Origin and source of helium in the resolved gas of Sinian-Cambrian shale in the Qiannan Depression

  • Bingkun MENG , 1, 2 ,
  • Jing LI , 1 ,
  • Shixin ZHOU 1 ,
  • Yong DAN 3, 4 ,
  • Qingyu ZHANG 3 ,
  • Guoquan NIE 3
Expand
  • 1. Northwest Institute of Eco⁃Environment and Resources,Chinese Academy of Sciences/Key Laboratory of Petroleum Resources Research,Gansu Province,Lanzhou 730000,China
  • 2. School of Petroleum and Environmental Engineering,Yanan University,Yan’an 716000,China
  • 3. Institute of Karst Geology,CAGS,Guilin 541004,China
  • 4. Chengdu Centre,China Geological Survey,Chengdu 610081,China

Received date: 2022-10-01

  Revised date: 2023-02-12

  Online published: 2023-04-18

Supported by

The Program of Chinese Academy of Sciences for Stable Support to Youth Teams(YSBR-017)

the China Geological Survey Project(DD20190722)

the Basic Scientific Research Business Fee Project of Institute of Karst Geology, Chinese Academy of Geological Sciences(2022003)

Highlights

Helium is listed as an important strategic resource due to its unique physical and chemical properties and scarcity. At present, China's helium resources are in great demand and highly dependent on foreign countries. It is urgent to strengthen the exploration and research of helium resources. This paper takes the shale (gas) of the Sinian Doushantuo Formation and the Cambrian Niutitang Formation in the Qiannan Depression as the research object, and studies the origin and source of helium in shale gas by means of gas composition and carbon isotope, noble gas composition and isotope ratio, major and trace element analysis of shale. The results show that the shale gas in Doushantuo Formation and Niutitang Formation is dominated by N2, followed by CH4, with He content ranging from 1 533.1×10-6 to 2 323.7×10-6, and 3He/4He ratio ranging from 0.009 Ra to 0.010 Ra(Ra=1.4×10-6), indicating that crustal source helium is the main source. The ratios of 21Ne/22Ne and 40Ar/36Ar in shale gas samples are higher than the corresponding air values, indicating that there are different proportions of 21Ne and 40Ar added from crust sources. The measured value of crust derived radiogenic 4He/40Ar in the studied gas sample is close to the value of crust derived radiogenic 4He/40Ar (3.09-6.00), but far less than the theoretical calculated value of rock derived in-situ radiogenic 4He/40Ar, which indicates that there may be rare gases from the upper crust or air during the rock resolving that dilute the 4He and 40Ar of rock derived in-situ radiogenic. Based on the theoretical calculation of in-situ helium generation rate and crustal helium release flux in shale intervals, the in-situ accumulation time and crustal recharge time of 4He in shale gas samples are far less than the sedimentary age of corresponding strata, indicating that tectonic movement caused the in-situ helium loss in the process of formation deposition.

Cite this article

Bingkun MENG , Jing LI , Shixin ZHOU , Yong DAN , Qingyu ZHANG , Guoquan NIE . Origin and source of helium in the resolved gas of Sinian-Cambrian shale in the Qiannan Depression[J]. Natural Gas Geoscience, 2023 , 34(4) : 647 -655 . DOI: 10.11764/j.issn.1672-1926.2023.02.011

1
王熙庭, 任庆生. 氦资源、应用、市场和提取技术[J]. 天然气化工(C1 化学与化工), 2012,37(1): 73-78.

WANG X T, REN Q S. Resources, application, market and extraction technologies of helium[J]. Natural Gas Chemical Industry, 2012, 37(1): 73-78.

2
赵荟鑫, 张雁, 李超良. 全球氦气供应和价格体系分析[J]. 化学推进剂与高分子材料, 2012, 10(6): 91-96.

ZHAO H X, ZHANG Y, LI C L. Analysis of supply and price system for global helium gas[J]. Chemical Propellants & Polymeric Materials, 2012, 10(6): 91-96.

3
刘贵洲, 窦立荣, 李鹏宇, 等. 氦气珍稀亟需发展[J]. 天然气与石油,2012, 10(6): 91-96.

LIU G Z, DOU L R, LI P Y, et al. Helium is precious and rare and needs urgent development[J]. Natural Gas and Oil, 2012, 10(6): 91-96.

4
李玉宏, 李济远, 周俊林, 等. 氦气资源评价相关问题认识与进展[J]. 地球科学与环境学报, 2022, 44(3): 363-373.

LI Y H, LI J Y, ZHOU J L, et al. Research progress and new views on evaluation of helium resources[J]. Journal of Earth Sciences and Environment, 2022,44(3):363-373.

5
梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一)南方四套区域性海相烃源岩的分布[J]. 海相油气地质, 2008, 13(2): 1-16.

LIANG D G, GUO T L, CHEN J P, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 1): Distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16.

6
周文, 徐洁, 余谦, 等. 四川盆地及其周缘五峰组—龙马溪组与筇竹寺组页岩含气性差异及成因[J]. 岩性油气藏, 2016, 28(5): 18-25.

ZHOU W, XU J, YU Q, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas[J]. Lithologic Reservoirs, 2016, 28(5): 18-25.

7
肖正辉, 牛现强, 杨荣丰, 等. 湘中涟源—邵阳凹陷上二叠统大隆组页岩气储层特征[J].岩性油气藏, 2015, 27(4): 17-24.

XIAO Z H, NIU X Q, YANG R F, et al. Reservoir characteristics of shale gas of Upper Permian Dalong Formation in Lianyuan-Shaoyang Depression,central Hunan[J].Lithologic Rese-rvoirs, 2015, 27(4): 17-24.

8
冯伟明, 赵瞻, 李嵘, 等. 滇东北 DD1 井五峰—龙马溪组页岩气地质特征及其勘探启示[J]. 沉积与特提斯地质, 2020, 40(4): 17-24.

FENG W M, ZHAO Z, LI R, et al. Geological characteristics of shale gas of the Wufeng Fm-Longmaxi Fm in DD1 Well in Northeast Yunnan and their exploration significances[J]. Se-dimentary Geology and Tethyan Geology,2020,40(4):17-24.

9
周业鑫, 赵安坤, 余谦, 等. 基于多元线性回归分析的页岩气有利区评价新方法——以上扬子地区五峰组—龙马溪组海相页岩为例[J]. 沉积与特提斯地质,2021,41(3):387-397.

ZHOU Y X, ZHAO A K, YU Q, et al. A new method for evaluating favorable shale gasexploration areas based on multi-linear regression analysis:A case study of marine shales of Wu-feng-Longmaxi Formations,Upper Yangtze Region[J].Sedimen-tary Geology and Tethyan Geology,2021,41(3):387-397.

10
杨剑, 王桥, 刘伟, 等. 基于宽频大地电磁法的页岩气探测实践——以川西南沐川地区须家河组为例[J]. 沉积与特提斯地质,2022,42(3):444-454.

YANG J, WANG Q, LIU W, et al. Shale gas detection practice based on the BMT method: A case study of the Xujiahe Formation in the Muchuan area, southwestern Sichuan Basin[J].Sedimentary Geology and Tethyan Geology,2022,42(3): 444-454.

11
徐政语, 姚根顺, 郭庆新, 等. 黔南坳陷构造变形特征及其成因解析[J]. 大地构造与成矿学, 2010, 34(1): 20-31.

XU Z Y, YAO G S, GUO Q S, et al. Genetic interpretation about geotectonics and structural transfiguration of the southern Guizhou Depression[J]. Geotectonica et Metallogenia,2010, 34(1): 20-31.

12
宋颖睿, 侯宇光, 刘宇坤, 等. 黔南坳陷下石炭统摆佐组暗色页岩热演化与生烃史研究[J]. 石油实验地质, 2018, 40(2): 226-232.

SONG Y R, HOU Y G, LIU Y K, et al. Thermal evolution and hydrocarbon generation histories of black shale in Lower Carboniferous Baizuo Formation,southern Guizhou Depression[J]. Petroleum Geology & Experiment,2018,40(2):226-232.

13
淡永, 闫剑飞, 包书景, 等. 雪峰隆起西南缘(贵丹地1井)震旦系—寒武系获多层系页岩气重大发现[J/OL].中国地质,[2021-1-12]. http://kns.cnki.net/kcms/detail/11.1167.P.20210105.0915.004.html.

DAN Y, YAN J F, BAO S J, et al. The momentous discovery of Sinian-Cambrian multi-tier shale gas in Guidandi-1 well of southwest margin of Xuefeng uplift[J/OL]. Geology in China,[2021-1-12] http://kns.cnki.net/kcms/detail/11.1167.P.20210105.0915.004.html.

14
马龙, 徐学金, 闫剑飞, 等. 古隆起边缘页岩气富集规律与选区——以雪峰西南缘下寒武统牛蹄塘组为例[J]. 沉积与特提斯地质, 2022, 42(3): 426-443.

MA L, XU X J, YAN J F, et al. Enrichment laws and regional selection of shale gas at the edge of palaeohigh: A case study on the Lower Cambrian Niutitang Formation on the southwestern margin of Xuefeng Uplift[J].Sedimentary Geology and Te-thyan Geology, 2022, 42(3): 426-443.

15
蒙炳坤, 周世新, 李靖, 等. 上扬子地区不同类型岩石生氦潜力评价及泥页岩氦气开采条件理论计算[J]. 矿物岩石, 2021, 41(4): 102-113.

MENG B K, ZHOU S X, LI J, et al. Evaluation of helium generation potential in different types of rocks and theoretical calculation of helium recovery conditions for shale in southeastern upper Yangtze Region[J].Mineralogy and Petrology,2021, 41(4):102-113.

16
李立武, 刘艳, 王先彬, 等. 高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用[J]. 岩矿测试, 2017, 36(3): 222-230.

LI L W, LIU Y, WANG X B, et al. Development of a combined device with high vacuum and pulsed discharge gas chromatography and its application in chemical analysis of gases from rock samples[J].Rock and Mineral Analysis,2017, 36(3):222-230.

17
MENG B K, ZHOU S X, LI J. Mantle-derived helium distribution and tectonic implications in the Sichuan-Yunnan block, China[J]. ACS Omega,2021,6:30674-30685.

18
ZHANG T W, ZHANG M J, BAI B J, et al. Origin and accumulation of carbon dioxide in the Huanghua Depression, Bohai Bay Basin, China[J]. AAPG Bulletin,2008,92(3):341-358.

19
ZHANG M J, TANG Q Y, HU P Q, et al. Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu-(PGE) sulfide ore-bearing ultramafic intrusion, Western China[J]. Chemical Geology,2013,339:301-312.

20
焦伟伟, 汪生秀, 程礼军, 等. 渝东南地区下寒武统页岩气高氮低烃成因[J].天然气地球科学, 2017, 28(12): 1882-1890.

JIAO W W,WANG S X,CHENG L J,et al.The reason of high nitrogen content and low hydrocarbon content of shale gas from the Lower Cambrian Niutitang Formation in Southeast Chong-qing[J]. Natural Gas Geoscience, 2017, 28(12): 1882-1890.

21
苏现波, 陈润, 林晓英, 等. 煤层气运移分馏机理初探[J]. 河南理工大学学报(自然科学版), 2006, 25(4): 295-300.

SU X B, CHEN R, LIN X Y, et al. The primary study on coalbed gas fractionation mechanisms[J].Journal of Henan Poly-technic University (Natural Science),2006,25(4):295-300.

22
BALLENTINE C J, BURNARD P G. Production, release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy & Geochemistry, 2002, 47(1):481-538.

23
GILFILLAN S M V, GYÖRE D, FLUDE S, et al. Noble gases confirm plume-related mantle degassing beneath southern Africa[J]. Nature Communications, 2019,10:5028.

24
徐永昌, 沈平, 刘文汇, 等. 东部油气区天然气中幔源挥发份的地球化学——Ⅱ.幔源挥发份中的氦、氩及碳化合物[J]. 中国科学(D 辑:地球科学), 1996, 26(2): 187-192.

XU Y C, SHEN P, LIU W H, et al. Geochemistry of mantle derived volatiles from natural gas in the eastern oil and gas region-Ⅱ.helium,argon and carbon compounds in mantle deri-ved volatiles[J]. Science in China(Series D:Earth Sciences),1996,26(2):187-192.

25
MAMYRIN B A, ANUFRIEV G S, KAMENSKII I L, et al. Determination of the isotopic composition of atmospheric Helium[J]. Geochemistry International,1970,7:498-505.

26
MAMYRIN B A, TOLSTIKHIN I N. Helium Isotopes in Nature [M]. Amsterdam: Elsevier, 1984.

27
SANO Y, WAKITA H. Geographical distribution of 3He/4He ratios in Japan: Implications for arc tectonics and incipient magmatism[J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B10):8729-8741.

28
BOTTOMLEY D J, ROSS J D, CLARKE W B. Helium and Neon isotope geochemistry of some ground waters from the Canadian Precambrian Shield[J]. Geochimica et Cosmochimica Acta,1984,48(10): 1973-1985.

29
BALLENTINE J, BERNARD M, SHERWOOD L B, et al. Neon isotopes constrain convection and volatile origin in the Earth's mantle[J].Nature, 2005, 433(7021): 33-38.

30
SARDA P, STAUDACHER T, ALLÈGRE C J. Neon isotopes in submarine basalts[J]. Earth & Planetary Science Letters, 1988, 91(1-2), 73-88.

31
BALLENTINE C J, O'NIONS R K, OXBURGH E R, et al. Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin[J]. Earth & Planetary Science Letters, 1991, 105(1-3):229-246.

32
LEE J Y, MARTI K, SEVERINGHAUS J P, et al. A redetermination of the isotopic abundances of atmospheric Ar[J]. Geochimica et Cosmochimica Acta,2006,70(17):4507-4512.

33
HUNT A G, DARRAH T H, POREDA R J. Determining the source and genetic fingerprint of natural gases using noble gas geochemistry: A northern Appalachian Basin case study[J]. AAPG Bulletin, 2012, 96(10):1785-1811.

34
聂国权, 李小盼, 淡永, 等. 黔南坳陷下寒武统牛蹄塘组泥页岩埋藏史与热史研究——以贵都地 1 井为例[J]. 中国岩溶, 2021, 40(5): 760-767.

NIE G Q, LI X P, DAN Y, et al. Burial and thermal history of mud shale in Niutitang Formation of Lower Cambrian in southern Guizhou depression: A case study of Guidudi Well 1[J]. Carsologica Sinica, 2021, 40(5): 760-767.

35
HARKNESS J S,DARRAH T H,WARNER N R,et al.The geochemistry of naturally occurring methane and saline groundwater in an area of unconventional shale gas development[J]. Geochimica et Cosmochimica Acta, 2017, 208: 302-334.

36
OZIMA M, PODOSEK F A. Noble Gas Geochemistry[M]. Cambridge: Cambridge University Press, 2002.

37
TORGERSEN T. Controls on pore-fluid concentration of 4He and 222Rn and the calculation of 4He/222Rn ages[J]. Journal of Geochemical Exploration, 1980, 13(1): 57-75.

38
ZHOU Z, BALLENTINE C J. 4He dating of groundwater associated with hydrocarbon reservoirs[J]. Chemical Geology, 2006, 226(3-4): 309-327.

Outlines

/