Research progress and development trend of the genesis of dolomite reservoirs

  • Zhongtang SU , 1, 2 ,
  • Wei SHE 1 ,
  • Huihong LIAO 1 ,
  • Sunlong HU 1 ,
  • Guoqing LIU 1 ,
  • Hui MA 1
Expand
  • 1. Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China
  • 2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology),Chengdu 610059,China

Received date: 2021-06-06

  Revised date: 2021-12-30

  Online published: 2022-07-11

Supported by

The National Natural Science Foundation of China(41302087)

Highlights

Dolomite reservoirs account for nearly a quarter of the global oil and gas reservoirs, and they have become the focus of petroleum geologists because of their pores in depth. The effective pores of dolomite reservoirs can originate from precursor limestone, dolomitization in the closed system, and diagenetic dissolution reformation. Dolomitization can increase, maintain, and reduce pores, but does not necessarily form a reservoir. Dolomitization can increase the permeability of the rock, enhance the compressive performance of the rock, and easily form cracks. Early dolomitization and moderate recrystallization are conducive to the formation of reservoirs. The dolomite genetic model reflects the method of dolomitization and hydrological conditions, and the genetic model of dolomite is helpful to predict the distribution of reservoirs. Rare earth elements and Mg isotopes have become new technologies for tracing dolomitization fluids. In-situ U-Pb dating technology of carbonate and cluster isotope technology have promoted more accurate genetic research, and experiments and numerical simulations have promoted dynamic reservoir characterization. Geological big data will reveal more laws of reservoir development.

Cite this article

Zhongtang SU , Wei SHE , Huihong LIAO , Sunlong HU , Guoqing LIU , Hui MA . Research progress and development trend of the genesis of dolomite reservoirs[J]. Natural Gas Geoscience, 2022 , 33(7) : 1175 -1188 . DOI: 10.11764/j.issn.1672-1926.2022.01.003

0 引言

白云岩储层约占全球各类油气储层的1/41,是油气资源勘探开发的重要领域。当埋深大于2 000 m时,白云岩储层比灰岩储层具有更高的孔隙度和渗透率2,因此,石油地质学家十分关注白云岩及其储层的成因,特别是深层—超深层白云岩储层的成因3-10
白云岩化作用是形成白云石的主要途径(本文所阐述白云岩化作用指白云石交代方解石的作用,不含直接沉淀的原生白云石与胶结物白云石的成因),因镁离子半径小于钙离子,白云石等摩尔交代方解石或文石会产生“减体积”效应,业界长期认为只要发生白云岩化作用就会增加孔隙从而形成储层11-13。然而,近些年的白云岩储层成因研究表明:白云岩化作用产生的基质白云石总能形成白云岩,但不一定形成白云岩储层3;原始沉积相带和早期白云岩化作用是优质储层发育的基础,后期构造—流体环境对储层形成—保持具有重要影响68-1014-17。优质白云岩储层成因不仅要分析白云岩成因及白云岩化作用对储层发育的贡献,还需分析前驱灰岩沉积环境、后期孔隙演化的成岩过程、准确识别重结晶作用并判断其对白云岩储层的影响,因而进行白云岩储层成因研究远比探讨白云岩成因复杂,其成因机制方面还有很多问题尚待深入研究,特别是白云岩储层形成—保持机制不清、白云岩储层与白云岩化作用之间关系不明,使白云岩储层成因研究如同雾里看花不尽如人意。
由于储层成因是阐明有效孔隙形成、保持与增减过程,进而找准形成现今孔隙的关键地质因素,因此针对白云岩储层成因,本文归纳总结前人研究认识,分析白云岩化作用对储层形成的贡献,以期理清白云岩储层成因,并在此基础上阐述白云岩储层成因研究新技术并展望发展趋势。

1 白云岩储层孔隙成因研究进展

1.1 适度白云岩化才能增加孔隙

储层成因研究的核心是储集孔隙演化过程研究,分析有效孔隙形成、保持、增减过程中的关键地质因素,研究各地质因素之间的相互耦合过程。白云岩储层研究必然率先分析白云岩化作用,因为按照质量守恒定律,白云岩化过程中Mg2+等摩尔交代Ca2+,由于前者离子半径小,方解石或文石被白云石交代后,会产生“减体积”效应——晶体体积减小而使孔隙度增加,理论上当方解石或文石完全转化为白云石时,孔隙度可分别增加12.96%和5.76%11
正因如此,长期以来人们认为白云岩化作用可增加孔隙,只要发生白云岩化作用就能形成白云岩储层12-13
但是,白云岩化作用并非总能增加孔隙13,自然界中亦存在白云岩化作用减少孔隙的现象18-19。例如,美国南佛罗里达州新生代白云岩内的孔隙与相邻灰岩层孔隙相当或者更低20;白云岩形成以后,若白云岩化流体还在持续供给,就会产生过度白云岩化,开始形成白云石胶结物,孔隙反而减少21-22图1),只有满足增孔条件下发生的白云岩化作用才能产生“减体积”效应。
图1 回流白云岩化白云石晶体生长示意(据文献[21]修改)

Fig.1 Schematic diagram of crystal growth of refluxed dolomitization dolomite(modified according to Ref.[21])

1.2 白云岩化作用增孔条件

白云岩化作用可用公式23
2 - x C a C O 3 ( s ) + M g 2 + a q + x C O 3 2 - a q C a M g C O 3 2 s + 1 - x C a 2 + a q
x=1时,代表地质环境为相对开放体系有非本地方解石(或文石)溶解的额外CO3 2-的带入,无Ca2+的输出,白云岩化作用并不产生孔隙;当x=0时,代表地质环境为相对封闭体系,额外CO3 2-带入相对有限白云岩化作用因“减体积”效应而增加孔隙24-25。因此,白云岩化体系的开放性与否决定白云岩化作用发生时是否会产生孔隙。自然界中,大多数白云岩化作用发生在开放或者半开放成岩体系中1326,由于外来CO3 2-的加入很难增加孔隙;只有地质环境相对封闭成岩体系中,没有外来CO3 2-的输入,白云岩化作用才能产生孔隙。
事实上,即使封闭体系下发生的白云岩化作用,能否增加孔隙还受控于白云石自身结构和含量。白云石晶体大小对孔隙度有显著影响,随白云岩晶体大小变化,孔隙度先增后减27-31图2)。白云石含量对孔隙度同样有影响,当白云石含量小于50%时,随白云石含量的增加,孔隙度不变甚至降低;当白云石含量大于50%时,孔隙度随白云石含量的增加而增大,但增孔上限一般为85%~92%;当白云石含量继续增加时,孔隙度反而会降低甚至致密2931。这表明,只有封闭体系下,形成含量介于51%~92%之间、适当晶体大小白云石的白云岩化作用才能产生孔隙,形成储层。
图2 白云石晶体结构与孔隙度的关系29

Fig.2 Relationship between crystal structure and porosity of dolomite29

1.3 白云岩储层继承前驱灰岩孔隙

自然界大多数白云岩都是交代灰岩而成,白云岩储层内的孔隙可能主要继承于交代作用发生时前驱灰岩已存在的孔隙。大巴哈马台地新近系灰岩与白云岩具有相似的孔隙度、现代白云质沉积物中的孔隙度不随白云石含量增加而增加的事实已证实了这点32。理论上,若白云石交代方解石有额外CO3 2-输入而无Ca2+输出,白云岩化过程则不会增加孔隙,白云岩中的孔隙则为前驱灰岩的继承孔隙33。深层—超深层碳酸盐岩中,相对高能环境中的沉积物经白云岩化作用改造后通常具有更高的孔隙度1417,成为优质储层,一定程度上表明前驱灰岩对白云岩储层孔隙发育有影响。

1.4 溶蚀作用形成白云岩储层孔隙

作为可溶性碳酸盐岩的重要岩类,白云岩在各种成岩环境极易发生溶蚀形成孔隙,转变为优质储层。白云岩经历大气淡水环境发生岩溶作用是最典型增孔实例:准同生期海平面变化引起的短暂暴露会发生大气淡水层间岩溶,改善白云岩体的储集性能34;构造抬升使白云岩处于表生大气淡水环境,溶蚀作用通常强烈改造白云岩形成风化壳储层,如靖边气田35、威远气田36埋藏成岩环境中;烃类活动产生的有机酸可以溶蚀白云岩,增加孔隙,改善储集能力37-41,硫酸盐与气态烃之间的化学反应(TSR)产生的酸性流体亦可溶蚀白云岩42-43,提高其孔隙度44。此外,埋藏环境中,碳酸盐岩体系极易形成富含CO2、H2S气体的流体,由于CO2与H2S特殊的化学习性,若经历构造抬升事件,使温度、地层压力或者 P C O 2 / P H 2 S降低,则CO2、H2S会变得不饱和从而发生溶解(倒退溶解模式),也可以增加白云岩的孔隙45-46。与构造活动相关的热液流体,不仅可以促使发生白云岩化作用47-48,而且能够在很大程度上溶蚀储集体,改造深层—超深层白云岩的储集性能49,塔里木盆地塔深1井就是很好的例证50。因此,溶蚀性流体成岩改造也是白云岩储层孔隙的重要来源。
上述研究表明,白云岩储层的孔隙形成是一个复杂的地质系统过程,其孔隙可能由原始灰岩孔隙、白云岩化作用和溶蚀作用单独形成,也可能是他们之间两者或三者共同耦合的结果51-52。因此,研究白云岩储层必须查明储层孔隙来源,才能对症下药找准形成储层的关键地质要素。

2 白云岩化作用贡献研究进展

虽然白云岩化作用增加孔隙具有苛刻的条件,但除其他成岩作用影响外,未经白云岩化作用改造的礁滩储层质量相对较差46,深埋条件下白云岩储层相对灰岩储层通常具有更高孔隙253图3)的地质事实表明白云岩化作用对形成白云岩储层有贡献。
图3 灰岩/白云岩孔隙度与埋深的关系曲线2

Fig.3 Relationship between porosity and burial depth of limestone/dolomite2

2.1 白云岩化时间、方式影响储层发育

白云岩化过程是一个复杂的持续过程,可能具有阶段性54,一旦开始,在白云岩化作用启动条件不变的情况下就会进行到底,除非Mg2+来源中断、动力驱动因素改变或没有足够的时间25。白云岩化作用所处的阶段,即白云岩化作用发生的相对时间,会影响白云岩化作用能否形成储层。如表生环境中白云岩较灰岩难溶蚀且易于形成刚性骨架,因此,早期白云岩化有利于储层孔隙保存3;晚期白云岩化形成的鞍状白云石多数情况下堵塞孔隙,不利于储层发育55;热液白云岩分布较局限,要形成大规模的储集体还需要原始沉积相带、热流体类型以及断裂带溶蚀与胶结作用的良好匹配9
大量白云岩的形成不仅需要克服Mg2+水化作用所造成的动力学障碍,还需要足够的含镁流体和长期的镁泵输送机制56。不同温压条件、流体性质和Mg2+供给量决定了白云石在流体中交代、结晶和溶解的速率,影响白云岩化作用方式,从而表现出结构保存程度和白云岩体几何形态差异。白云石的晶体边界在50~60 ℃开始出现非平直晶面57,高度过饱和的流体也趋于形成不平直的晶体边界;低温白云岩化作用趋于保存前驱灰岩原始结构,高温流体则可使前驱灰岩原始结构完全消失58。即使同一白云岩化作用模式,不同位置形成的白云岩也存在差异。如回流渗透白云岩化过程中形成的白云石晶体大小不同,上部靠近高镁流体源白云岩的晶粒可能极细,因为高盐度会使灰岩迅速白云岩化,而流体与下部岩层作用时间更长,使得形成的白云石晶体更大59;若白云岩化流体反复与基岩反应,近流体源区域因多次回流,新白云岩化流体将围绕前白云石晶体再生长,发生过度白云岩化46,反而不利于形成储层22,远流体源区域偶尔经历一次回流区域,因白云岩化流体Mg2+不足,导致白云岩化作用不彻底,使白云石含量不足而未能形成储层,只有处于距流体源适当区域,形成适度回流,有充足的Mg2+,但不足以发生过度白云岩化,才能形成优质储层(图1)。
“Mg2+毒化”效应可能仅适用于无机低温条件,现代库伦潟湖及微生物合成白云石实验显示硫酸盐与白云石是相互独立的体系,两者可能并无抑制关系。微生物活动能调节白云岩形成环境的酸碱度,并为白云石析出提供质点(胞外聚合物)60,使溶液离子容易克服动力学屏障而形成原生沉淀的白云石61-64。随后,弱结晶无序白云石快速重结晶产生化学计量白云石1365-67。不同的微生物活动状态、作用方式和作用阶段形成的微生物白云岩具有不同的形态特征,旺盛的微生物活动可以形成具(纹)层状构造的叠层石、纹层石,而衰弱的微生物活动一般形成无层状构造的均一石。微生物白云岩储层以叠层石、凝块石白云岩最为常见,其次为核形石、层纹石白云岩等68

2.2 白云岩化模式有助于预测储层分布

白云岩化作用发生的水文条件控制了白云岩体的外部形态13,即白云岩化模式可预测白云岩体的空间分布样式58图4)。各种白云岩化模式不断被提出,较为认可的模式主要有:蒸发泵模式69、回流渗透模式70、混合水模式71、埋藏白云石化模式72、构造热液白云石化模式47和微生物白云岩化60。近些年,白云岩化成因模式主要进展有中等盐度隐伏回流的发现73-74、混合水模式受到质疑75、压实、热对流、地形、构造等多种流体驱动方式均可形成埋藏白云岩化76及构造—热液活动诱发白云岩化作用47-48
图4 精选白云岩化模式及白云岩分布样式58

Fig.4 Selected models of dolomitization and dolomite distribution patterns58

白云岩化作用反映出白云岩形成的时间、成岩环境、“水—岩”作用方式及空间形态,因此,白云岩化成因决定了白云岩储集体发育的阶段、方式以及空间分布样式(图5)。白云岩化作用按照形成时间和成岩环境可以分为近地表环境、浅埋藏环境早期白云岩化作用(如蒸发泵模式、回流渗透模式、混合水模式和微生物白云岩化模式)和埋藏环境晚期白云岩化作用(如埋藏白云岩化模式和构造热液白云岩化模式)。早期白云岩化作用形成的很多储层具有明显的相控特征,通常需要叠加大气淡水溶蚀或者早成岩期间歇暴露溶蚀才能形成优质储层,只有浅埋藏环境中潜伏回流形成的白云岩未经历溶蚀改造,才能在适宜的流体域(图1)形成优质储层,其分布样式如图5所示,平面分布如图4所示。斜坡对流形成的白云岩很容易进入埋藏环境,叠加埋藏环境中各种溶蚀作用可以形成较优质储层。埋藏环境各种驱动机制作用下形成的白云岩,按理论都能形成储层,叠加各种溶蚀作用通常会转变为优质储层(图4图5)。沿断裂发育的构造热液白云岩储层,一定程度上具有原始有利相带优先特征,离断裂太近往往发育鞍状白云石堵塞孔隙,远离断裂存在白云岩化不彻底现象,只有在适当区域才能形成优质储层(图5)。
图5 白云岩储层分布样式示意(据文献[13]修改)

Fig.5 Schematic diagram of dolomite reservoir distribution pattern (modified according to Ref.[13])

2.3 重结晶作用是把“双刃剑”

白云岩重结晶现象非常普遍,特别是早期白云岩在高温条件下通常会发生重结晶改造,使其原始成因信息更模糊77-81。明显重结晶作用会使白云石更自形,白云岩有序度更高;地球化学参数随之改变79。重结晶作用可使白云石晶体增大且更自形,适度重结晶至细—中晶平直晶面自形晶有利于形成晶间孔,但重结晶过度会形成粗晶非平直晶面他形晶,反而会降低岩石孔隙度。对古老碳酸盐岩而言,识别重结晶作用,依据地质背景、白云岩分布规律、岩石学与地球化学特征,结合成因模式,分析白云岩成因机制,尽可能予以符合地质事实的解释,是准确预测白云岩储层分布的关键。

2.4 白云岩抗压易裂,白云岩化作用能提高渗透率

白云石抗压溶性使白云岩更利于保存孔隙82。抗压强度:白云岩40~350 MPa,灰岩5~250 MPa;抗剪强度:白云岩15~25 MPa,灰岩10~20 MPa;弹性模量:白云岩50~94 E/GPa;灰岩 50~100 E/GPa83。地表或近地表条件下,早期白云岩化作用保孔效能优于其增孔能力37;深埋环境中,白云岩因更具抗压溶性,孔隙度较灰岩减小慢,从而容易保持孔隙,使其具有“经济埋深”效应253。另外,白云岩脆性更优,易形成脆性裂缝5,深层白云岩中有效开启裂缝通常比灰岩更发育84
白云岩化作用未必增加岩石孔隙,但却可明显提高岩石渗透率85。最好实例是加拿大西部的白云岩化礁灰岩,与前驱灰岩相比,礁云岩孔隙度几乎不变,但渗透率却提高了十多倍86。白云岩化作用提高渗透率与白云岩化之后容易形成更多晶间(微)孔有关,准同生白云岩化层段较同层位灰岩渗透率显著提高即为例证19
白云岩化作用形成白云岩(石),但并不等于白云岩储层,白云岩成因机理研究有助于预测白云岩储层分布,但白云岩化作用对白云岩储层的贡献需结合其发生时间、方式及地质事实进行具体分析评价。白云岩储层的形成可能与白云岩化作用无关,也可能是非白云岩化作用的结果或者多种地质作用耦合的结果,其成因机制需要视地质情况综合分析,特别是古老白云岩储层可能叠加了重结晶作用影响,对其成因更需谨慎,以便准确评价其主控因素。

3 储层成因研究新技术

3.1 白云岩成因示踪技术

优质白云岩储层成因研究围绕储层有效孔隙形成、保持、增减及破坏过程开展研究,必然需分析白云岩化作用对储层形成的贡献,白云岩化流体性质及其来源分析是白云岩成因及其模式建立的关键内容。只有充分认识白云岩成因并准确评价白云岩化作用对储层的贡献度,才能客观研究白云岩储层成因。因此,白云岩成因研究是白云岩储层成因分析的基石。近些年,除通常采用的Fe、Mn、Sr元素分析,以及C、O、Sr同位素及流体包裹体分析外,随激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)广泛应用,样品分析精度和准确度不断提高,稀土元素与Mg同位素逐渐成为示踪白云岩化流体的新手段。
稀土元素通常作为示踪剂来研究岩石或沉积物的地球化学行为87-88。由于白云岩化后的成岩作用对白云岩稀土元素组成及其地球化学特征影响很小[自然界中绝大部分流体稀土元素含量为(10-6~10-4)×10-6[89,远小于改变原岩的稀土元素特征的流体量(模拟实验表明,成岩流体与岩石的体积比>104才能改变原岩稀土元素特征90)],近些年,稀土元素被用于研究白云岩化流体来源,在四川、塔里木、鄂尔多斯及羌塘等盆地白云岩化流体性质及其成因分析中,取得了较好效果91-96。因白云岩的形成与海水成分有着直接或间接的联系,海水稀土元素值作为白云岩配分模式标准化值也被提出94,成为继球粒陨石和页岩之后新的标准化数值。
Mg是组成白云石的核心元素,在低温地球化学过程中,Mg同位素具有显著同位素分馏效应97-99,不同储库Mg同位素组成明显不同100,使得Mg同位素成为研究白云岩成因的新手段101-104。白云岩Mg同位素组成与其形成时代、类型无明显相关性,可以示踪白云岩化流体来源,因其组成对成岩作用及低级别变质作用不敏感,仅受白云石化过程影响,亦可定量或半定量研究白云石化过程105。Mg同位素作为新兴示踪技术在白云岩成因研究方面颇具潜力。

3.2 碳酸盐岩定年测温技术

沉积岩成岩过程的年代约束是年代学领域极具挑战的难题106。近几年,方解石U—Pb测年被广泛关注,应用该技术获取了胶结物形成的准确时间,可相对定时约束不同流体活动年代,实现近似定时流体期次划分107-110。碳酸盐矿物的激光原位U—Pb同位素定年技术,在微区尺度下根据微量元素含量预扫描结果选取U/Pb值高、Pb含量低的区域,根据U、Pb含量选择激光束斑直径,用激光剥蚀电感等离子质谱仪(LA—LCP—MS)获得238U、206Pb、207Pb、208Pb值,得到同位素比值后,应用Isoplot3.0软件完成谐和图绘制及年龄计算,这个年龄代表碳酸盐矿物的结晶年龄110,应用于古老碳酸盐岩时,仍需考虑地质事件的叠加效应。获取碳酸盐胶结物绝对年龄,有利于更准确判断成岩流体的来源、性质和活动时间,从而恢复储集层的成岩—孔隙演化史,评价油气运移前有效孔隙度问题110
碳酸盐岩二元同位素,也称团簇同位素,是近年兴起的测温新技术。该技术是基于碳酸盐矿物13C、18O、16O同位素分子中13C与18O交换反应,因矿物中13C—18O的丰度是该反应平衡常数的函数,与反应温度有关,因此,二元同位素(Δ47)是温度的函数,故可以直接获得方解石矿物的生长温度111-115,数据解释时仍需考虑地质背景,特别是能引起温度变化地质事件的影响。目前,因无法直接测定碳酸盐矿物中二元同位素分子的丰度,仅能测定碳酸盐矿物溶解产生CO213C、18O、16O丰度,而后利用前人建立的温度标定方程来确定矿物的形成温度;方解石和白云石磷酸溶解产生的Δ47分馏差异非常小,通常用相同的温度标定方程来确定它们的形成温度115。通过二元同位素获取成岩温度,依据同位素交换平衡原理,还可恢复白云岩化流体的δ18O确定流体性质。

3.3 碳酸盐岩储层精细表征技术

白云岩化作用往往形成不均一矿物及其组合,精细的差异分析成为揭开白云岩成因的必然。微区痕量分析技术可直接在固体样品薄片上进行地球化学微区分析,准确度高,能有效分辨并获取碳酸盐岩不同结构组分、世代胶结的地球化学信息116。微区痕量分析技术结合一片多用技术,集岩石学研究和原位地球化学分析于一体,可极大提高碳酸盐岩分析精度,精细获取白云岩成因信息,刻画“流—岩”作用复杂过程,为解释孔隙演化过程、揭示白云岩储层宏观分布规律提供有力保障,与此同时也反映白云岩成因的复杂性,增加了解释难度。
CT成像作为一种无损检测与探伤技术,被用于储层微观表征,具有无损、三维、数字化等特点117,可以获得足够分辨率多孔介质微观孔隙结构图像,直观观察孔隙和喉道在三维空间的展布,并精确获得孔隙度及孔喉配置关系等定量数据,量化表征储层并进行综合评价118
大数据作为当今科学研究前沿阵地119,正引导科学研究从实验、理论、模拟进入到大数据驱动的新科学范式120。通过已积累的海量白云岩分布规律数据的挖掘,构建全球与局域白云岩发育图谱121,可发掘大数据背后的规律,规律化表征储层,揭示更符合地质事实的基本认识,服务于生产实践。

3.4 白云岩储层模拟技术

模拟技术可以定量、动态演示储层演化过程,深入了解储层发育机理,通常分实验模拟和数据模拟2类:实验模拟是定量研究不同条件下各种地质过程的重要方法,可以帮助人们理解地质条件下各种地质现象发生条件和过程37-3841122-126。数值模拟近些年被运用于白云岩化流体流动机制分析,以直观展示不同驱动力下白云岩化流体运移轨迹、流动速度及受控因素等73-7476127-132。模拟技术可重现白云岩化作用动力学动态演化的过程,对动态认识白云岩储层形成过程中的物性变化情况以及准确预测白云岩储层的分布具有指导意义37133

4 存在的问题与发展趋势

4.1 存在的问题

近些年,深层—超深层碳酸盐岩不断取得油气勘探突破,以及新技术新方法的应用推动白云岩储层成因认识不断提升,但还存在以下问题尚待持续研究:
(1)白云岩储层孔隙演化过程。精细分析技术约束下孔隙成因及其复杂演化过程的精确解析、白云岩化作用方式是否增孔及其对储层发育的实质贡献、不同条件下白云石交代方解石、文石溶蚀—沉淀机理及孔隙演化过程、重结晶作用对储层形成演化的影响以及储层形成关键地质作用耦合过程等基础问题尚不明晰。
(2)新兴表征技术的适用性。Mg同位素虽然是示踪Mg来源的利器,但白云岩化过程中Mg同位素分馏机制尚未完全确定;方解石U—Pb定年技术可较精确约束储层演化时序,但目前尚未建立全球通用的标准矿物,该技术已尝试应用于白云石定年134,但诸如同位素分馏机制等尚未明晰;大数据有利于揭示规律认识,但如何挖掘、甄别有效数据以客观真实地反映地质事实还在不断摸索中。
(3)模拟分析中参数选取的合理性。实验和数值模拟均基于地质模型开展研究,选取不同的参数将得到不同的模拟结果,如何不断优化模拟参数,提升模拟研究的合理性和准确度是模拟分析中长期面临的课题。

4.2 发展趋势

白云岩储层成因复杂,随着研究资料积累、研究程度深入及各种表征技术进步,必将逐渐掀开白云岩储层神秘面纱。未来白云岩储层研究将沿以下趋势发展:
(1)白云岩储层成因认识不断精细化、准确化。新型示踪方法、测温定年技术及微区分析技术涌现将使白云岩成因研究在多技术多参数约束下不断逼近地质事实,进而研究白云岩不同类型孔隙在温度、压力与流体等条件转变下的演化过程,使不同条件下储层孔隙来源认识更加精细、准确,促使白云岩储层成因认识更接近地质事实。
(2)白云岩储层表征技术动态化、可视化。数值模拟与实验模拟将细微可视再现不同条件下白云岩储层孔隙形成演化过程,清晰展现储层孔隙成因;数值模拟动态化、可视化表征储层发育过程,推动储层成因表征从静态向动态转变,提升储层主控因素认识并建立更符合地质过程的发育模式。
(3)储层分布规律发现智能化、数据化。随着信息技术的发展及其在地学领域的应用,已积累的大量白云岩储层相关数据的智能提取与集成分析将成为现实。大数据时代,发掘、集成全球海量研究资料必将提升白云岩储层成因规律性认识,揭示规模性白云岩储集体发育分布规律,提高油气勘探预测的准确率。

5 结论

(1)白云岩储层孔隙可以继承于前驱灰岩、产生于白云岩化作用、特殊地质事件的溶蚀作用,及三者彼此或共同耦合作用,是复杂地质过程的综合产物;白云岩化作用可以增加、保持、甚至减少孔隙。
(2)白云岩化作用可提高岩石渗透率,增强岩石抗压性能,且易形成裂缝;白云岩化作用的时间和方式影响储层形成,白云岩成因模式有助于预测储层分布,适度重结晶作用利于形成晶间孔,但重结晶过度会降低孔隙度。
(3)新兴分析技术和实验、数值模拟技术推动白云岩储层研究向精细化、动态化发展,大数据挖掘将揭示更多规模性储层发育分布的规律性认识。

特别感谢匿名评审专家提出的宝贵建议,使论文倍加增色。

1
马锋,杨柳明,顾家裕,等.世界白云岩油气田勘探综述[J].沉积学报,2011,29(5):1010-1021.

MA F, YANG L M, GU J Y, et al. The summary on exploration of the dolomite oilfields in the world[J].Acta Sedimentologica Sinica,2011,29(5):1010-1021.

2
SCHMOKER J W, HALLEY R B. Carbonate porosity versus depth: A predictable relation for South Florida[J].AAPG Bulletin,1982,66:2561-2570.

3
赵文智,沈安江,郑剑锋,等.塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J].中国科学:地球科学,2014,44(9):1925-1939.

ZHAO W Z, SHEN A J, ZHENG J F, et al. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos Basins and its implication to reservoir prediction[J].Scientia Sinica(Terrae),2014,44(9):1925-1939.

4
黄擎宇,刘伟,张艳秋,等.白云石化作用及白云岩储层研究进展[J].地球科学进展,2015,30(5):539-551.

HUANG Q Y, LIU W, ZHANG Y Q, et al. Progress of research on dolomitization and dolomite reservoir[J].Advances in Earth Science,2015,30(5):539-551.

5
陈代钊,钱一雄.深层—超深层白云岩储集层:机遇与挑战[J].古地理学报,2017,19(2):187-196.

CHEN D Z, QIAN Y X. Deep or super-deep dolostone reservoirs: Opportunities and challenges[J].Journal of Palaeogeography,2017,19(2):187-196.

6
马永生,蔡勋育,赵培荣.深层、超深层碳酸盐岩油气储层形成机理研究综述[J].地学前缘,2011,18(4):181-192.

MA Y S, CAI X Y, ZHAO P R. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J].Earth Science Frontiers,2011,18(4):181-192.

7
马永生,何登发,蔡勋育,等.中国海相碳酸盐岩的分布及油气地质基础问题[J].岩石学报,2017,33(4):1007-1020.

MA Y S, HE D F, CAI X Y, et al. Distribution and fundamental science questions for petroleum geology of marine carbonate in China[J].Acta Petrologica Sinica,2017,33(4):1007-1020.

8
马永生,何治亮,赵培荣.深层—超深层碳酸盐岩储层形成机理新进展[J].石油学报,2019,40(12):1415-1425.

MA Y S, HE Z L, ZHAO P R. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J].Acta Petrolei Sinica,2019,40(12):1415-1425.

9
何治亮,马永生,张军涛,等.中国的白云岩与白云岩储层:分布、成因与控制因素[J].石油与天然气地质,2020,41(1):1-14.

HE Z L, MA Y S, ZHANG J T, et al. Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirs in China[J].Oil & Gas Geology,2020,41(1):1-14.

10
何治亮,马永生,朱东亚,等.深层—超深层碳酸盐岩储层理论技术进展与攻关方向[J].石油与天然气地质,2021,42(3):533-546.

HE Z L,MA Y S,ZHU D Y, et al. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology,2021,42(3):533-546.

11
WEYL P K. Porosity through dolomitization: Conservation of mass requirements[J].Journal of Sedimentary Petrology,1960,30(1):85-90.

12
PURSER B H,BROWN A,AISSAOU D M. Origins and evo-lution of porosity in dolomites[M]// JOHN WILEY & SONS, Dolomites: A Volume in Honour of Dolomieu. Berlin: Springer,1994:281-308.

13
WARREN J. Dolomite: Occurrence, evolution and economically important associations[J].Earth-Science Reviews,2000,52(1-3):1-81.

14
赵文智,沈安江,胡素云,等.中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J].石油勘探与开发,2012,39(1):1-12.

ZHAO W Z, SHEN A J, HU S Y, et al. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development,2012,39(1):1-12.

15
沈安江,赵文智,胡安平,等.海相碳酸盐岩储集层发育主控因素[J].石油勘探与开发,2015,42(5):545-554.

SHEN A J, ZHAO W Z, HU A P, et al. Major factors controlling the development of marine carbonate reservoirs[J].Petroleum Exploration and Development,2015,42(5):545-554.

16
马永生,郭彤楼,赵雪凤,等.普光气田深部优质白云岩储层形成机制[J].中国科学(D辑:地球科学),2007,37(S2):43-52.

MA Y S, GUO T L, ZHAO X F, et al. Formation mechanism of deep high-quality dolomite reservoir in Puguang Gas Field[J]. Science in China(Series D: Earth Sciences),2007,37(S2):43-52.

17
马永生,蔡勋育,赵培荣.元坝气田长兴组—飞仙关组礁滩相储层特征和形成机理[J]. 石油学报,2014,35(6):1001-1011.

MA Y S, CAI X Y, ZHAO P R. Characteristics and formation mechanisms of reef-shoal carbonate reservoirs of Changxing-Feixianguan formations, Yuanba Gas Field[J].Acta Petrolei Sinica,2014,35(6):1001-1011.

18
陈彦华,刘莺,孙妥.白云岩化过程中岩石孔隙体积的变化[J].石油实验地质,1985,7(1):29-37.

CHEN Y H,LIU Y, SUN T. Changes of pore volume in dolomitization[J]. Petroleum Geology & Experiment,1985,7(1):29-37.

19
张学丰,刘波,蔡忠贤,等.白云岩化作用与碳酸盐岩储层物性[J].地质科技情报,2010,29(3):79-87.

ZHANG X F, LIU B, CAI Z X, et al. Dolomitization and carbonate reservoir formation[J]. Bulletin of Geological Science and Technology,2010,29(3):79-87.

20
HALLEY R B, SCHMOKER J W. High porosity Cenozoic carbonate rocks of South Florida: Progressive loss of porosity with depth[J].AAPG Bulletin,1983,67(2):191-200.

21
LUCIA F J, MAJOR R P. Porosity evolution through hypersaline reflux dolomitization[C]// PURSER B, TUCKER M, ZENGER D. Dolomites: A Volume in Honour of Folomieu. [S.l.]: International Association of Sedimentologists Special Publication,1994,21:325-341.

22
SALLER A H,HENDERSON N. Distribution of porosity and permeability in platform dolomites: Insight from the Permian of west Texas:Reply[J].AAPG Bulletin,2001,85:530-532.

23
黄思静,吕杰,兰叶芳,等.四川盆地西部中二叠统白云岩/石的主要结构类型——兼论其与川东北上二叠统—三叠系白云岩/石的差异[J].岩石学报,2011,27(8):2253-2262.

HUANG S J, LV J, LAN Y F, et al. The main texture of dolomite of Middle Permian, western Sichuan Basin: Concurrently on the differences with Upper Permian-Triassic, northeast Sichuan Basin[J].Acta Petrologica Sinica,2011,27(8):2253-2262.

24
黄思静,卿海若,胡作维,等.封闭系统中的白云石化作用及其石油地质学和矿床学意义——以四川盆地东北部三叠系飞仙关组碳酸盐岩为例[J].岩石学报,2007,23(11):2955-2962.

HUANG S J, QING H R, HU Z W, et al. Closed-system dolomitization and the significance for petroleum and economic geology: An example from Feixianguan carbonates, Triassic NE Sichuan Basin of China[J].Acta Petrologica Sinica,2007,23(11):2955-2962.

25
黄思静,张雪花,刘丽红,等.碳酸盐成岩作用研究现状与前瞻[J].地学前缘,2009,16(5):457-464.

HUANG S J,ZHANG X H,LIU L H,et al.Progress of resea-rch on carbonate diagenesis[J]. Earth Science Frontiers,2009,16(5):457-464.

26
LAND L S. The isotopic and trace element geochemistry of dolomite: The state of the art[M]//ZENGER D H, DUNHAM J B, ETHINGTON R L. Concepts and Models of Dolomitization.[S.l.]:Society for Sedimentary Geology Special Publications,1980,28:87-110.

27
WARDIAW N C, TAYLOR R P. Mercury caplillary pressure curves and the interpretion of pore structure and capillary behavior in reservoir rocks[J].Bulletin of Canadian Petroleum Geology,1976,24(2):225-262.

28
WOODY R E, GREGG J M, KOEDERITZ L F. Effect of texture on petrophysical properties of dolomite: Evidence from the Cambrian-Ordovician of southeastern Missouri[J].AAPG Bulletin,1996,80:119-132.

29
朱井泉,吴仕强,王国学,等.塔里木盆地寒武—奥陶系主要白云岩类型及孔隙发育特征[J].地学前缘,2008,15(2):67-79.

ZHU J Q, WU S Q, WANG G X, et al. Types and porosity characteristics of the Cambrian-Ordovician dolostones in Tarim Basin[J].Earth Science Frontiers,2008,15(2):67-79.

30
黄擎宇,张哨楠,张斯杨,等.白云岩结构对储集空间发育的控制作用——以塔里木盆地中央隆起区寒武系—奥陶系白云岩为例[J].天然气地球科学,2014,25(3): 341-350,470.

HUANG Q Y, ZHANG S N, ZHANG S Y, et al. Textural control on the development of dolomite reservoir: A study from the Cambrian-Ordovician dolomite, central Tarim Basin, NW China[J].Natural Gas Geoscience,2014,25(3):341-350,470.

31
MURRAY R C. Origin of porosity in carbonate rocks[J].Journal of Sedimentary Petrology,1960,30:59-84.

32
MELIM L A, ANSELMETTI F S, EBERLI G P. The importance of pore type on permeability of Neogene carbonates, great Bahama bank[C]//GINSBURG R N. Subsurface Geology of A Prograding Carbonate Platform Margin, Great Bahama Bank Results of the Bahamas Drilling Project.[S.l.]:SEPM Special Publication,2001:217-238.

33
LUCIA F J. Origin and petrophysics of dolostone pore space[C]//BRAITHWAITE C J R, RIZZI G, DARKE G. The Geometry and Petrogenesis of Dolomite Hydrocarbon.[S.l.]: Geological Society Special Publication,2004:141-155.

34
张涛,闫相宾.塔里木盆地深层碳酸盐岩储层主控因素探讨[J].石油与天然气地质,2007,28(6):745-754.

ZHANG T,YAN X B. A discussion on main factors controlling deep carbonate reservoirs in the Tarim Basin[J].Oil & Gas Geology,2007,28(6):745-754.

35
何江,冯春强,马岚,等.风化壳古岩溶型碳酸盐岩储层成岩作用与成岩相[J].石油实验地质,2015,37(1):8-16.

HE J, FENG C Q, MA L, et al. Diagenesis and diagenetic facies of crust-weathered ancient karst carbonate reservoirs[J].Petroleum Geology & Experiment,2015,37(1):8-16.

36
罗啸泉,郭东晓,蓝江华.威远气田震旦系灯影组古岩溶与成藏探讨[J].沉积与特提斯地质,2001,21(4):54-60.

LUO X Q, GUO D X, LAN J H. An approach to the palaeokarsts and pool accumulation in the Dengying Formation (Sinian) of the Weiyuan Gas Field, Sichuan[J].Sedimentary Geology and Tethyan Geology,2001,21(4):54-60.

37
沈安江,赵文智,胡安平,等.碳酸盐矿物定年和定温技术及其在川中古隆起油气成藏研究中的应用[J].石油勘探与开发,2021,48(3):476-487.

SHEN A J, ZHAO W Z, HU A P, et al. The dating and temperature measurement technologies for carbonate minerals and their application in hydrocarbon accumulation research in the paleo-uplift in central Sichuan Basin, SW China[J].Petroleum Exploration and Development,2021,48(3):476-487.

38
杨俊杰,张文正,黄思静,等.埋藏成岩作用的温压条件下,白云岩溶解过程的实验模拟研究[J].沉积学报,1995,13(3):83-88.

YANG J J, ZHANG W Z, HUANG S J, et al. Experimental simulation for dolomite dissolution under the conditions of burial temperature and pressure[J].Acta Sedimentologica Sinica,1995,13(3):83-88.

39
范明,胡凯,蒋小琼,等.酸性流体对碳酸盐岩储层的改造作用[J].地球化学,2009,38(1):20-26.

FAN M,HU K,JIANG X Q,et al.Effect of acid fluid on carbo-nate reservoir reconstruction[J]. Geochimica,2009,38(1):20-26.

40
黄康俊,王炜,鲍征宇,等.埋藏有机酸性流体对四川盆地东北部飞仙关组储层的溶蚀改造作用:溶解动力学实验研究[J].地球化学,2011,40(3):289-300.

HUANG K J, WANG W, BAO Z Y, et al. Dissolution and alteration of Feixianguan Formation in the Sichuan Basin by organic acid fluids under burial condition: Kinetic dissolution experiments[J].Geochimica,2011,40(3): 289-300.

41
佘敏,寿建峰,沈安江,等.从表生到深埋藏环境下有机酸对碳酸盐岩溶蚀的实验模拟[J].地球化学,2014,43(3):276-286.

SHE M, SHOU J F, SHEN A J, et al. Experimental simulation of dissolution for carbonate rocks in organic acid under the conditions from epigenesis to deep burial environments[J].Geo-chimica,2014,43(3):276-286.

42
蔡春芳,李宏涛.沉积盆地热化学硫酸盐还原作用评述[J].地球科学进展,2005,20(10):1100-1105.

CAI C F, LI H T. Thermochemical sulfate reduction in sedimentary basins:A review[J].Advances in Earth Science,2005,20(10):1100-1105.

43
朱光有,张水昌,梁英波,等.TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式[J].岩石学报,2006,22(8):2182-2194.

ZHU G Y,ZHANG S C,LIANG Y B,et al.Dissolution and alteration of the deep carbonate reservoirs by TSR:An important type of deep-buried high-quality carbonate reservoirs in Sichuan Basin[J].Acta Petrologica Sinica,2006,22(8):2182-2194.

44
马永生,蔡勋育,赵培荣,等.深层超深层碳酸盐岩优质储层发育机理和“三元控储”模式——以四川普光气田为例[J].地质学报,2010,84(8):3-10.

MA Y S, CAI X Y, ZHAO P R, et al. Formation mechanism of deep-buried carbonate reservoir and its model of three-element controlling reservoir: A case study from the Puguang Oilfield in Sichuan[J].Acta Geologica Sinica,2010,84(8):3-10.

45
黄思静,黄可可,张雪花,等.碳酸盐岩倒退溶解模式的化学热力学基础——与CO2有关的溶解介质[J].成都理工大学学报(自然科学版),2009,36(5):457-464.

HUANG S J, HUANG K K, ZHANG X H, et al. Chemical thermodynamics foundation of retrograde solubility for carbonate: Solution media related to CO2[J].Journal of Chengdu University of Technology(Science & Technology Edition),2009,36(5):457-464.

46
黄思静.碳酸盐岩的成岩作用[M].北京:地质出版社,2010.

HUANG S J. Carbonate Diagenesis[M].Beijing: Geological Publishing House,2010.

47
DAVIES G R, SMITH L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J].AAPG Bulletin,2006,90(11):1641-1690.

48
陈代钊.构造—热液白云岩化作用与白云岩储层[J].石油与天然气地质,2008,29(5):614-622.

CHEN D Z. Structure-controlled hydrothermal dolomitization and hydrothermal dolomite reservoirs[J].Oil & Gas Geology,2008,29(5):614-622.

49
杨海军,李开开,潘文庆,等.塔中地区奥陶系埋藏热液溶蚀流体活动及其对深部储层的改造作用[J].岩石学报,2012,28(3):783-792.

YANG H J, LI K K, PAN W Q, et al. Burial hydrothermal dissolution fluid activity and its transforming effect on the reservoirs in Ordovician in central Tarim[J].Acta Petrologica Sinica,2012,28(3):783-792.

50
孟祥豪,张哨楠,蔺军,等.塔深1井寒武系白云岩储层同位素流体地球化学示踪[J].矿物岩石,2009,29(4):75-82.

MENG X H, ZHANG S N, LIN J, et al. Geochemical tracing of isotopic fluid of the Cambrian dolomite reservoir in Well Tashen 1[J].Mineralogy and Petrology,2009,29(4):75-82.

51
LUCIA F J. Carbonate Reservoir Characterization(Second Edition)[M].New York: Springer Berlin Heidelberg,2007.

52
王珊,曹颖辉,杜德道,等.塔里木盆地古城地区奥陶系鹰山组白云岩特征及孔隙成因[J].岩石学报,2020,36(11):3477-3492.

WANG S, CAO Y H, DU D D, et al. Characteristics and pore genesis of dolomite in Ordovician Yingshan Formation in Gucheng area, Tarim Basin[J].Acta Petrologica Sinica,2020,36(11):3477-3492.

53
MA Y S, GUO X S, GUO T L, et al. The Puguang Gas Field: New giant discovery in the mature Sichuan Basin, Southwest China[J].AAPG Bulletin,2007,91(5):627-643.

54
MACHEL H G, ANDERSON J H. Pervasive subsurface dolomitization of the Nisku Formation in central Alberta[J].Journal of Sedimentary Petrology,1989,59:891-911.

55
MOORE C H, HEYDARI E. Burial diagenesis and hydrocarbon migration in platform limestones: A conceptual model based on the Upper Jurassic of the Gulf Coast of the USA[J].AAPG Bulletin,1993,77:213-229.

56
NING M, LANG X, HUANG K, et al. Towards understanding the origin of massive dolostones[J].Earth and Planetary Science Letters,2020,545:116-123.

57
SIBLEY D F, DEDOES R E, BARTLETT T R. Kinetics of dolomitization[J].Geology,1987,15(12):327.

58
MACHEL H G. Concepts and models of dolomitization: A critical reappraisal[J].Geological Society London Special Publications,2004,235(1):7-63.

59
WAHLMAN G P. Reflux dolomite crystal size variation in cyclic inner ramp reservoir facies, Bromide Formation(Ordovician), Arkoma Basin, southeastern Oklahoma[J].The Sedimentary Record,2010,8(3):4-9.

60
BURNS S J, MCKENZIE J A, VASCONCELOS C. Dolomite formation and biogeochemical cycles in the Phanerozoic[J].Sedimentology,2000,47:49-61.

61
MASTANDRE A,PERRI E,RUSSO F,et al. Microbial primary dolomite from a Norian carbonate platform, northern Calabria,southern Italy[J].Sedimentology,2006,53(3):465-480.

62
MCKENZIE J A, VASCONCELOS C. Dolomite mountains and the origin of the dolomite rock of which they mainly consist: Historical developments and new perspectives[J].Sedimentology,2009,56(1):205-219.

63
由雪莲,孙枢,朱井泉,等.微生物白云岩模式研究进展[J].地学前缘,2011,18(4):52-64.

YOU X L, SUN S, ZHU J Q, et al. Progress in the study of microbial dolomite model[J].Earth Science Frontiers,2011,18(4):52-64.

64
PETRASH D A, BIALIK O M, BONTOGNNALI T, et al. Microbially catalyzed dolomite formation: From near-surface to burial[J].Earth-Science Reviews,2017,171:558-582.

65
BRAISSTANT O, CAILLEAU G, DUPRAZ C, et al. Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids[J].Journal of Sedimentary Research,2003,73(3):485-490.

66
RIVADENEYRA M A, PARRAGA J, DELGADO R, et al. Biomineralization of carbonates by Halobacillus Trueperi in solid and liquid media with different salinities[J].FEMS Microbiology Ecology,2004,48(1):39-46.

67
KENWARD P A, FOWLE D A, GOLDSTEIN R H, et al. Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls[J].AAPG Bulletin,2013,97(11):2113-2125.

68
罗平,王石,李朋威,等.微生物碳酸盐岩油气储层研究现状与展望[J].沉积学报,2013,31(5):807-823.

LUO P, WANG S, LI P W, et al. Review and prospectives of microbial carbonate reservoirs[J].Acta Sedimentologica Sinica,2013,31(5):807-823.

69
MCKENZIE J A, HSU K J, SCHNEIDER J E. Movement of subsurface waters under the Sabkha, Abu Dhabi, UAE, and its relation to evaporative dolostone genesis[J].SEPM Society for Sedimentary Geology,1980,28:11-30.

70
ADAMS J E, RHODES M L. Dolomitization by seepage refluxion[J].AAPG Bulletin,1961,44:1921-1920.

71
BADIOZAMANI K. The dorag dolomitization model, application to the middle Ordovician of Wisconsin[J].Journal of Sedimentary Research,1973,43(4):965-984.

72
MATTES B W, MOUNTJOY E W. Burial dolomitization of the Upper Devonian Miette Buildup, Jasper national park, Alberta[M]//ZENGER D H. DUNHAM J B, ETHINGTON R L, eds. Concepts and Models of Dolomitization. New York: SEPM Special Publications,1980:259-297.

73
JONES G D, ROSTRON B J. Analysis of fluid flow constraints in regional-scale reflux dolomitization: Constant versus variable-flux hydrogeological models[J]. Bulletin of Canadian Petroleum Geology,2000,48(3):230-245.

74
JONES G D, SMART P L, WHITAKER F F, et al. Numerical modeling of reflux dolomitization in the Grosmont platform complex(Upper Devonian), western Canada sedimentary basin[J].AAPG Bulletin,2003,87(8):1273-298.

75
LUCZAJ J A. Evidence against the dorag(mixing-zone) model for dolomitization along the Wisconsin arch: A case for hydrothermal diagenesis[J].AAPG Bulletin,2006,90(11):1719-1738.

76
WHITAKER F F, SMART P L, JONES G D. Dolomitization: From conceptual to numerical models[J].Geological Society London,Special Publications,2004,235(1):99-139.

77
LAND L S. The origin of massive dolomite[J].Journal of Geological Education,1985,33:112-125.

78
KUPECZ J A. MONTANEZ I P, GAO G Q. Recrystallization of dolomite with time[M]//REZAK R, et al. Carbonate Microfabrics. Berlin: Springer-Verlag,1993: 87-193.

79
MACHEL H G. Recrystallization versus neomorphism, and the concept of ‘significant recrystallization’ in dolomite research[J].Sedimentary Geology,1997,113:161-168.

80
AlAASM I S. Chemical and isotopic constraints for recrystallization of sedimentary dolomites from the western Canada sedimentary basin[J].Aquatic Geochemistry,2000,6:227-248.

81
LUKOCZKI G, HASS J, GREGG J M, et al. Early dolomitization and partial burial recrystallization: A case study of Middle Triassic peritidal dolomites in the Villány Hills (SW Hungary) using petrography, carbon, oxygen, strontium and clumped isotope data[J].International Journal of Earth Sciences,2020,109:1051-1070.

82
AMTHOR J E, MOUNTJOY E W, MACHEL H G. Regional-scale porosity and permeability variations in Upper Devonian Leduc buildups: Implications for reservoir development and prediction in carbonates[J].AAPG Bulletin,1994,78(10):1541-1559.

83
J.H.SCHÖN.岩石物理特性手册[M]. 魏新善,曹青,程国建,等译.北京:石油工业出版社,2016.

SCHÖN J H. Physical Properties of Rocks: A workbook[M].WEI X S, CAO Q,CHENG G J, et al. translated. Beijing: Petroleum Industry Press,2016.

84
HUGMAN R H H, FRIEDMAN G M. Effects of texture and composition on mechanical behavior of experimentally deformed carbonate rocks[J].AAPG Bulletin,1979,63(9):1478-1489.

85
EHRENBERG S N, EBERLI G P, KERAMATI M, et al. Porosity-permeability relationships in interlayered limestone-dolostone reservoirs[J].AAPG Bulletin,2006,90(1):91-114.

86
JARDINE D, WILSHART J W. Carbonate reservoir description(in reservoir sedimentology)[J].Society of Economic Paleotologists and Mineralogists,1987,40:129-152.

87
GREEN D G, MOUNTJOY E W. Fault and conduit controlled burial dolomitization of the Devonian west-central Alberta deep basin[J].Bulletin of Canadian Petroleum Geology,2005,53(2):101-129.

88
ALAGARSAMY R, YOU C F, NATH B N, et al. Determination of rare earth, major and trace elements in authigenic fraction of Andaman Sea(northeastern Indian Ocean) sediments by inductively coupled plasma-mass spectrometry[J].Microchemical Journal,2010,94(1):90-97.

89
BANNER J L, HANSON G N, MEYERS W J. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian): Implications for REE mobility during carbonate diagenesis[J].Karnataka Journal of Agricultural Sciences,1988,58(3):415-432.

90
MCLENNAN S M. Archean sedimentary rocks and the archean mantle[M]//ASHWAL L D. Workshop on the Archean Mantle. Houston: Lunar and Planetary Institute,1989: 57.

91
胡文瑄,陈琪,王小林,等.白云岩储层形成演化过程中不同流体作用的稀土元素判别模式[J].石油与天然气地质,2010,31(6):810-818.

HU W X,CHEN Q, WANG X L, et al. REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs[J].Oil & Gas Geology,2010,31(6):810-818.

92
胡忠贵,郑荣才,胡九珍,等.川东—渝北地区黄龙组白云岩储层稀土元素地球化学特征[J].地质学报,2009,83(6):782-790.

HU Z G, ZHENG R C, HU J Z, et al. Geochemical characteristics of rare earth elements of Huanglong Formation dolomites reservoirs in eastern Sichuan-northern Chongqing area[J].Acta Geologica Sinica,2009,83(6):782-790.

93
吴仕强,朱井泉,胡文瑄,等.塔里木盆地寒武系—奥陶系白云岩稀土元素特征及其成因意义[J].现代地质,2009,23(4):638-647.

WU S Q, ZHU J Q, HU W X, et al. Rare earth element geochemistry characteristics of Cambrian-Ordovician dolostones in the Tarim Basin and their implications for the origin[J].Geoscience,2009,23(4):638-647.

94
韩银学,李忠,韩登林,等.塔里木盆地塔北东部下奥陶统基质白云岩的稀土元素特征及其成因[J].岩石学报,2009,25(10):2405-2416.

HAN Y X, LI Z, HAN D L, et al. REE characteristics of matrix dolomites and its origin of Lower Ordovidan in eastern Tabei area,Tarim Basin[J]. Acta Petrologica Sinica,2009,25(10):2405-2416.

95
苏中堂,陈洪德,徐粉燕,等.鄂尔多斯盆地马家沟组白云岩稀土元素地球化学特征[J].吉林大学学报(地球科学版),2012,42(S2):53-61.

SU Z T, CHEN H D, XU F Y, et al. REE characters of the Majiagou dolomites in Ordos Basin[J].Journal of Jilin University(Earth Science Edition),2012,42(S2):53-61.

96
江文剑,侯明才,邢凤存,等.川东南地区娄山关群白云岩稀土元素特征及其意义[J].石油与天然气地质,2016,37(4):473-482.

JIANG W J, HOU M C, XING F C, et al. Characteristics and indications of rare earth elements in dolomite of the Cambrian Loushanguan Group, SE Sichuan Basin[J]. Oil & Gas Geology,2016,37(4):473-482.

97
GALY A, BAR-MATTHEWS M, HALICZ L, et al. Mg isotopic composition of carbonate: Insight from Speleothem Formation[J].Earth and Planetary Science Letters,2002,201(1):105-115.

98
WIMPENNY J, BURTON K W, JAMES R H, et al. The behavior of magnesium and its isotopes during glacial weathering in an ancient shield terrain in West Greenland[J].Earth and Planetary Science Letters,2011,304(1-2):260-269.

99
FANTLE M S, HIGGINS J. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg[J].Geochimica et Cosmochimica Acta,2014,142:458-481.

100
董爱国,朱祥坤.表生环境中镁同位素的地球化学循环[J].地球科学进展,2016,31(1):43-58.

DONG A G, ZHU X K. Mg isotope geochemical cycle in supergene environment[J].Advances in Earth Science,2016,31(1):43-58.

101
AZMY K, LAVOIE D, WANDG Z R, et al. Magnesium-isotope and REE compositions of Lower Ordovician carbonates from eastern Laurentia: Implications for the origin of dolomites and limestones[J].Chemical Geology,2013,356:64-75.

102
MAVROMATIS V, MEISTERE P, OELKERS E H. Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru Margin[J].Chemical Geology,2014,385:84-91.

103
GESKE A, GOLDSTEIN R H, MAVROMATIS V, et al. The magnesium isotope (δ26Mg) signature of dolomites[J].Geochimica et Cosmochimica Acta,2015,149:131-151.

104
HUANG K J, SHEN B, LANG X G, et al. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates[J].Geochimica et Cosmochimica Acta,2015,164:333-351.

105
甯濛,黄康俊,沈冰.镁同位素在“白云岩问题”研究中的应用及进展[J].岩石学报,2018,34(12):3690-3708.

NING M, HUANG K J, SHEN B. Applications and advances of the magnesium isotope on the ‘dolomite problem’[J].Acta Petrologica Sinica,2018,34(12):3690-3708.

106
韩志宇,王菲,师文贝.沉积岩定年及应用:问题与展望[J].沉积学报,2022,40(2): 360-379.

HAN Z Y, WANG F, SHI W B. Dating and application for sedimentary rocks: Problems and prospects[J]. Acta Sedimentologica,2022,40(2): 360-379.

107
LI Q, PARRISH R R, HORSTWOOD M S A, et al. U-Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology,2014,376:76-83.

108
NURIEL P, WEINBERGER R, KYLANDER-CLARK A R C, et al. The onset of the Dead Sea transform based on calcite age-strain analyses[J]. Geology,2017,45(7):587-590.

109
刘恩涛,赵建新,潘松圻,等.盆地流体年代学研究新技术:方解石激光原位U—Pb定年法[J].地球科学,2019,44(3):698-712.

LIU E T, ZHAO J X, PAN S Q, et al. A new technology of basin fluid geochronology: In-situ U-Pb dating of calcite[J].Earth Science,2019,44(3):698-712.

110
沈安江,胡安平,程婷,等.激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩—孔隙演化中的应用[J].石油勘探与开发,2019,46(6):1062-1074.

SHEN A J, HU A P, CHENG T, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J].Petroleum Exploration and Development,2019,46(6):1062-1074.

111
EILER J M. ‘Clumped-isotope’ geochemistry: The study of naturally-occurring,multiply-substituted isotopologues[J]. Earth and Planetary Science Letters,2007,262(3-4):309-327.

112
FERRY J M, PASSEY B H, VASCONCELOS C, et al. Formation of dolomite at 40-80℃ in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry[J].Geology,2011,39(6):571-574.

113
HUNTINGTON K W, BUDD D A, WERNICKEB P, et al. Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite[J].Journal of Sedimentary Research,2011,81(9):656-669.

114
李平平,马倩倩,邹华耀,等.团簇同位素的基本原理与地质应用[J].古地理学报,2017,19(4):713-728.

LI P P, MA Q Q, ZOU H Y, et al. Basic principle of clumped isotopes and geological applications[J].Journal of Palaeogeography,2017,19(4):713-728.

115
李平平,王淳,邹华耀,等.团簇同位素在白云岩化流体恢复中的应用与局限性[J].石油与天然气地质,2021,42(3):738-746.

LI P P, WANG C, ZOU H Y, et al. Application of clumped isotopes to restoration of dolomitizing fluids and its limitations[J].Oil & Gas Geology,2021,42(3):738-746.

116
胡安平,李秀芝,蒋义敏,等.碳酸盐岩储层微区地球化学分析技术的发展及应用[J].天然气地球科学,2014,25(1):116-123.

HU A P, LI X Z, JIANG Y M, et al. Development and application of microarea geochemistry analysis technology for carbonate reservoirs[J].Natural Gas Geoscience,2014,25(1):116-123.

117
张天付,谢淑云,鲍征宇,等.基于高分辨率CT的孔隙型白云岩储层孔隙系统分形与多重分形研究[J].地质科技情报,2016,35(6):55-62.

ZHANG T F, XIE S Y, BAO Z Y, et al. Fractal and multifractal research on pore system for porous dolomite reservoirs based on high-resolution CT[J].Bulletin of Geological Science and Technology,2016,35(6):55-62.

118
朱可丹,张友,林彤,等.基于CT成像的白云岩储层孔喉非均质性分析——以塔东古城地区奥陶系GC601井鹰三段为例[J].石油与天然气地质,2020,41(4):862-873.

ZHU K D, ZHANG Y, LIN T, et al. Pore-throat heterogeneity in dolomite reservoirs based on CT imaging: A case study of the 3rd Member of the Ordovician Yingshan Formation in Well GC601 in Gucheng area, eastern Tarim Basin[J].Oil & Gas Geology,2020,41(4):862-873.

119
MANYIKA J, CHUI M, BROWN B, et al. Big Data: The Next Frontier For Innovation, Competition, and Productivity[R].New York: McKinsey Global Institute,2011:156.

120
周成虎,王华,王成善,等.大数据时代的地学知识图谱研究展望[J].中国科学:地球科学,2021,51(7):1070-1079.

ZHOU C H, WANG H, WANG C S, et al. Prospects for the research on genscieance knowledge graph in the big data era[J].Scientia Sinica(Terrae),2021,51(7):1070-1079.

121
LI M, WIGNALL P B, DAI X, et al. Phanerozoic variation in dolomite abundance linked to oceanic anoxia[J].Geology,2021,49(6):698-702.

122
黄思静,杨俊杰,张文正,等.去白云化作用机理的实验模拟探讨[J].成都地质学院学报,1993,20(4):81-86.

HUANG S J, YANG J J, ZHANG W Z, et al. Experimental approach to dedolomitization[J].Journal of Chengdu University of Technology,1993,20(4):81-86.

123
黄思静,杨俊杰,张文正,等.石膏对白云岩溶解影响的实验模拟研究[J].沉积学报,1996,14(1):103-109.

HUANG S J, YANG J J, ZHANG W Z, et al. Effects of gypsum(or anhydrite) on dissolution of dolomite under different temperatures and pressures of epigenesis and burial diagenesis[J].Acta Sedimentologica Sinica,1996,14(1):103-109.

124
黄思静,成欣怡,赵杰,等.近地表温压条件下白云岩溶解过程的实验研究[J].中国岩溶,2012,31(4):2253-2262.

HUANG S J, CHENG X Y, ZHAO J, et al. Test on the dolomite dissolution under subaerial temperature and pressure[J].Carsologica Sinica,2012,31(4):2253-2262.

125
POKROVSKY O S, GOLUBV S V, SCHOTT J, et al. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm pCO2: New constraints on CO2 sequestration in sedimentary basins[J].Chemical Geology,2009,265(1-2):20-32.

126
佘敏,蒋义敏,胡安平,等.碳酸盐岩溶蚀模拟实验技术进展及应用[J].海相油气地质,2020,25(1):12-21.

SHE M, JIANG Y M, HU A P, et al. The progress and application of dissolution simulation of carbonate rock[J]. Marine Origin Petroleum Geology,2020,25(1):12-21.

127
SHIELDS M J, BRADY P V. Mass balance and fluid flow constraints on regional-scale dolomitization, Late Devonian, western Canada sedimentary basin[J].Bulletin of Canadian Petroleum Geology,1995,43(4):371-392.

128
JONES G D, WHITAKER F F, SMART P L, et al. Fate of reflux brines in carbonate platforms[J].Geology,2002,30(4):371-374.

129
CASPARD E, RUDKIEWICZ J L, EBERLI G P, et al. Massive dolomitization of a Messinian reef in the Great Bahama Bank: A numerical modelling evaluation of Kohout geothermal convection[J].Geofluids,2004,4(1):40-60.

130
JONES G D, XIAO Y. Reflux dolomitization and porosity evolution: Insights from reactive transport models[C]//MCAULEY R.Dolomites-the spectrum:Mechanisms models, reservoir development. Calgary: Canadian Society of Petroleum Geologists, 2004.

131
ABARCA E, IDIART A, GRANDIA F, et al. 3D reactive transport modeling of porosity evolution in a carbonate reservoir through dolomitization[J].Chemical Geology,2019,513:184-199.

132
WANG G W, LI P P, HAO F, et al. Dolomitization process and its implications for porosity development in dolostones: A case study from the Lower Triassic Feixianguan Formation, Jiannan area, eastern Sichuan Basin, China[J].Journal of Petroleum Science and Engineering,2015,131:184-199.

133
LIU C, XIE Q B, WANG W, et al. Dolomite origin and its implication for porosity development of the carbonate gas reservoirs in the Upper Permian Changxing Formation of the eastern Sichuan Basin, South China[J].Journal of Gas Science and Engineering,2016,35:775-797.

134
胡安平,沈安江,陈娅娜,等.基于U-Pb同位素年龄和团簇同位素(△47)温度约束的四川盆地震旦系灯影组构造-埋藏史重建[J].石油实验地质,2021,43(5):896-906.

HU A P, SHEN A J, CHEN Y N, et al. Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer(△47)[J].Petroleum Geology & Experiment,2021,43(5):896-906.

Outlines

/