics of deep-time volcanic ash layers and its influence on deposition of organic-rich shale across Ordovician-Silurian transition in Yangtze area,South China[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3509-3521.

52
LOWE D R. Sediment gravity flows; II, Depositional models with special reference to the deposits of high-density turbidity currents[J].Journal of Sedimentary Research,1982,52(1):343-361.

53
BOULESTEIX K, POYATOS-MORÉ M, HODGSON D M,et al.Fringe or background: Characterizing deep-water mudstones beyond the basin-floor fan sandstone pinchout[J]. Journal of Sedimentary Research,2020,90(12):1678-1705.

54
PIPER D J W. Turbidite origin of some laminated mudstones[J]. Geological Magazine, 1972, 109(2): 115-126.

55
STOW D A, BOWEN A J. Origin of lamination in deep sea, fine-grained sediments[J]. Nature,1978,274(5669):324-328.

56
STOW D A, BOWEN A J. A physical model for the transport and sorting of fine-grained sediment by turbidity currents[J]. Sedimentology, 1980, 27: 31-46.

57
JEONG S W, LOCAT J, LEROUEIL S, et al. Rheological properties of fine-grained sediment: The roles of texture and mineralogy[J]. Canadian Geotechnical Journal,2010,47(10): 1085-1100.

58
LASH G G. Sedimentology and evolution of the Martinsburg Formation (Upper Ordovician) fine-grained turbidite depositional system,central Appalachians[J]. Sedimentology,1988, 35(3): 429-447.

59
LASH G G. Sedimentology and possible paleoceanographic significance of mudstone turbidites and associated deposits of the Pen Argyl Member, Martinsburg Formation (Upper Ordovician),eastern Pennsylvania[J]. Sedimentary Geology,1987, 54(1-2): 113-135.

60
胡斌, 王冠忠, 齐永安. 痕迹学理论与应用[M]. 徐州:中国矿业大学出版社, 1997: 1-135.

HU B, WANG G Z, QI Y A. Theory of Ichnology and Its Application[M]. Xuzhou: China University of Mining and Te-chnology Press, 1997: 1-135.

61
BROMLEY R G. Trace fossils: Biology, taphonomy and applications[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,1997,129(1): 193-194.

62
STOW D, HUC A, BERTRAND P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology, 2001, 18(4): 491-498.

63
赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学, 2016, 27(2): 377-386.

ZHAO J H, JIN Z J, JIN Z K, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386.

64
MOUNT J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J].Geology,1984,12(7):432-435.

65
卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4): 226-236.

LU L F, QIN J Z, SHEN B J, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236.

66
SCHIMMELMANN A, LANGE C B, SCHIEBER J, et al. Varves in marine sediments: A review[J]. Earth-Science Reviews, 2016, 159: 215-246.

67
SU W B, HUFF W D, ETTENSOHN F R, et al. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana[J]. Gondwana Research, 2009, 15(1): 111-130.

68
ZHAO J H,JIN Z K,JIN Z J,et al.Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi formations in the Sichuan Basin,South China: Implications fo pore evolution[J]. Journal of Natural Gas Science and Engineering,2017,38:21-38.

69
MOUNT J. Mixed siliciclastic and carbonate sediments: A proposed first-order textural and compositional classification[J]. Sedimentology, 2010, 32(3): 435-442.

70
SCHIEBER J. Mud re-distribution in epicontinental basins-Exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71: 119-133.

71
林畅松,王清华,肖建新,等.库车坳陷白垩纪沉积层序构成及充填响应模式[J]. 中国科学(地球科学), 2004,34(S1):74-82.

LIN C S, WANG Q H, XIAO J X, et al. Depositional sequence architecture and filling response model of the Cretaceous in the Kuqa Depression,the Tarim Basin[J].Science in China Series D(Earth Sciences), 2004, 34(S1): 74-82.

72
熊国庆, 王剑, 李园园, 等. 南大巴山东段上奥陶统五峰组—下志留统龙马溪组钾质斑脱岩锆石U-Pb年龄及其构造意义[J]. 地质学报, 2019, 93(4): 843-864.

XIONG G Q, WANG J, LI Y Y, et al. Zircon U-Pb dating of K-bentonite from Late Ordovician Wufeng Formation and Earlier Silurian Longmaxi Formation in the eastern section of south Dabashan and its tectonic significance[J]. Acta Geologica Sinica, 2019, 93(4): 843-864.

73
SUN W D, LI S G, SUN Y, et al. Mid-paleozoic collision in the north Qinling: Sm-Nd, Rb-Sr and 40Ar/39Ar ages and their tectonic implications[J]. Journal of Asian Earth Sciences, 2002, 21(1): 69-76.

74
JIA J X, DU X B, ZHAO K, et al. Sources of K-bentonites across the Ordovician-Silurian transition in South China: Implications for tectonic activities on the northern and southern margins of the South China Block[J]. Marine and Petroleum Geology, 2022, 139: 105599.

75
YANG S C,HU W X,WANG X L,et al.Duration, evolution, and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region, South China[J]. Earth and Planetary Science Letters, 2019, 518: 13-25.

76
RAUP D M, SEPKOSKI J J. Mass extinctions in the marine fossil record[J]. Science, 1982, 215(4539): 1501-1503.

Outlines

/