Restoration method of disequilibrium compaction overpressure in tectonically uplifted area: A case study of Yanchang Formation in Xiasiwan area, Ordos Basin

  • Xiaojie HAN , 1, 2 ,
  • Changyu FAN , 1, 2 ,
  • Chao GAO 2, 3 ,
  • Lixia ZHANG 2, 3 ,
  • Jintao YIN 2, 3 ,
  • Chengda WANG 2, 3 ,
  • Ning WANG 2, 3
Expand
  • 1. State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University,Xi'an 710069,China
  • 2. Shaanxi Key Laboratory of Lacustrine Shale Gas Accumulation and Exploitation,Xi'an 710075,China
  • 3. Research Institute of Shanxi Yanchang Petroleum (Group) Co. ,Ltd,Xi’an 710075,China

Received date: 2022-11-14

  Revised date: 2023-02-06

  Online published: 2023-07-13

Supported by

The Open Project of Shaanxi Provincial Key Laboratory of Continental Shale Gas Accumulation and Development(YJSYZX18SKF0002)

Abstract

Tectonic uplift will not only reduce the formation pressure but also cause pore rebound which leads to changes in the physical properties of the formation. There are several errors without considering the pore rebound when the conventional methods are used to identify the disequilibrium compaction and calculating the overpressure. In order to accurately identify the disequilibrium compaction and calculate the disequilibrium compaction overpressure of the tectonic uplift area, this article introduces the impact of tectonic uplift on logging data firstly; then, a method to calculate disequilibrium compaction overpressure by combining pore rebound experiments and loading/unloading equations is introduced; finally, taking Yanchang Formation in Xiasiwan area of Ordos Basin as an example, the loading-unloading curve method was used to restore the disequilibrium compaction overpressure in Chang 7 Member of the Yanchang Formation. The results show that the logging curve characteristics at the end of the normal compaction section change by the pore rebound, that is, acoustic time difference and the density decrease, resistivity and neutron porosity increase; By comparing the calculation results of loading-unloading curve method, formation pressure simulation and equivalent depth method, it is found that the conventional calculation results of disequilibrium compaction without considering pore rebound are too large in the tectonic uplift area, which is not applicable in the tectonic uplifting area. Research shows that it needs to identify the logging curve characteristics that acoustic time, density decreases, and the resistivity, neutron porosity increases to identify the disequilibrium compaction, using the method of loading-unloading curve can restore the disequilibrium compaction overpressure in the uplift area more accurately, which provides a more effective research basis for pressure evolution, hydrocarbon accumulation and prediction in tectonically uplifted areas.

Cite this article

Xiaojie HAN , Changyu FAN , Chao GAO , Lixia ZHANG , Jintao YIN , Chengda WANG , Ning WANG . Restoration method of disequilibrium compaction overpressure in tectonically uplifted area: A case study of Yanchang Formation in Xiasiwan area, Ordos Basin[J]. Natural Gas Geoscience, 2023 , 34(7) : 1163 -1172 . DOI: 10.11764/j.issn.1672-1926.2023.02.008

0 引言

超压在含油气盆地中广泛存在1,其成因主要分为5种:欠压实(或压实不平衡、不均衡压实)、流体膨胀、成岩作用、构造挤压和压力传递2。在快速沉积的盆地中,由于地层致密,流体无法及时从孔隙排出,上覆地层压力会附加在流体上形成流体超压,这一过程被称为欠压实3-4,是造成沉积盆地超压的主要原因之一5-9。泥岩压实曲线是判断欠压实的主要方法10-11。伊顿法12、等效深度法13等是计算孔隙压力、预测地层欠压实超压的常用方法14-19,这些方法都是基于岩石属性随深度增加而发生变化的趋势1620-22。因此,客观、准确地绘制泥岩测井随深度的变化曲线是研究压实的前提。前人针对泥岩测井受到泥岩成分、地层流体性质、井壁扩径及高丰度有机质等多种因素影响,提出了不同方法以避免或减少这些复杂因素的影响23-26。在地层抬升过程中,岩石孔隙的卸载回弹会改变测井曲线特征4,造成泥岩压实曲线发生一定程度的偏转,并且卸载也会降低流体超压1727。前人28-29在压实研究中,无论是利用泥岩压实曲线判断压实状态,还是利用声波时差定量计算欠压实超压,普遍未考虑卸载回弹引起的曲线偏转,使得压实研究的成果存在较大的不确定性。因此,消除卸载回弹的影响,客观、有效地分析测井资料,是准确绘制泥岩压实曲线、识别欠压实成因的基础,也是利用岩石物理属性计算欠压实超压的前提。
针对以上问题,本文基于卸载回弹的原理,通过识别地层抬升过程中孔隙度回弹对测井数据的影响,建立了地层抬升区的综合泥岩压实曲线图版,结合卸载回弹引起的有效应力和孔隙度变化,建立了加载—卸载曲线计算欠压实图版,并以鄂尔多斯盆地下寺湾地区为例,判断欠压实的发育层位,定量计算长7段欠压实超压。

1 下寺湾地区地质特征

鄂尔多斯盆地由伊盟隆起、渭北隆起、晋西挠褶带、天环坳陷、伊陕斜坡和西缘逆冲带6个一级构造单元组成30,下寺湾地区位于鄂尔多斯盆地伊陕斜坡之上的甘泉地区,区域构造为平缓的西倾单斜,地层倾角小于1°31图1)。下寺湾地区为陕西延长页岩气高效开发示范基地,是首批示范基地之一,陆相页岩层系分布于中生界三叠系延长组,是中国最早勘探开发的油层。该区延长组发育长7、长9和长4+5等泥页岩层,其中长7段泥页岩规模最大,厚度介于20~60 m之间32,地层致密,为欠压实超压的发育提供了较好的地质基础。长7段TOC值主要分布在2%~4%之间,R O值分布在1.25%~1.33%之间,处于成熟—高成熟热演化阶段,具有较好的生烃潜力33,可能形成一定的生烃增压。
图1 鄂尔多斯盆地下寺湾地区位置(据文献[31])

Fig.1 Location of Xiasiwan area in Ordos Basin(according to Ref.[31])

鄂尔多斯盆地的构造演化过程中,共经历了三叠纪末、中侏罗世末、侏罗纪末和早白垩世末4期抬升剥蚀事件34,其中早白垩世末构造抬升剥蚀事件最为强烈,对盆地东南部造成了较大影响,在研究区形成了1 200~1 800 m的地层剥蚀35。强烈的抬升剥蚀导致地层流体压力降低,研究区延长组测压数据统计结果显示,长7段及以下地层发育明显的异常低压,过剩压力低至-8.25 MPa(表1)。
表1 鄂尔多斯盆地下寺湾地区延长组典型井地层压力统计

Table 1 Formation pressure statistics of typical wells of Yanchang Formation in Xiasiwan area, Ordos Basin

井号 层位 埋深/m 实测压力/MPa 过剩压力/MPa
QT4 长82 1 488 9.038 -5.84
X100 长82 1 466 6.408 -8.25
X102 长82 1 509 9.163 -5.92
X105-1 长81 1 552 10.52 -4.99
P137 长72 1 076 7.188 -3.57
P129 长72 1 093 6.458 -4.47
P134 长72 1 223 6.784 -5.44

2 欠压实的识别

2.1 识别方法

正常压实情况下,岩石孔隙体积被压缩,流体从孔隙排出,使得岩石的传导属性和体积属性发生改变,测井响应特征变化如图2所示,声波时差和中子孔隙度减小、密度和电阻率增大(OA段);当地层发生欠压实时,流体排出受限,孔隙体积压缩被抑制,测井曲线偏离正常压实趋势(AB段)而发生反转,声波时差和中子孔隙度增大、密度和电阻率减小(AC段)4
图2 欠压实超压的测井响应2

Fig.2 Logging response during undercompaction and overpressure2

抬升卸载过程中,有效应力的降低引起连通孔隙发生回弹,而储存孔隙几乎不回弹,导致地层传导属性改变,而体积属性不变,即声波时差增大,电阻率减小,密度和中子孔隙度基本不变4。如图3所示,拐点A抬升至A′点,拐点A以上(正常压实段)偏移幅度较大,偏离之后依然具有正常压实测井曲线变化趋势。点B、C、D分别抬升至点B′、C′、D′,抬升后中子孔隙度和密度不变,点A和B(正常压实段)的声波时差和电阻率变化较大,点C和D(欠压实段)的声波时差和电阻率变化较小。
图3 构造抬升下压实的测井响应变化

Fig.3 The logging response changes of compaction under tectonic uplift

由于超压不稳定,总是趋向于减小至静水压力36-37,所以对于不均衡压实段,在抬升过程中,流体压力的降低快且多,在相等的抬升卸载下,不均衡压实段的有效应力降低量比正常压实段小,孔隙回弹较小,传导属性的变化也较弱。因此,拐点A以下偏离幅度较小,导致声波时差和密度减小、电阻率和中子孔隙度增大,表现出一个“过渡带”的特征。抬升剥蚀导致拐点埋深变浅,并在拐点处具有声波时差和密度同时减小、中子孔隙度和电阻率同时增大的特征(图3),这与以往声波时差和中子孔隙度变大、电阻率和密度变小的欠压实测井曲线特征并不一致。因此,不能利用以往的测井曲线标志去识别构造抬升区的欠压实,在构造抬升区,需识别出图3中A′D′段的测井特征,才能准确识别欠压实开始的层位。

2.2 识别过程及结果

本文研究首先对延长组声波时差进行有机质校正。为得到研究井纵向上相对较多的有机碳含量数据,首先建立测井曲线与有机碳含量之间的定量关系[式(1)],将有机质的质量占比ω TOC带入式(2)转化得到固体有机质形成的声波时差增量,继而得到扣除该增量后的声波时差值25表2展示了YY3井延长组有机碳含量计算、有机质引起的声波时差增量以及校正前后的声波时差值的部分数据,根据校正后的测井数据判断和计算欠压实。
ω T O C = a L g R + 0.02 Δ t - 2.2 + b
表2 YY3井部分声波时差校正数据

Table 2 Part acoustic data before and after the correction of Well YY3

深度

/m

有机碳含量ω TOC/%

原始声波时差

/(μs/m)

校正后声波

时差/(μs/m)

声波时差增量Δt TOC/(μs/m)
1 419.5 4.547 288.02 251.86 36.16
1 477.1 3.484 299.97 273.71 26.26
1 480.8 3.268 288.41 262.66 25.75
1 484.0 2.337 268.54 248.82 19.72
1 517.3 3.205 291.08 266.09 24.99
1 524.8 4.052 304.19 274.09 30.11
1 567.4 2.875 299.71 278.09 21.61
1 576.9 3.530 310.21 284.71 25.50
1 591.6 2.770 244.50 219.03 25.47
1 603.3 2.048 246.65 228.04 18.61
1 605.8 2.105 246.32 227.17 19.16
1 625.4 2.415 251.37 229.72 21.65
1 638.0 1.848 256.49 240.27 16.22
1 647.3 2.157 256.31 237.33 18.98
1 652.6 1.907 232.64 214.51 18.12
式(1)中:ω TOCTOC的质量百分比,%;ab分别取2和0.326;Δt为泥岩声波时差值,μs/m;R为泥岩电阻率,取自RD电阻率测井,Ω·m。
Δ t T O C = Δ t + ρ o m Δ t m a - Δ t f Δ t f - Δ t m a - Δ t f Δ t ρ o m Δ t m a - Δ t f + ρ r o c k Δ t o m - Δ t m a k ω T O C - Δ t f
式(2)中: Δ t TOC为固体有机质形成的声波时差增量,μs/m;ρ rock为烃源岩骨架密度,取值2.6 g/cm3[38ρ om为固体有机质密度,取值1.1 g/cm3[39k为有机碳转化系数,取值1.2540;Δt ma为岩石的声波时差,μs/m;Δt f为孔隙流体的声波时差,泥岩、页岩和未成熟泥岩内孔隙流体的声波时差分别取值645 μs/m、1 604 μs/m、620 μs/m25;Δt om为有机质的声波时差,取值550 μs/m41
结合校正后的声波时差测井数据,绘制出研究区的综合泥岩压实曲线(声波时差、密度、中子孔隙度及电阻率),发现研究区在长6段及以浅为正常压实,长7段及以深为欠压实。以YY3井为例,在长6段的底部,埋深1 310 m以浅,具有较好的压实趋势;埋深1 310~1 380 m之间,声波时差偏离正常压实曲线突然减小、电阻率偏离正常压实曲线突然增大,同时密度减小、中子孔隙度增大,表现为欠压实开始时的过渡带测井特征;埋深1 380 m以深,声波时差和中子孔隙度同时增大、电阻率和密度同时减小,为欠压实趋势(图4)。
图4 YY3井有机质校正后的综合泥岩压实曲线

Fig.4 Comprehensive mudstone compaction curves with correction of organic matter in Well YY3

3 欠压实超压定量计算

3.1 计算方法

如前所述,构造抬升会导致岩石连通孔隙发生回弹,孔隙度和物理属性发生改变,因此利用加载—卸载曲线法计算欠压实时,首先需要消除连通孔隙回弹的影响。泥岩连通孔隙的回弹通过降压过程中孔隙度的测量得到42-44,通过向岩石孔隙充入气体(一般为氦气),基于波义耳定律,求得岩样的有效孔隙体积和孔隙度,并通过降低围压,测量不同有效应力下的孔隙度,孔隙度随有效应力降低而增加的过程即为卸载(图5),孔隙度增加量与有效应力降低量的比值即为孔隙回弹系数[式(3)]。
c r = Δ ϕ Δ σ
图5 加载—卸载曲线计算欠压实超压示意

Fig.5 Schematic diagram of undercompaction and overpressure calculation by loading-unloading curve

式(3)中:c r为孔隙回弹系数;Δφ为卸载过程中的孔隙度变化量;Δσ为卸载过程中的有效应力变化量,MPa。
正常压实下的有效应力和孔隙度关系符合加载趋势(图5)。对于构造抬升区,加载曲线的建立需要先恢复最大埋深时期的有效应力[式(4)]和孔隙度[式(5)],然后建立加载方程[式(6)],其中现今孔隙度利用测井法进行计算45;欠压实过程中有效应力和孔隙度基本不变,有效应力/孔隙度保持在B点;抬升过程中,由于超压不稳定,具有向静水压力变化的趋势36-37,因此先降低,在此过程中有效应力不变,有效应力/孔隙度继续保持在B点;进一步抬升卸载中,有效应力降低,孔隙回弹导致孔隙度增加,有效应力/孔隙度由B点到C点,符合卸载曲线。BOWERS14和FLEMINGS46提出利用卸载参数求解得到卸载方程,而对于构造抬升引起的卸载回弹,由于地层卸载后的流体压力已知,所以在实验获取回弹系数的情况下,卸载方程如式(3)所示。
σ b = ρ r - ρ w g ( Δ H + H )
式(4)中:σb为最大埋深时期的有效应力,MPa;ρ rρ w分别为地层骨架、地层流体的密度,g/cm3;g为重力加速度,9.8 m/s2;ΔH为地层剥蚀厚度,m;H为现今地层埋藏深度,m。
φ b = φ p - c r σ b - ρ r g H + ρ w g H
式(5)中:φ pφ b 分别为现今、最大埋深时期的孔隙度,%;cr 为孔隙回弹系数。
φ b = a e b σ b
式(6)中: ab为曲线拟合参数。
加载曲线和卸载曲线的交点反映最大埋深期的压实(图5),将式(6)式(3)联立可以得到最大埋深时期的有效应力。利用特察方程47,计算得到欠压实引起的增压量[式(7)]。
Δ P = S b - σ b - P w b
式(7)中:ΔP为欠压实增压量,MPa;S bP wb分别为最大埋深时期的上覆地层应力和静水压力,MPa。

3.2 计算过程及结果

选取YY4井长7段现今埋藏深度为1 384.9 m的泥岩样品进行覆压孔隙度实验。结果表明,延长组泥岩在降压过程中,样品的孔隙度持续增大[图6(a)],表明泥岩孔隙具有一定的回弹性。由式(3)可知,孔隙回弹系数为单位有效应力变化下的孔隙度变化值。因此,本文研究计算出实验过程中不同有效应力降低下的孔隙度变化值[图6(b)],并以此计算YY4井延长组泥岩孔隙回弹系数,为1.75×10-4
图6 YY4井长7段页岩孔隙卸载回弹实验结果

(a)孔隙度变化曲线;(b)孔隙回弹系数计算曲线

Fig.6 The pore rebound experiment results of the Chang 7 Member shale in Well YY4

结合YY4井最大埋深时期正常压实段的有效应力和孔隙度,得到加载曲线及拟合方程[式(8)],R 2值为85.5。以上述泥岩样品为例,将其现今孔隙度和有效应力投影至加载曲线图版上(图7),其偏离出加载曲线(点A),线段AB为抬升回弹引起的卸载曲线,即孔隙度随着有效应力的降低而增大,符合卸载公式[式(3)],结合式(8)式(9),可得到泥岩发生卸载回弹之前的有效应力,即最大埋深时期的有效应力,为32.95 MPa。结合特察方程,最终计算出最大埋深时期的地层压力和欠压实增压量,分别为33.94 MPa和7.22 MPa。
φ b = 0.988 e - 0.075 σ b
φ p - φ b σ p - σ b = c r = 1.75 × 10 - 4
图7 YY4井长7段页岩最大埋深时期有效应力的计算图版

Fig.7 The diagram of the effective stress calculation at the maximum buried depth of the Chang 7 Member shale in Well YY4

4 讨论

4.1 抬升卸载对欠压实识别方法的影响

除综合泥岩压实曲线方法以外,Bowers图版法也是判断欠压实成因的常用办法,正常压实和欠压实超压都保持在加载曲线上,生烃和构造挤压等卸载超压机制则会偏离出加载曲线4-7。然而,无论是加载曲线还是速度—密度交会图,都是基于岩石物理属性参数的获取,这也就避免不了抬升卸载对其的改造。目前,LI等17在建立加载曲线图版时,只是恢复了最大埋深时期的有效应力,而忽略了孔隙度的回弹,这样建立的加载曲线图版在超压成因识别过程中可能会产生误差,如图8所示,实测点A看似落在“加载曲线”上,为欠压实超压,但其实偏离出实际的加载曲线,为卸载成因超压。此外,部分学者48研究认为泥岩的回弹量很小,但由于泥岩孔隙度本来就较小,所以卸载回弹引起的孔隙度占比并不小,因此在研究中不应被忽视49-50
图8 卸载回弹对加载曲线的影响

Fig.8 Effect of unloading and rebounding on loading curve

4.2 抬升盆地内常规欠压实计算方法误差分析

本文研究中同时利用等效深度法和PetroMod压力模拟对YY4井长7段的欠压实超压进行了定量识别,泥岩声波时差测井曲线及压实参数的获取均应用的是有机质校正后的泥岩声波时差。结果显示,压力模拟法和加载—卸载曲线法计算结果基本一致,而常规的等效深度法不考虑孔隙回弹影响,计算的欠压实超压量要高出将近1倍(表3)。就适用条件而言,加载—卸载曲线法和盆地模拟法均适用于构造抬升区域,二者的共同点在于均需要计算孔隙回弹系数,恢复地层最大埋深时期的压实特征,区别在于后者需要地质模型建立和大量参数选取及设置等,工作量较大,研究效率较低,且模拟结果受各种参数的影响,准确度也相对较低。而传统的欠压实超压恢复法不考虑孔隙回弹影响,计算结果误差大,对地层压力分布特征研究将造成很大影响,继而影响天然气有利区的预测和开发,并不适用于构造抬升的地区。
表3 不同方法计算YY4井长7段欠压实超压结果

Table 3 The calculation results of undercompaction overpressure of Chang 7 Member by different methods in Well YY4

计算方法 最大埋深时期的有效应力/MPa

最大埋深时期

的超压/MPa

欠压实增压量/MPa
加载—卸载法 32.95 33.94 7.22
压力模拟法 32.18 34.71 7.99
等效深度法 26.14 40.75 15.03

5 结论

(1)构造抬升过程,孔隙的回弹引起地层物理属性发生变化,使欠压实初始发育段具有声波时差、密度减小,电阻率、中子孔隙度增大的特征,而不改变正常压实测井变化趋势,可以根据正常压实段结束时拐点的深度来判断欠压实。
(2)构造抬升区,加载曲线的建立需要计算回弹孔隙度和剥蚀厚度,恢复出抬升之前最大埋深的有效应力和孔隙度,加载方程与卸载方程的联立可以计算出欠压实地层在最大埋深期的有效应力,然后得到欠压实超压。
(3)构造抬升区,常规欠压实超压恢复方法不适用,加载—卸载曲线考虑了孔隙回弹,计算结果更加准确。
1
洪峰,姜林,卓勤功,等.中国前陆盆地异常高压气藏类型[J].天然气地球科学,2018,29(3):317-327.

HONG F, JIANG L, ZHUO Q G, et al. Types of abnormal high-pressure gas reservoir in foreland basins of China[J]. Natural Gas Geoscience,2018,29(3):317-327.

2
赵靖舟,李军,徐泽阳.沉积盆地超压成因研究进展[J].石油学报,2017,38(9):973-998.

ZHAO J Z, LI J, XU Z Y. Advances in the origin of overpressure in sedimentary basins[J]. Acta Petrolei Sinica,2017,38(9):973-998.

3
SWARBRICK R E, OSBORNE M J. Mechanisms thatgenerate abnormal pressures: An overview[M]//LAW B E, UL MISHEK G F, SLAVIN V I. Abnormal Pressures in Hydrocarbon Environments. AAPG Memoir 70. Tusla: American Association of Petroleum Geologists, 1998:13-34.

4
BOWERS G L, KATSUBE T J. The role of shale pore structure on the sensitivity of wire-line logs to overpressure[M]// HUFFMAN A R, BOWERS G L. Pressure Regimes in Sedimentary Basins and Their Prediction. AAPG Memoir 76. Tusla: American Association of Petroleum Geologists,2004:43-60.

5
MOUCHET J P, MITCHELL A. Abnormal Pressures While Drilling: Origins Prediction Detection Evaluation[M]. Paris: Elf Aquitaine,1989.

6
OSBORNE M J, SWARBRICK R E. Mechanisms for generating overpressure in sedimentary basins: A reevaluation: Reply[J]. AAPG Bulletin,1997,90(81):1023-1041.

7
TINGAY M R P, HILLIS R R, SWARBRICK R E, et al. Origin of overpressure and pore pressure prediction in the Baram Province, Brunei[J]. AAPG Bulletin,2009,93(1):51-74.

8
GUO X, LIU K, JIA C, et al. Constraining tectonic compression processes by reservoir pressure evolution: Overpressure generation and evolution in the Kelasu thrust belt of Kuqa foreland basin, NW China[J]. Marine and Petroleum Geology,2016,72:30-44.

9
WANG X, HE S, WEI A, et al. Typical disequilibrium compaction caused overpressure of Paleocene Dongying Formation in Northwest Liaodongwan Depression,Bohai Bay Basin,China[J]. Journal of Petroleum Science & Engineering,2016,147:726-734.

10
陈荷立,汤锡元.山东东营凹陷泥岩压实作用及油气初次运移问题探讨[J].石油学报,1983,4(2):9-16.

CHEN H L, TANG X Y. A discussion on the compaction of argillaceous rocks and primary migration of oil and gas in Dongying Sag of Shandong Province[J].Acta Petrolei Sinica,1983,4(2):9-16.

11
赵健.松辽盆地西斜坡泥岩地层压实规律[J].石油与天然气地质,2010,31(4):486-492.

ZHAO J. Laws of mudstone compaction on the west slope of the Songliao Basin[J]. Oil & Gas Geology,2010,31(4):486-492.

12
EATON B A.The Equation For Geopressure Prediction From Well Logs[C]. SPE 5544,Fall Meetings of the Society of Petroleum Engineers of Aime,1975.

13
MAGARA K J. Compaction and Fluid Migration[M]. Amsterdam: Elsevier. 1978.

14
BOWERS G L. Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion,1995,10(2):89-95I.

15
王震亮,陈荷立.神木—榆林地区上古生界流体压力分布演化及对天然气成藏的影响[J].中国科学(D辑),2007,37(S1):49-61.

WANG Z L, CHEN H L. The distribution and evolution of fluid pressure and its influence on natural gas accumulation in the Upper Paleozoic of Shenmu-Yulin area, Ordos Basin[J]. Science in China Series D(Earth Sciences),2007,37(S1):49-61.

16
DREWS M C, BAUER W, CARACCIOLO L, et al. Disequilibrium compaction overpressure in shales of the Bavarian Foreland Molasse Basin: Results and geographical distribution from velocity-based analyses[J]. Marine and Petroleum Geology,2018,92:37-50.

17
LI J, ZHAO J Z, WEI X S, et al. Origin of abnormal pressure in the Upper Paleozoic shale of the Ordos Basin, China[J]. Marine and Petroleum Geology,2019,110:162-177.

18
姚泾利,徐丽,邢蓝田,等.鄂尔多斯盆地延长组长7和长8油层组流体过剩压力特征与油气运移研究[J].天然气地球科学,2015,26(12):2219-2226.

YAO J L, XU L, XING L T, et al. Fluid overpressure and oil migration in Chang 7 and Chang 8 subsections of Yanchang Formation in Ordos Basin, China[J]. Natural Gas Geoscience,2015,26(12):2219-2226.

19
张旭友,范彩伟,郭小文,等.莺歌海盆地中央底辟带乐东区莺歌海组超压成因及相对贡献定量化评价[J/OL].地球科学:1-16.http://kns.cnki.net/kcms/detail/42.1874.P.20220217. 1915.031.html.

ZHANG X Y, FAN C W, GUO X W, et al. Overpressure mechanisms and quantitative evaluation of the relative contribution for Yinggehai Formation in Ledong area of the central diapir zone,Yinggehai Basin[J/OL]. Earth Science:1-16. http://kns.cnki.net/kcms/detail/42.1874.P.20220217.1915.031.html.

20
HOTTMANN C E, JOHNSON R K. Estimation of formation pressures from log-derived shale properties[J]. Journal of Petroleum Technology,1965,17(6):717-722.

21
RUTH P, HILLIS R R, SWARBRICK R E. Detecting overpressure using porosity-based techniques in the Carnarvon Basin, Australia[J]. Appea Journal, 2002, 42(1):444-447.

22
张文忠. 苏里格地区上古生界气田异常低压成因研究[D].北京:中国地质大学(北京),2009.

ZHANG W Z. Study on the Genesis of Subnormal Formation Pressure in the Upper Paleozoic Strata of Sulige Gasfield[D]. Beijing: China University of Geoscience(Beijing),2009.

23
张发强,王震亮,吴亚生,等.消除影响压实趋势线地质因素的方法——以莺歌海盆地为例[J].沉积学报,2002,20(2):326-332.

ZHANG F Q, WANG Z L, WU Y S, et al. A method for eliminating geology factors of affecting compaction trendline: An example from Yinggehai Basin[J].Acta Sedimentologica Si-nica,2002,20(2):326-332.

24
范昌育,王震亮,张凤奇.库车坳陷克拉苏冲断带传递型超压的识别、计算及其主控因素[J].中国石油大学学报(自然科学版),2014,38(3):32-38.

FAN C Y, WANG Z L, ZHANG F Q. Identification, calculation and main controlling factors of overpressure transferred by fault in Kelasu thrust belt of Kuqa Depression[J]. Journal of China University of Petroleum(Edition of Natural Science),2014,38(3):32-38.

25
李超,张立宽,罗晓容,等.泥岩压实研究中有机质导致声波时差异常的定量校正方法[J].中国石油大学学报(自然科学版),2016,40(3):77-87.

LI C, ZHANG L K, LUO X R, et al. A quantitative method for revising abnormally high sonic data in rich-organic rock during compaction study[J]. Journal of China University of Petroleum (Edition of Natural Science),2016,40(3):77-87.

26
徐泽阳,赵靖舟,李军.松辽盆地长垣地区白垩系青山口组一段有机质含量对超压分析的影响及校正方法[J].石油与天然气地质,2019,40(4):938-946.

XU Z Y, ZHAO J Z, LI J. The impact of organic matter content on overpressure analysis and its correction method in the first member of Cretaceous Qingshankou Formation, Placanticline area, Songliao Basin[J]. Oil & Gas Geology,2019,40(4):938-946.

27
陈义才,张胜,魏新善,等.苏里格气田下二叠统盒8段异常低压成因及其分布特征[J].天然气工业,2010,30(11):30-33.

CHEN Y C, ZHANG S, WEI X S, et al. Causes and distribution of abnormal low pressure in the 8th member of the Lower Permian Shihezi Formation in the Sulige Gasfield[J]. Natural Gas Industry,2010,30(11):30-33.

28
马立元,邱桂强,李超,等.鄂尔多斯盆地镇泾地区延长组异常压力演化及其成藏意义[J].地质通报,2020,39(4):503-511.

MA L Y, QIU G Q, LI C, et al. The evolution of abnormal pressure of Yanchang Formation in Zhenjing area of Ordos Basin and its reservoir-forming significance[J]. Geological Bulletin of China,2020,39(4):503-511.

29
王欢,马立元,罗清清,等.鄂尔多斯盆地杭锦旗地区上古生界地层压力演化研究[J].现代地质,2020,34(6):1166-1180.

WANG H, MA L Y, LUO Q Q, et al. Pressure evolution of Upper Paleozoic in Hangjinqi area, Ordos Basin[J]. Geoscience,2020,34(6):1166-1180.

30
刘显阳,李树同,王琪,等.陕北地区长81浅水缓坡砂体类型特征及成因模式[J].天然气地球科学,2013,24(1):47-53.

LIU X Y,LI S T,WANG Q, et al. Characteristics and genetic model of sand body type in shallow gentle slope from Chang 81 in Shanbei area[J].Natural Gas Geoscience,2013,24(1):47-53.

31
王香增,郝进,姜振学,等.鄂尔多斯盆地下寺湾地区长7段油溶相页岩气量影响因素及其分布特征[J].天然气地球科学,2015,26(4):744-753.

WANG X Z, HAO J, JIANG Z X, et al. Influencing factors and distributions of the oil dissolved shale gas content of Member Chang 7 shale in Xiasiwan area, Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(4):744-753.

32
王香增,张丽霞,高潮.鄂尔多斯盆地下寺湾地区延长组页岩气储层非均质性特征[J].地学前缘,2016,23(1):134-145.

WANG X Z,ZHANG L X,GAO C.The heterogeneity of shale gas reservoir in the Yanchang Formation, Xiasiwan area, Ordos Basin[J]. Earth Science Frontiers,2016,23(1):134-145.

33
王香增,高胜利,高潮.鄂尔多斯盆地南部中生界陆相页岩气地质特征[J].石油勘探与开发,2014,41(3):294-304.

WANG X Z, GAO S L, GAO C. Geological features of Mesozoic continental shale gas in south of Ordos Basin, NW China[J]. Petroleum Exploration and Development,2014,41(3):294-304.

34
陈瑞银,罗晓容,陈占坤,等.鄂尔多斯盆地中生代地层剥蚀量估算及其地质意义[J].地质学报,2006,80(5):685-693.

CHEN R Y, LUO X R, CHEN Z K, et al. Estimation of denudation thickness of Mesozoic stata in the Ordos Basin and its geological significance[J].Acta Geologica Sinica,2006,80(5):685-693.

35
韩晓洁,范昌育,高潮,等.零水势面的确定与地层压力体系的划分——以鄂尔多斯盆地延安气田为例[J].天然气工业,2021,41(7):33-40.

HAN X J, FAN C Y, GAO C, et al. Determination of zero water potential surface and division of formation pressure system: A case study of Yan'an Gasfield in the Ordos Basin[J].Natural Gas Industry,2021,41(7):33-40.

36
NEUZIL C E. Abnormal pressures as hydrodynamic phenomena[J]. American Journal of Science,1995,295(6):742-786.

37
TRAUGOTT M. Pore/fracture pressure determinations in deep water[J]. Pipe Line and Gas Industry,1997:68-70.

38
张润合,郑兴平,徐献高,等.鄂尔多斯盆地上三叠统延长组四、五段泥岩生烃潜力评价[J].西安石油学院学报(自然科学版),2003,18(2): 9-13,5.

ZHANG R H, ZHENG X P, XU X G, et al. Evaluation of hydrocarbon-generating potential of the fourth and fifth member mudstone of Yanchang Formation of Upper Triassic series in Ordos Basin[J]. Journal of Xi'an Shiyou University(Natural Science Edition),2003,18(2): 9-13,5.

39
陈曜岑.利用测井资料研究和评价生油岩[J].石油物探,1996,35(1):99-106.

CHEN Y C. Study and evaluation of oil source rock using log data[J]. Geophysical Prospecting for Petroleum,1996,35(1):99-106.

40
HÉCTOR M M, TIMOTHY A M, ROSEMARY A E. Inverse modelling and seismic data constraints on overpressure generation by disequilibrium compaction and aquathermal pressuring: Application to the eastern Black Sea Basin[J]. Geophysical Journal International,2013,194(2):814-833.

41
王贵文,郭荣坤.测井地质学[M].北京:石油工业出版社, 2015:10-30.

WANG G W, GUO R K. Well Logging Geology[M]. Beijing: Petroleum Industry Press,2015:10-30.

42
DONG J J, HSU J Y, WU W J, et al. Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A[J]. International Journal of Rock Mechanics & Mining Sciences,2010,47(7):1141-1157.

43
ZHENG J T, ZHENG L G, LIU H H, et al. Relationships between permeability, porosity and effective stress for low-permeability sedimentary rock[J]. International Journal of Rock Mechanics and Mining Sciences,2015,78:304-318.

44
韩晓洁.鄂尔多斯盆地东南部山1段异常低压的形成过程及对页岩气富集的影响[D].西安:西北大学,2020.

HAN X J. Forming Process of Underpressure and Its Impact on Shale Gas Enrichment, Shan1 Member, Southeastern Ordos Basin[D]. Xi’an: Northwest University,2020.

45
王群.地球物理测井概论[M].北京:石油工业出版社,2010:63.

WANG Q,Introduction to Geophysical Logging[M]. Beijing: Petroleum Industry Press, 2010:63.

46
FLEMINGS P B A. Concise Guide to Geopressure: Origin, Prediction, and Applications[M]. Cambridge: Cambridge University Press,2021.

47
TERZAGHI K. Theoretical Soil Mechanics[M]. New York: John Wiley and Sons Incorporated, 1943.

48
GAO J,HE S,ZHAO J X,et al.Geothermometry and geobaro-metry of overpressured Lower Paleozoic gas shales in the Jiao-shiba field,central China: Insight from fluid inclusions in fracture cements[J].Marine and Petroleum Geology,2017,83:124-139.

49
NEUZIL C E, POLLOCK D W. Erosional unloading and fluid pressures in hydraulically "tight" rocks[J]. The Journal of Geology,1983,91(2):179-193.

50
LAN Y Z, MOGHANLOO R G, DAVUDOV D. Pore compressibility of shale formations[J]. SPE Journal,2017,22(6):1778-1789.

Outlines

/