Study on characteristics and classification of micro-pore structure in tight reservoirs for Ordos Basin

  • Xiaolong CHAI , 1, 2, 3 ,
  • Leng TIAN , 1, 2 ,
  • Yan MENG 4 ,
  • Jingyi WANG 5 ,
  • Can HUANG 1, 2 ,
  • Zechuan WANG 1, 2 ,
  • Zongke LIU 1, 2
Expand
  • 1. Institute of Petroleum Engineering,China University of Petroleum(Beijing),Beijing 102249,China
  • 2. State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China
  • 3. Department of Chemical and Petroleum Engineering,University of Calgary,Calgary T2N1N4,Canada
  • 4. Kunlun Number Wisdom Technology Co. ,Ltd. ,Beijing 100007,China
  • 5. Exploration and Development Research Institute,Daqing Oilfield Company,Daqing 163000,China

Received date: 2022-06-17

  Revised date: 2022-09-09

  Online published: 2023-02-07

Supported by

The National Natural Science Foundation of China(51974329)

Highlights

The microscopic pore structure of tight reservoir is an important factor to measure the oil and gas seepage capacity and production of tight reservoir, and it is also the focus and hotspot of tight reservoir research at present. In this paper, the Chang 8 tight reservoir of Triassic Yanchang Formation in Ordos Basin was taken as the research object, and the relationship between macro reservoir physical property parameters and micro pore structure parameters was analyzed by carrying out constant rate mercury injection experiment and establishing micro pore structure model,so as to realize the fine division of micro pore structure of tight reservoir. The results show that the larger the throat radius, the larger the total mercury saturation, and the larger the throat mercury saturation and the pore mercury saturation, the smaller the residual wet phase saturation. The throat radius and pore radius of the tight core show the normal distribution characteristics of “less distribution at both ends,more in the middle,asymmetric left and right, and coarse(positive)skewness”. With the increase of poro-sity and permeability, the normal distribution parameters α and σ tend to increase. Taking the radius of main pore throat as the discriminant characteristic parameter, the pore structure of tight core can be divided into four types:type Ⅰ, permeability is greater than 1×10-3 μm2, and main pore throat radius is greater than 1μm; type Ⅱ, permeability is(0.5-1)×10-3 μm2, and main pore throat radius is 0.7-1 μm; type Ⅲ, permeability is(0.3-0.5)×10-3 μm2, and the main pore throat radius is 0.5-0.7 μm; type Ⅳ, permeability is less than 0.3×10-3 μm2, and the main pore throat radius is less than 0.5 μm. The pore structure of tight reservoir is mainly types Ⅲ and Ⅳ, which is characterized by small pore throat, poor permeability and relatively good core pore sorting. In this paper, a simple and effective empirical method is developed to predict the distribution of microscopic pore structure in tight cores, which can provide support for rapid understanding of microscopic pore characteristics in tight reservoirs.

Cite this article

Xiaolong CHAI , Leng TIAN , Yan MENG , Jingyi WANG , Can HUANG , Zechuan WANG , Zongke LIU . Study on characteristics and classification of micro-pore structure in tight reservoirs for Ordos Basin[J]. Natural Gas Geoscience, 2023 , 34(1) : 51 -59 . DOI: 10.11764/j.issn.1672-1926.2022.09.002

0 引言

随着常规油气藏勘探开发枯竭殆尽,非常规油气资源的勘探开发已成为油气增储上产的主要发展方向,也是目前油气领域勘探开发的重点1-7。非常规油气藏储层致密,具有非均质性强、孔隙结构复杂、喉道细小和物性差等特点8-12。孔隙结构对于流体渗流能力和储层物性的影响更加凸显,不仅与油气的差异性分布密切相关,而且直接影响了整个油气田的产能和采收率,因此开展致密砂岩微观孔隙结构的定量研究具有重大意义13-17。目前,对于致密储层孔隙结构特征的研究主要是借助铸体薄片18-19、扫描电镜20-22、核磁共振23、高压压汞23-24等技术实验方法和聚类分析等数学分析方法25-27,从而实现致密储层微观储集空间和孔隙结构特征的精细表征。李军辉等18将铸体薄片、扫描电镜、高压压汞和恒速压汞实验方法相结合,明确了孔喉对孔隙度和渗透率的影响;马世忠等19同样采用高压压汞、恒速压汞、结合铸体薄片和扫描电镜等技术手段,对致密储层孔隙结构进行了定量表征,将致密储层划分为5种类型;郭和坤等21将常规岩心分析法、核磁共振和气水高速离心法结合,明确了不同致密储层类型的主要孔隙结构类型;在此基础上,王旭等24综合铸体薄片、扫描电镜、物性分析、高压压汞等实验技术手段,将储层类型划分为4类:微孔隙、细喉道、排驱压力高的特低孔低渗致密储层;微裂缝发育的储层;溶孔发育且连通性良好的储层;局部溶孔发育但周围被致密储层包围、封隔的储层。同时,李海燕等25和赖锦等26将聚类分析数学评价方法引入致密储层微观孔隙结构分析中,建立了致密储层孔隙结构分类判别模型,实现了对致密储层孔隙结构分类评价。综上所述,目前对于致密储层微观孔隙结构特征与宏观物性参数之间的关系研究的文献较少,尚未获得明确的统一认识。
本文针对致密储层孔隙结构特征,开展恒速压汞实验,并采用对数正态分布函数建立微观孔隙结构模型,明确微观孔隙结构参数与宏观参数的关系,并对致密储层孔隙结构类型进行划分,实现对致密储层微观孔隙结构特征的精细表征。

1 实验

1.1 实验样品

实验样品均来自鄂尔多斯盆地三叠系延长组致密储层天然露头岩心。通过露头岩心岩样分析,致密储层岩石以长石岩屑砂岩和岩屑长石砂岩为主,并含有少量的岩屑砂岩。选取3块岩心样品进行恒速压汞实验。通过岩心物性测试分析得到,3块岩心的渗透率为(0.129~1.22)×10-3 μm2,其物性参数见表1
表1 实验岩样物性参数

Table 1 Table of physical parameters of experimental rock samples

岩心编号 长度/cm 直径/cm 孔隙度/% 渗透率/(10-3 μm2
1 2.051 2.535 14.20 1.22
2 2.072 2.515 12.27 0.828
3 2.019 2.518 9.77 0.129

1.2 实验装置

本文实验装置采用美国Coretest System公司生产的ASPE-730恒速压汞仪(图1),汞泵入系统采用Quzix泵,其进汞速率为1.0×10-6 mL/s~1 mL/min,分辨率小于1.0×10-6 mL,装置进汞压力范围为0~6.89 MPa。系统数据采集软件(WindowsTM平台)用来控制测试和存储数据,具有压汞试验操作控制,数据输入和输出功能以及筛选和适应性校正功能。
图1 ASPE-730恒速压汞仪

Fig.1 ASPE-730 constant speed mercury injection apparatus

1.3 实验结果与分析

通过开展恒速压汞实验,分别得到3块岩心的实验结果和毛管压力曲线。恒速压汞实验结果数据见表2表3图2,毛管压力曲线结果如图3图5所示。
表2 恒速压汞实验数据

Table 2 The data of constant speed mercury injection apparatus

岩心编号

平均喉道

半径/μm

总进汞

饱和度/%

喉道进汞

饱和度/%

孔隙进汞

饱和度/%

1 1.31 70.29 30.66 39.63
2 0.99 60.78 23.58 37.2
3 0.25 46.11 17.44 28.66
表3 岩心综合数据

Table 3 The data of core

岩心编号 孔隙度/% 渗透率/(10-3 μm2 平均喉道半径/μm 分选系数 均质系数 主流喉道半径/μm 总进汞饱和度/%
1 14.20 1.22 1.31 0.54 0.57 1.63 70.29
2 12.27 0.83 0.99 0.35 0.62 1.14 60.78
3 9.77 0.13 0.25 0.06 0.81 0.25 46.11

注:主流喉道半径为在喉道半径分布曲线中贡献率超过95%的喉道半径

图2 3块岩心喉道半径频率分布

Fig.2 The percentage distribution of radius of throat for three rock samples

图3 岩心总毛管压力曲线

Fig.3 The curve of capillary pressure of the core

图4 孔隙毛管压力曲线

Fig.4 The curve of capillary pressure of the pore

图5 喉道毛管压力曲线

Fig.5 The curve of capillary pressure of the throat

图2的3块岩心的喉道半径分布可知:3块岩心喉道半径频率曲线形态存在较大差异,岩心渗透率越大,岩心中大喉道所占的比例也越高。随着渗透率的降低,喉道半径分布范围逐渐变窄,最大喉道半径逐渐变小。3块致密岩心喉道半径整体较小,主要介于0.1~2 μm之间。岩心渗透率不同,其喉道半径分布范围也存在明显差异,3块岩心喉道半径分布范围分别为0.1~2.2 μm、0.1~1.6 μm和0.1~0.4 μm,喉道半径大小与分布特征与岩心渗透率存在密切关系,喉道半径是影响致密岩心渗透率的重要因素。
表3可以看出,喉道半径对储层渗透率影响比较显著,喉道半径越大,渗透率越高。致密储层喉道的均质系数越大(分选系数越小)对应的储层渗透率反而越低。这主要是由于均质系数大,储层的均质性强,喉道半径的尺寸相差不大,致密储层喉道都是以小喉道的形式存在。而当储层的均质系数较小时,储层的非均质性强,喉道半径的尺度分布范围较大,致密储层大、小喉道均同时存在,致密储层中的大喉道对渗透率的贡献最大。因此,储层物性主要受到大喉道所影响。
为能够准确分析致密岩心微观孔隙结构特征,对上述3块岩心进行了总毛管压力、孔隙毛管压力和喉道毛管压力进行分析。图3图5分别为总毛管压力曲线、孔隙毛管压力曲线、喉道毛管压力曲线。
图3图5可以看出,岩心渗透率大,其总毛管压力、孔隙毛管压力、喉道毛管压力曲线均表现出一定的优势。喉道半径大小对总进汞曲线、喉道进汞曲线和孔隙进汞曲线有明显的影响。喉道半径越大,总进汞饱和度、喉道进汞饱和度和孔隙进汞饱和度越大,残余的湿相饱和度越小。

2 致密储层微观孔隙结构模型

为能够定量表征致密储层微观孔隙结构参数和宏观物性参数之间的关系,实现快速认识致密储层微观孔隙结构特征,建立致密储层微观孔隙结构模型。同时,微观孔隙结构参数特征符合对数正态分布规律,因此,基于对数正态分布函数,建立致密储层微观孔隙结构参数的正态分布模型。

2.1 模型构建

通过对大量致密岩心的孔隙半径与喉道半径分布曲线的统计分析,孔隙半径与喉道半径的分布符合对数正态分布28-29。因此,引入对数正态分布函数,设随机变量 η,其服从对数正态分布,密度函数如下:
f η = x = 1 σ x 2 π e - L n x - a 2 2 σ 2 x > 0 0          x < 0
式中: x为致密储层微观孔隙结构各个参数的分布值; α σ均为正态分布参数,不同分布参数 α σ所对应的对数正态分布密度函数曲线也存在差异,如图6所示。其中分布参数 α用来表征数据分布的集中程度,分布参数 σ用来表征数据集中趋势值。
图6 对数正态分布密度函数曲线

Fig.6 Lognormal distribution density function fx) of different parameters α and σ

数学期望:
E η = 0 x f x d x = e a + σ 2 2
方差:
D η = 0 x - E η 2 f x d x = e 2 a + σ 2 e σ 2 - 1
式中: E ( η )为数学期望值; D ( η )为方差值。
η 1 , , η n为总体η的样本,则式中分布参数 α σ的估计量如下28
σ = L n S 2 ( η ¯ ) 2 + 1
α = L n η ¯ - σ 2 2
η ¯ = 1 n i = 1 n η i
S 2 = 1 n i = 1 n η i - η ¯ 2
式中: S为标准差; η ¯为样本平均值; η i为样本i的值。

2.2 喉道半径、孔隙半径与密度函数正态分布特征

为明确不同致密岩心微观孔隙结构参数分布特征,选取2块岩心物性具有明显差异的岩心,并对其开展恒速压汞实验,基于上述密度函数和对数正态分布函数,对喉道分布曲线及累计分布曲线进行理论计算,得到不同参数条件下(喉道半径和孔隙半径)的密度函数结果,计算结果如表4图7图8所示,其中对数正态分布参数ασ可以根据式(4)式(7)计算得到。
表4 岩心物性及分布参数

Table 4 The physical properties and distribution parameters of cores

岩心

编号

孔隙度

/%

渗透率

/(10-3 μm2

平均喉道半径/μm

平均孔隙

半径/μm

4 11.9 0.04 0.331 7 4.833 4
5 14.3 1.19 0.653 8 4.866 7
图7 喉道半径分布曲线

Fig.7 The distribution of radius of the throat

图8 孔隙半径分布曲线

Fig.8 The distribution of radius of the pore

表4图7图8可以看出,致密岩心喉道半径及孔隙半径均呈对数正态分布,对数正态分布函数能够较好地反映出致密岩心喉道半径及孔隙半径呈现“两端分布少、中间多、左右不对称,粗(正)偏态”的分布特征。不同级别渗透率岩心喉道半径分布曲线形态相差较大,而孔隙半径分布曲线形态基本一致。

2.3 孔隙度、渗透率与正态分布参数关系

开展不同孔隙度(φ)、渗透率(k)条件下的致密岩心恒速压汞实验,并基于正态分布函数,计算得到不同孔隙度、渗透率条件下的正态分布参数ασ,并建立孔隙度、渗透率与正态分布参数ασ的关系图版,其结果如图9图12所示。
图9 渗透率与喉道半径分布参数α的关系

Fig.9 The relationship between permeability and throat radius distribution parameter α

图10 渗透率与喉道半径分布参数σ的关系

Fig.10 The relationship between permeability and throat radius distribution parameter σ

图11 孔隙度与喉道半径分布参数α的关系

Fig.11 The relationship between porosity and throat radius distribution parameter α

图12 孔隙度与喉道半径分布参数σ的关系

Fig.12 The relationship between porosity and throat radius distribution parameter σ

图9图12可以看出,随着孔隙度和渗透率的增大,分布参数ασ值有增大的趋势。分布参数ασ值与孔隙度和渗透率具有较为密切的相关性。其原因为随着渗透率和孔隙度的增大,储层中大孔隙所占比例增多,其对数正态分布曲线更加接近于标准正态分布曲线特征,对数正态分布参数ασ也随之相应地增大。对计算结果进行拟合,得到致密岩心喉道半径对数正态分布参数ασ值与岩心渗透率的关系式:
α = 0.224   3 L n k + 0.499   2
σ = 0.093   5 L n k + 0.723   8
采用同样的方法,可以得到孔隙半径正态分布参数ασ与致密岩心渗透率的关系,其结果如图13所示。
图13 渗透率与孔隙半径分布参数ασ的关系

Fig.13 Parameter α and σ of pore size distribution vs. permeability

图13可以看出,不同级别渗透率的致密岩心,其孔隙半径正态分布参数ασ较为一致,这表明不同渗透率的致密岩心,其孔隙半径分布规律较为一致,对数正态分布函数能够较好地反映致密岩心孔隙半径分布特征。
基于建立的正态分布参数与渗透率的关系和正态分布参数与孔隙结构分布参数的关系,能够建立一种简单有效的依据致密岩心渗透率预测致密岩心喉道半径分布规律的经验方法,快速地认识致密油藏微观孔隙特征。

3 致密储层孔隙结构分类

通过开展致密岩心恒速压汞实验结果表明,孔隙结构大小与分布特征与岩心渗透率存在密切关系,且不同渗透率致密岩心的孔隙结构在孔喉大小和分布上存在一定的差异。为此,对60块不同渗透率岩心样品开展高压压汞实验,并统计宏观储层参数渗透率与微观孔隙结构参数的关系,进行幂函数回归,对致密储层孔隙结构进行分类,孔隙结构参数与渗透率关系结果见表5
表5 各孔隙结构参数与渗透率的相关关系

Table 5 The relationships between pore structure parameters and permeability

孔喉参数类型 孔喉参数x 相关关系式 决定系数(R 2
孔喉大小 主流孔喉半径 k=0.862x 1.566 0.812
最大孔喉半径 k=0.564x 1.671 0.56
排驱压力 k=0.369x -1.473 0.387
孔喉分布 歪度 k=-0.46x -0.905 5 0.01
通过表5可以看出,孔喉大小特征参数(主流孔喉半径、最大孔喉半径、排驱压力)和孔喉分布参数(歪度)与致密岩心渗透率均存在一定的关系,其中主流孔喉半径与渗透率的相关性最好,决定系数(R 2)为0.812(图14)。因此,以主流孔喉半径为判别参数,对致密岩石进行分类,分类结果如图14表6所示。
图14 孔隙结构分类

Fig.14 The classification of pore structure

表6 孔隙结构分类界限

Table 6 The classification limits of pore structure

孔隙结构类型 渗透率/(10-3 μm2 主流孔喉半径/μm
Ⅰ类 >1 >1
Ⅱ类 0.5~1 0.7~1
Ⅲ类 0.3~0.5 0.5~0.7
Ⅳ类 <0.3 <0.5
根据主流孔喉半径大小将致密岩心孔隙结构分为4类,各类孔隙结构对应的典型毛管压力曲线如图15图18所示。
图15 Ⅰ类孔隙的压汞曲线

Fig.15 The capillary pressure curve of pore typeⅠ

图16 Ⅱ类孔隙的压汞曲线

Fig.16 The capillary pressure curve of pore typeⅡ

图17 Ⅲ类孔隙的压汞曲线

Fig.17 The capillary pressure curve of pore type Ⅲ

图18 Ⅳ类孔隙的压汞曲线

Fig.18 The capillary pressure curve of pore type Ⅳ

图15图18的4类岩心的毛管压力曲线可以看出,4类岩心的孔隙分选性存在差异,致密岩心孔隙结构以第Ⅲ类、第Ⅳ类为主要类型,具有孔喉细小,渗透性差,最大进汞量大,略细歪度,岩心的孔隙分选性相对较好的特点。渗透率越小,较小的孔喉半径占的比重也越多。

4 结论

(1)通过开展致密岩心恒速压汞实验,明确了岩心渗透率与总毛管压力、孔隙毛管压力、喉道毛管压力曲线的关系。喉道半径越大,总进汞饱和度、喉道进汞饱和度和孔隙进汞饱和度越大,残余的湿相饱和度越小。
(2)基于致密岩心恒速压汞实验和正态分布函数,建立了致密储层微观孔隙结构特征参数模型,明确了致密岩心喉道半径及孔隙半径均呈“两端分布少、中间多、左右不对称,粗(正)偏态”的正态分布特征,且随着孔隙度和渗透率的增大,正态分布参数α和σ值有增大的趋势。
(3)以主流孔喉半径为判别特征参数,将致密岩心孔隙结构类型分为4类,I类渗透率大于1×10-3
μm2,主流孔喉半径大于1 μm;II类渗透率为(0.5~1)×10-3 μm2,主流孔喉半径为0.7~1 μm;III类渗透率为(0.3~0.5)×10-3 μm2,主流孔喉半径为0.5~0.7 μm;Ⅳ类渗透率小于0.3×10-3 μm2,主流孔喉半径小于0.5 μm。致密储层孔隙结构以Ⅲ类、Ⅳ类为主,具有孔喉细小,渗透性较差,岩心的孔隙分选性相对较好的特征。
1
高长海,王健,罗瑞,等.致密砂岩储层成岩史与成藏史耦合关系研究——以南堡凹陷滩海地区沙一段为例[J].中国矿业大学学报,2019,48(4):819-829.

GAO C H, WANG J, LUO R, et al. Coupling relationship between diagenetic history and accumulation history of tight sandstone reservoir: A case study of the first member of Shahejie Formation in tidal area of Nanpu Sag[J].Journal of China University of Mining & Technology, 2019,48 (4): 819-829.

2
贾承造,庞雄奇,姜福杰.中国油气资源研究现状与发展方向[J].石油科学通报,2016,1(1):2-23.

JIA C Z, PANG X Q, JIANG F J. Research status and development direction of oil and gas resources in China[J]. Petroleum Science Bulletin, 2016, 1(1): 2-23.

3
TIAN L, CHAI X, WANG P,et al. Productivity prediction model for stimulated reservoir volume fracturing in tight glutenite reservoir considering fluid-solid coupling[J].Frontiers in Energy Research,2020, 8(12): 24-36.

4
闫建平,张帆,胡钦红,等.东营凹陷南坡低渗透储层孔隙结构及有效性分析[J].中国矿业大学学报,2018,47(2):345-356.

YAN J P, ZHANG F, HU Q H, et al. Pore structure and effectiveness analysis of low permeability reservoir in southern slope of Dongying Sag[J]. Journal of China University of Mining & Technology, 2018,47(2): 345-356.

5
CHAI X L, TIAN L, ZHANG M Y, et al. Production characteristics, evaluation, and prediction of CO2 water-alternating-gas flooding in tight oil reservoir[J]. Journal of Energy Resources Technology, 2022, 144(3): 115-123.

6
YIN X D, JIANG S, CHEN S J, et al. Impact of rock type on the pore structures and physical properties within a tight sandstone reservoir in the Ordos Basin, NW China[J]. Petroleum Science, 2020, 15(4): 36-44.

7
DESSORT D, GELIN F, DUCLERC D, et al. Enhanced Assessment of the Distribution of Organic Matter in Unconventional Plays and Tarmat in Reservoirs Using a New Laser Pyrolysis Method on Core[C]. International Petroleum Conference and Exhibition. Abu Dhabi, UAE, 2012.

8
朱如凯,吴松涛,苏玲,等.中国致密储层孔隙结构表征需注意的问题及未来发展方向[J].石油学报,2016,37(11):1323-1336.

ZHU R K,WU S T,SU L,et al.Problems in pore structure cha-racterization of tight reservoirs in China and its future development direction[J].Acta Petrolei Sinica,2016,37(11):1323-1336.

9
查明,苏阳,高长海,等.致密储层储集空间特征及影响因素——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J].中国矿业大学学报,2017,46(1):85-95.

ZHA M,SU Y,GAO C H,et al.Characteristics and influencing factors of tight reservoir space: A case study of Permian Lucaogou Formation in Jimusar Sag,Junggar Basin[J].Journal of China University of Mining & Technology,2017,46(1):85-95.

10
张顺,陈世悦,蒲秀刚,等.断陷湖盆细粒沉积岩岩相类型及储层特征——以东营凹陷沙河街组和沧东凹陷孔店组为例[J].中国矿业大学学报,2016,45(3):568-581.

ZHANG S, CHEN S Y, PU X G, et al. Lithofacies types and reservoir characteristics of fine-grained sedimentary rocks in faulted lacustrine basin:A case study of Shahejie Formation and Kongdian Formation in Dongying Sag[J]. Journal of China University of Mining & Technology, 2016,45(3): 568-581.

11
白斌,朱如凯,吴松涛,等.非常规油气致密储层微观孔喉结构表征新技术及意义[J].中国石油勘探,2014,19(3):78-86.

BAI B, ZHU R K, WU S T, et al. New technology and significance of microscopic pore throat structure characterization in unconventional tight oil and gas reservoir[J]. China Petroleum Exploration, 2014,19(3): 78-86.

12
MANDELBROT B B. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars[J].Journal of Fluid Mechanics,2006,72(3):401-416.

13
WANG F Y,YANG K,YUN Z. Multifractal characteristics of shale and tight sandstone pore structures with nitrogen adsorption and nuclear magnetic resonance[J]. Petroleum Science, 2020, 17(5): 1209-1220.

14
ZHU H H, ZHANG T S, ZHONG D K, et al. Binary pore structure characteristics of tight sandstone reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1297-1306.

15
LIU H L, YANG Y Y, WANG F Q, et al. Micro pore and throat characteristics and origin of tight sandstone reservoirs: A case study of the Triassic Chang 6 and Chang 8 members in Longdong area, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(2): 239-250.

16
彭攀,宁正福,祁丽莎,等.致密储层孔隙结构研究方法概述[J].油气藏评价与开发,2014,4(1):26-32.

PENG P, NING Z F, QI L S, et al. Research on pore structure of tight reservoir[J]. Oil and Gas Reservoir Evaluation and Development, 2014,4(1): 26-32.

17
廖广志,李远征,肖立志,等.利用卷积神经网络模型预测致密储层微观孔隙结构[J].石油科学通报,2020,5(1):26-38.

LIAO G Z, LI Y Z, XIAO L Z, et al. Prediction of micro-pore structure of tight reservoir using convolutional neural network model[J].Petroleum Science Bulletin,2020,5(1):26-38.

18
李军辉,吴海波,李跃,等.海拉尔盆地致密储层微观孔隙结构特征分析[J].中国矿业大学学报,2020,49(4):721-729,741.

LI J H,WU H B,LI Y, et al. Analysis of micro pore structure characteristics of tight reservoir in Hailaer Basin[J]. Journal of China University of Mining & Technology,2020,49(4): 721-729,741.

19
马世忠,张宇鹏.应用压汞实验方法研究致密储层孔隙结构——以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J].油气地质与采收率,2017,24(1):26-33.

MA S Z,ZHANG Y P.Study on pore structure of tight reservoir by mercury injection experiment: A case study of Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2017,24(1): 26-33.

20
李廷微,姜振学,许辰璐,等.沾化凹陷沙三下亚段陆相页岩储层微—纳米孔隙结构特征[J].石油科学通报,2017,2(4):445-456.

LI T W, JIANG Z X, XU C L, et al. Micro-nano pore structure characteristics of continental shale reservoir in the lower submember of the third Shahejie Formation in Zhanhua Sag [J]. Petroleum Science Bulletin, 2017, 2(4): 445-456.

21
郭和坤,刘强,李海波,等.四川盆地侏罗系致密储层孔隙结构特征[J].深圳大学学报(理工版),2013,30(3):306-312.

GUO H K, LIU Q, LI H B, et al. Characteristics of pore structure of Jurassic tight reservoir in Sichuan Basin[J]. Journal of Shenzhen University (Science and Engineering), 2013,30(3): 306-312.

22
徐祖新,张义杰,王居峰,等.渤海湾盆地沧东凹陷孔二段致密储层孔隙结构定量表征[J].天然气地球科学,2016,27(1):102-110.

XU Z X, ZHANG Y J, WANG J F, et al. Quantitative characterization of pore structure of the second member of Kongdian tight reservoir in Cangdong Sag, Bohai Bay Basin[J]. Natural Gas Geoscience, 2016,27(1): 102-110.

23
宁传祥,姜振学,高之业,等.用核磁共振和高压压汞定量评价储层孔隙连通性——以沾化凹陷沙三下亚段为例[J].中国矿业大学学报,2017,46(3):578-585.

NING C X,JIANG Z X,GAO Z Y, et al. Quantitative evaluation of reservoir pore connectivity using nuclear magnetic resonance and high-pressure mercury injection: A case study of the lower sub-member of Sha-3 in Zhanhua Sag[J].Journal of China University of Mining & Technology, 2017,46(3): 578-585.

24
王旭,邓礼正,张娟,等.富古地区下古生界储层孔隙结构特征分析[J].断块油气田,2010,17(1):49-51.

WANG X, DENG L Z, ZHANG J, et al. Analysis of pore structure characteristics of Lower Paleozoic reservoir in Fugu area[J]. Fault-Block Oil & Gas Field, 2010,17(1): 49-51.

25
李海燕,徐樟有.新立油田低渗透储层微观孔隙结构特征及分类评价[J].油气地质与采收率,2009,16(1):17-21.

LI H Y, XU Z Y. Microscopic pore structure characteristics and classification evaluation of low permeability reservoir in Xinli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2009,16(1): 17-21.

26
赖锦,王贵文,陈敏,等.基于岩石物理相的储集层孔隙结构分类评价——以鄂尔多斯盆地姬塬地区长8油层组为例[J].石油勘探与开发,2013,40(5):566-573.

LAI J,WANG G W,CHEN M,et al.Classification and evaluation of reservoir pore structure based on petrophysical facies: A case study of Chang 8 oil formation in Jiyuan area,Ordos Basin[J]. Petroleum Exploration and Development,2013,40(5):566-573.

27
祝海华,张廷山,钟大康,等.致密砂岩储集层的二元孔隙结构特征[J].石油勘探与开发,2019,46(6):1220-1228.

ZHU H H,ZHANG T S,ZHONG D K, et al. Characteristics of binary pore structure in tight sandstone reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1220-1228.

28
马新仿,张士诚,郎兆新.用分形理论研究孔隙结构的对数正态分布[J].新疆石油地质,2004,25(4):418-419.

MA X F, ZHANG S C, LANG Z X. Study on lognormal distribution of pore structure by fractal theory[J]. Xinjiang Petroleum Geology, 2004,25(4): 418-419.

29
DULLIEN F A L.多孔介质—流体渗移与孔隙结构[M].北京:石油工业出版社,1990:23-27.

DULLIEN F A L.Porous Media: Fluid Permeability and Pore Structure[M].Beijing: Petroleum Industry Press,1990:23-27.

Outlines

/