Reservoir characteristics and gas content of Wufeng-Longmaxi formations deep shale in southern Sichuan Basin

  • Xiaoyan ZOU , 1, 2 ,
  • Xianqing LI , 1, 2 ,
  • Yuan WANG 3 ,
  • Jizhen ZHANG 4 ,
  • Pei ZHAO 1, 2
Expand
  • 1. State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing),Beijing 100083,China
  • 2. College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China
  • 3. CNPC Engineering Technology R&D Company Limited,Beijing 102206,China
  • 4. Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University),Ministry of Education,College of Resources and Environment,Yangtze University,Wuhan 430100,China

Received date: 2021-08-01

  Revised date: 2021-09-25

  Online published: 2022-04-22

Supported by

The National Natural Science Foundation of China(U1810201)

the National Key Basic Research Program“973”(2012CB214702)

the China National Science and Technology Major Project(2016ZX05007-003)

Highlights

Shale reservoir characteristics are the fundamental factors affecting shale gas resource evaluation, and shale reservoir properties are of great significance to shale gas occurrence. Through X-Ray diffraction, field emission scanning electron microscopy, porosity and other experimental analysis of downhole core samples, the reservoir characteristics and gas content of deep shale in Wufeng-Longmaxi formations in Luzhou area of southern Sichuan Basin are studied, and the shallow shale in Longmaxi Formation in Changning area is compared. The results show that total organic carbon (TOC) content of Wufeng-Longmaxi formations deep shale in Luzhou area of southern Sichuan Basin is high (average, 3.37%), maturity is in the over-mature stage (average, 2.24%). Reservoir porosity is relatively high (average, 4.45%), and various types of pores such as inorganic mineral pores and organic matter pores are developed. In the mineral composition of the shale reservoirs, quartz content is relatively high (average, 44.25%), low clay content (average, 29.03%), high brittle mineral content (average, 57.35%), and good brittleness conditions (average brittleness indexes I and II are 55.35% and 67.44%, respectively). The shale reservoir is overpressure (pressure coefficient > 2.0) and gas-bearing capacity is good (gas content is 4.10-7.90 m3/t), which is different from the shallow shale of Longmaxi Formation in Changning area. Overall, the deep shale of Wufeng-Longmaxi formations in Luzhou area has good reservoir properties, which is beneficial to the occurrence and enrichment of deep shale gas.

Cite this article

Xiaoyan ZOU , Xianqing LI , Yuan WANG , Jizhen ZHANG , Pei ZHAO . Reservoir characteristics and gas content of Wufeng-Longmaxi formations deep shale in southern Sichuan Basin[J]. Natural Gas Geoscience, 2022 , 33(4) : 654 -665 . DOI: 10.11764/j.issn.1672-1926.2021.10.004

0 引言

四川盆地是我国海相页岩气勘探开发的主力盆地,经过近十年的勘探开发已形成了威远、长宁、涪陵和昭通等国家级页岩气示范区,主要埋深<3 500 m的中浅层页岩气,是海相页岩气勘探开发的首选,页岩气产量在2020年达到200×108 m3[1-3。国内外学者4-8在中浅层海相页岩储层和含气性方面做了大量研究工作。在目前的地矿行业标准中,深层页岩气的储层埋深介于3 500~4 500 m之间。我国深层页岩气资源量大,涪陵、丁山等区块深层页岩气资源量约为4 612×108 m3[3。四川盆地龙马溪组深层页岩(埋深>3 500 m)面积达12.80×104 km2,为中浅层(埋深<3 500 m)页岩面积的2倍,深层页岩气将是我国海相页岩气下一步勘探开发的重点领域7-9。美国页岩气取得的商业开发,包括了埋深>3 500 m的Haynesville、Eagle Ford、Cana Woodford深层页岩气10-15
中国石化和中国石油矿权海相页岩气重点勘探区为焦石坝、丁山、南川、威荣、永川,富顺—永川、威远、长宁、泸州、渝西等地区。深层页岩气高产井的重点层位是五峰组—龙马溪组,初始产气量高,但页岩气的最终可采量(EUR)相差较大6-8。孔隙类型主要为无机矿物孔、溶蚀孔和有机质孔,介孔、微孔的孔容和比表面积变化较大,页岩孔隙可能通过改变页岩气赋存状态控制含气性16-18。深层页岩中超压条件可降低压实—成岩作用对孔隙的破坏,有利于保存页岩气。深层页岩气中硅质页岩岩相,超高压条件和页岩气储层矿物组成不仅影响孔裂隙发育,而且控制着页岩气的赋存能力1219。高脆性矿物使页岩储层可压性较强而产生的裂缝,以及有机质孔和无机矿物孔等基质孔隙,它们对页岩储集层渗透性的贡献程度大幅度降低,孔渗因素为深层页岩储集层有效改造和快速实现大规模商业性开发的巨大障碍19-22。深层页岩储层矿物经过多期矿物转化的阶段,因而深层页岩储层矿物的组成相比浅层越发复杂。影响页岩储层裂缝发育不仅有地质构造和沉积环境等外在因素23-29,还有储层包含石英、长石、方解石在内的脆性矿物等内在因素,其与伊利石、高岭石、绿泥石等黏土矿物含量组成均对页岩气的赋存以及开采起着至关重要的作用30-35
四川盆地海相页岩气资源主要集中在>3 500 m的深层,是中浅层页岩气的重要接替领域,为评价深层页岩储集性能和优选页岩气有利储层,本文通过长宁—泸州地区井下岩心样品的X射线衍射、场发射扫描电镜、孔隙度等实验分析测试,对川南地区不同埋深五峰组—龙马溪组页岩储层特征和含气性进行研究,以便为四川盆地深层页岩气的赋存富集研究和勘探有利选区评价提供基础资料和科学依据。

1 样品采集与实验方法

四川盆地经历多期次构造演化的同时还受频繁的海侵海退和海陆变迁的影响,形成海陆相复杂叠合盆地,其边缘主要是龙门山褶皱带、米仓山隆起、大巴山褶皱带等造山带,共分为6个一级构造带30-32图1)。本文研究区位于川南低陡褶皱带(VI),该构造带内断裂总体不发育,经历抬升改造的程度相对较小,从而演变成适宜页岩气成藏的构造稳定区20-23
图1 川南地区构造区划和采样井位分布图

Fig.1 Distribution map of sampling well locations and structural zoning in southern Sichuan Basin

研究样品取自泸州地区YLZ-05井和长宁地区CNJ-01井(图1表1),全部为井下岩心,共计30件。其中,YLZ-05井取岩心样品21件(包括下志留统龙马溪组15件,上奥陶统五峰组6件),取样深度介于3 500~3 600 m之间,为深层页岩,岩性主要为硅质页岩、黑色页岩;CNJ-01井取岩心样品9件,为下志留统龙马溪组,取样深度介于2 100~2 500 m之间,为中浅层页岩,岩性主要为黑色页岩、炭质页岩。
表1 川南泸州-长宁地区五峰组—龙马溪组页岩样品基本地球化学特征

Table 1 Basic geochemical characteristics of Wufeng-Longmaxi formations shale samples in Luzhou and Changning areas, southern Sichuan Basin

井名 样品号 层位 深度/m TOC/% R O/% 孔隙度/% 全岩矿物含量/%
石英 长石 方解石 黄铁矿 其他 黏土矿物
CNJ-01 CNJ-01-01 龙马溪组 2 100.8 0.15 2.21 2.35 17.4 12.4 23.9 1.0 11.2 34.1
CNJ-01-02 2 156.7 0.20 2.27 20.1 4.3 31.6 0.8 5.7 37.5
CNJ-01-03 2 208.2 0.34 2.35 2.54 14.7 6.1 35.7 1.5 9.1 32.9
CNJ-01-04 2 268.9 1.11 2.21 3.10 17.3 3.5 36.0 1.8 8.7 32.7
CNJ-01-05 2 291.8 0.75 2.36 4.43 19.4 4.3 11.0 0.5 19.9 44.9
CNJ-01-06 2 317.1 1.03 2.28 4.58 23.6 6.7 14.9 1.3 10.2 43.3
CNJ-01-07 2 341.3 1.41 2.34 6.36 29.9 9.0 11.8 3.5 5.3 40.5
CNJ-01-08 2 362.3 1.50 2.42 6.87 26.8 7.5 13.1 2.6 9.4 40.6
CNJ-01-09 2 380.6 4.38 2.4 28.5 4.1 16.3 4.4 17.4 29.3
YLZ-05 YLZ-05-01 龙马溪组 3 525.2 2.44 4.41 43.4 8.7 1.4 5.0 3.1 38.4
YLZ-05-02 3 526.1 4.05 5.52 35.6 10.4 1.6 5.3 4.2 42.9
YLZ-05-03 3 526.7 1.47 6.04 28.3 7.0 2.9 28.6 1.8 31.4
YLZ-05-04 3 527.6 5.29 2.28 6.10 44.0 9.0 2.1 14.0 4.7 26.2
YLZ-05-05 3 528.1 4.52 4.92 55.4 6.3 2.1 3.6 5.3 27.3
YLZ-05-06 3 529.0 0.36 4.78 34.1 9.1 2.9 2.8 3.8 47.3
YLZ-05-07 3 530.0 5.30 5.98 50.8 7.1 4.3 6.1 7.0 24.7
YLZ-05-08 3 530.2 3.29 4.76 46.4 6.6 4.7 3.6 8.7 30.0
YLZ-05-09 3 531.1 5.13 2.19 5.47 56.2 6.1 3.7 2.9 10.2 20.9
YLZ-05-10 3 532.5 4.11 4.71 57.8 7.7 7.4 2.1 10.3 14.7
YLZ-05-11 3 532.7 3.76 4.58 63.6 4.9 6.2 1.7 12.7 10.9
YLZ-05-12 3 533.8 3.60 3.79 51.8 6.7 8.5 5.0 9.7 18.3
YLZ-05-13 3 534.5 3.87 3.84 54.7 4.3 12.9 5.0 8.5 14.6
YLZ-05-14 3 535.3 4.01 3.59 55.5 5.7 8.7 2.8 8.2 19.1
YLZ-05-15 3 535.5 6.32 2.58 3.69 43.0 10.7 10.0 5.1 6.4 24.8
YLZ-05-16 五峰组 3 536.2 4.72 4.74 57.4 4.3 8.1 1.9 8.3 20.0
YLZ-05-17 3 537.6 3.61 1.92 3.10 32.9 6.6 2.2 29.2 4.2 24.9
YLZ-05-18 3 539.1 2.18 3.53 44.8 6.3 3.1 1.6 5.3 38.9
YLZ-05-19 3 540.1 0.94 3.56 24.1 10.7 10.3 2.1 15.1 37.7
YLZ-05-20 3 540.6 0.48 3.12 25.5 10.9 5.9 1.4 8.1 48.2
YLZ-05-21 3 541.2 1.40 2.93 24.0 10.0 6.9 1.9 8.7 48.5
X射线衍射(XRD)实验仪器为D/Max2500 PC,是由日本Rigaku公司生产。参照SY/T 5163-2010标准进行XRD实验,分析测定页岩样品全岩矿物含量。挑选5 g左右的页岩样品,放在已准备好的研磨钵中,将其粉碎并研磨为300目,在烘箱搁置24 h,待样品干燥后进行XRD实验,实验分析条件:Cu靶(单色),管压40 kV,管流100 mA,旋转角度2.5°~60°,步长0.02°,旋转速度4 °/min。采用K值法对XRD谱图分析,定量计算出页岩样品中各种矿物含量。
页岩样品有机碳含量测定在美国LECO CS230分析仪上进行,按照GB/T 19145—2003标准完成,实验测试条件:载气0.27 MPa,氧气纯度99.5%,燃烧气体流速2 L/min,气体流速0.5 L/min。Rock-eval热解分析测定遵照GB/T 18602—2012标准,采用仪器为热解CHM-02,仪器工作系统是热萃取—热裂解系统,内部智能控制程序能将热解炉自动升温范围分布在300~600 ℃之间,可获得T maxS 1S 2。反射率(R O)测定执行SY/T 5124—2012标准,使用仪器为LEICA DM 4500P显微分光光度计,使用50倍油浸物镜对页岩样品中海相镜质体进行镜下观测。He—Hg法孔隙度实验仪器为智能型QKY-ZN分析仪,采用GRI法,参照标准为GB/T 3489—2015。
场发射扫描电镜(FE-SEM),选择Quanta 200F仪器,参照SY/T 5162—2014标准。挑选1.5 cm×1.5 cm大小碎样,抛光并镀金,镜下定量观察页岩样品中纳米级孔隙尺寸和形态等。甲烷等温吸附实验仪器为ISO-300气体吸附,执行GB/T 19560—2008标准。首先将粉碎样品至80~90目,取粉碎好的页岩样品100~120 g,搁置恒温箱48 h,待其干燥进行实验,压力小于12 MPa,点数介于6~8之间,各个点需12 h进行吸附平衡。

2 实验结果与讨论

2.1 页岩有机质丰度和成熟度特征

川南泸州—长宁地区五峰组—龙马溪组海相页岩样品的基本地球化学实验结果见表1图2。泸州地区龙马溪组深层页岩样品有机碳(TOC)含量为0.36%~6.32%,平均为3.83%,TOC含量>2%的占86.67%;泸州地区五峰组深层页岩样品TOC含量为0.48%~4.72%,平均为2.22%,TOC含量>2%的占60.00%;长宁地区龙马溪组中浅层页岩样品TOC含量为0.15%~4.38%,平均为1.21%,TOC含量>2%的占11.11%(图3)。龙马溪组沉积环境由底部的深水陆棚渐变至顶部浅水陆棚,海水深度变浅破坏了原有的贫氧环境,沉积物中有机质因遭到海水溶解氧的改造而保存率变低,龙马溪组页岩TOC含量由底部至顶部逐渐变小。泸州地区五峰组深水陆棚沉积相,相对龙马溪组底部水体更深,生物堆积程度相对较少,表现出TOC呈降低趋势的特征。总体上,泸州地区五峰组—龙马溪组深层页岩样品有机质丰度较高,TOC含量平均为3.37%。
图2 川南长宁地区(a)和泸州地区(b)五峰组—龙马溪组页岩样品地球化学特征剖面

Fig.2 Section map of geochemical characteristics of shale samples from Wufeng-Longmaxi formations in Changning (a) and Luzhou(b) areas, southern Sichuan Basin

图3 川南泸州-长宁地区五峰组—龙马溪组页岩TOC频率分布图

Fig.3 TOC frequency distribution of Wufeng-Longmaxi formations shale in Luzhou and Changning areas, southern Sichuan Basin

泸州地区龙马溪组深层页岩样品成熟度R O值为2.19%~2.58%,均值为2.35%;五峰组页岩样品R O值为1.92%。长宁地区龙马溪组中浅层页岩R O值为2.71%~3.02%,均值为2.84%。泸州地区五峰组—龙马溪组深层页岩成熟度处于过成熟阶段,R O均值为2.24%。泸州地区龙马溪组深层页岩样品生烃潜量(S 1+S 2)为0.11~0.80 mg/g,平均值为0.28 mg/g;五峰组深层页岩样品生烃潜量(S 1+S 2)为0.25~3.76 mg/g,平均值为1.28 mg/g。长宁地区龙马溪组中浅层页岩样品生烃潜量(S 1+S 2)为0.02~0.22 mg/g,平均值为0.09 mg/g。

2.2 全岩矿物组成与储层脆性

全岩XRD实验分析表明,下古生界海相页岩的矿物成分复杂多样30-33。泸州—长宁地区五峰组—龙马溪组页岩样品的矿物含量分布见图4图5。页岩样品的主要成分为石英、黏土矿物、长石和方解石,另外还含有黄铁矿、白云石等矿物。对于石英含量,泸州地区龙马溪组深层页岩分布在28.30%~63.60%之间,平均为48.04%;五峰组深层页岩分布在24.00%~57.40%之间,平均为34.78%;长宁地区龙马溪组中浅层页岩分布在14.7%~29.9%之间,平均为21.97%;表明泸州地区五峰组—龙马溪组深层页岩中石英含量比长宁地区龙马溪组中浅层页岩要高。对于黏土矿物含量,泸州地区龙马溪组深层页岩均值为26.10%,五峰组深层页岩均值为36.37%,长宁地区龙马溪组中浅层页岩均值为37.31%。与长宁地区龙马溪组中浅层页岩相比,泸州地区五峰组—龙马溪组深层页岩中黏土矿物含量较低。对于长石含量,泸州地区龙马溪组深层页岩均值为7.35%,五峰组深层页岩均值为8.13%,长宁地区龙马溪组中浅层页岩均值为6.43%。对于方解石含量,泸州地区龙马溪组深层页岩均值为5.29%,五峰组深层页岩均值为6.08%,长宁地区龙马溪组中浅层页岩均值为21.59%。对于黄铁矿含量,泸州地区龙马溪组深层页岩均值为6.24%,五峰组深层页岩均值为6.35%,长宁地区龙马溪组中浅层页岩均值为1.93%。与长宁地区龙马溪组中浅层页岩相比,泸州地区五峰组—龙马溪组深层页岩中黄铁矿含量明显较高。对于白云石含量,泸州地区龙马溪组深层页岩均值为5.30%,五峰组深层页岩均值为5.20%,长宁地区龙马溪组中浅层页岩均值为8.56%,说明泸州地区五峰组—龙马溪组深层页岩中白云石含量较低。泸州地区五峰组—龙马溪组深层页岩为高石英含量,低黏土含量,均值分别为44.25%和29.03%。
图4 川南泸州—长宁地区五峰组—龙马溪组页岩全岩矿物含量条形图(a)和三角图(b)

Fig.4 Mineral content bar chart(a) and triangle chart(b) of Wufeng-Longmaxi formations shale in Luzhou and Changning areas, southern Sichuan Basin

图5 川南泸州—长宁地区五峰组—龙马溪组页岩矿物相对含量分布

Fig.5 Distribution of mineral relative content of Wufeng-Longmaxi formations shale in Luzhou and Changning areas, southern Sichuan Basin

泸州地区龙马溪组深层页岩样品中碳酸盐矿物含量介于4.30%~21.20%之间,平均为11.92%;五峰组深层页岩中碳酸盐矿物含量介于6.30%~25.20%之间,平均为14.02%;长宁地区龙马溪组中浅层页岩样品中碳酸盐矿物含量介于17.10%~45.20%之间,平均为32.40%,明显高于泸州地区五峰组—龙马溪组深层页岩,主要由于长宁地区龙马溪组中浅层页岩沉积相为含钙质浅水—深水陆棚相。与长宁地区龙马溪组中浅层页岩相比,泸州地区龙马溪组深层页岩中石英含量较大,这可能与该区页岩的岩性主要为硅质页岩等有关。硅质页岩对微裂缝形成并保持开启有积极作用33,进而有利于页岩储层的有效改造和页岩气赋存。
黏土矿物因具催化活性而有利于生烃,同时增加页岩储层中对页岩气吸附贡献程度较大的比表面积,为页岩气吸附和赋存的重要储集空间17-18。页岩样品中黏土矿物均含有高岭石、绿泥石、伊利石和伊/蒙混层。与长宁地区龙马溪组中浅层页岩相比,泸州地区五峰组—龙马溪组深层页岩样品伊利石和伊/蒙混层含量较高,高岭石、绿泥石和总的黏土含量较低。随着深度增大,温压逐渐变高,高岭石含量逐渐变小,向绿泥石转化;伊/蒙混层转化为伊利石,最终伊利石含量增大9。川南地区五峰组—龙马溪组页岩属于过成熟阶段,页岩储层原生孔隙受后期压实作用和成岩作用的影响相对较小,从而有利于页岩气的富集。
脆性矿物主要为石英、长石和方解石,通常用其含量反映页岩气储层的可压裂性,高产稳产的页岩气藏一般是脆性高的页岩层36-38。川南地区五峰组—龙马溪组页岩样品中脆性矿物比较丰富,页岩储层中脆性矿物含量>40%时,达到商业性开发的基本要求35。如图6(a)所示,泸州地区龙马溪组深层页岩脆性矿物含量分布在38.2%~74.7%之间,平均为60.69%;五峰组深层页岩脆性矿物含量分布在40.9%~69.8%之间,平均为49.00%;长宁地区龙马溪组中浅层页岩脆性矿物含量分布在34.7%~56.8%之间,平均为49.99%。与长宁地区龙马溪组中浅层页岩相比,泸州地区五峰组—龙马溪组深层页岩脆性矿物含量较高,均值为57.35%。
图6 川南泸州—长宁地区五峰组—龙马溪组页岩样品的脆性特征

Fig.6 Brittleness characteristics of Wufeng-Longmaxi formations shale in Luzhou and Changning areas, southern Sichuan Basin

脆性指数是衡量页岩脆性发育程度的一个重要指标36,脆性指数采用矿物组成计算法,用脆性矿物占比来表示。北美地区脆性指数常用石英相对含量表示:
I = + + × 100 %
南方海相页岩中矿物成分较为复杂,石英、长石、方解石、白云石等均为脆性矿物,定义脆性指数II如下:
          I I = + + + + + + + × 100 %
就页岩脆性指数I来说,泸州地区龙马溪组深层页岩均值为59.55%,五峰组深层页岩均值为44.83%,长宁地区龙马溪组中浅层页岩均值为27.89%。对于页岩脆性指数II,泸州地区龙马溪组深层页岩均值为70.46%,五峰组深层页岩均值为59.92%,长宁地区龙马溪组中浅层页岩均值为60.15%。与长宁地区龙马溪组中浅层页岩相比,泸州地区龙马溪组深层页岩脆性指数较高。泸州地区五峰组—龙马溪组深层页岩脆性指数I (均值为55.35%)、脆性指数II (均值为67.44%)之间具有较好的正相关关系,且脆性指数II要大于脆性指数I[图6(b)]。泸州地区龙马溪组深层属于深水陆棚沉积,页岩储层中高脆性矿物含量与其硅质页岩沉积相密切相关。

2.3 储层孔渗特征和孔隙类型

下古生界海相页岩储层物性为低孔低渗30-31。孔隙度测试表明,泸州地区龙马溪组深层页岩孔隙度在3.59%~6.10%之间,均值为4.81%,主体位于4%~5%之间;泸州地区五峰组深层页岩孔隙度分布在2.93%~4.74%之间,均值为3.50%,主体位于3%~4%之间;长宁地区龙马溪组中浅层页岩孔隙度分布在2.35%~6.87%之间,均值为4.32%,主体分布大于3%。相对长宁地区龙马溪组中浅层页岩,泸州地区龙马溪组深层页岩孔隙度大(图7)。由于石英等脆性矿物的格架具有强抗压实能力,泸州地区龙马溪组深层页岩孔隙度保持程度高与硅质页岩岩相密不可分。
图7 川南泸州—长宁地区五峰组—龙马溪组页岩孔隙度频率分布

Fig.7 Porosity frequency distribution of Wufeng-Longmaxi formations shale in Luzhou and Changning areas, southern Sichuan Basin

渗透率测试表明,泸州地区龙马溪组深层页岩渗透率为(1.79~5.66)×10-7 μm2,均值为3.97×10-7 μm2;五峰组深层页岩渗透率为(1.04~3.80)×10-7 μm2,均值为2.08×10-7 μm2;长宁地区龙马溪组中浅层页岩渗透率为(1.5~17.4)×10-5 μm2,均值为4.2×10-5 μm2。与长宁地区龙马溪组中浅层页岩相比,泸州地区五峰组—龙马溪组深层页岩样品渗透率明显低,相差2个数量级。造成渗透率低的主要原因可能是高温高压的地质条件,温度条件由常温升高了60 ℃,页岩渗透率降低约40%,在相对应的高压条件下,页岩渗透率大约下降>90%7,表明压力对页岩储层渗透率影响较大。
FE-SEM电镜下,长宁地区龙马溪组中浅层页岩常见有较多的有机质孔、黄铁矿晶间孔隙、粒间孔、粒内孔、溶蚀孔和微裂缝等[图8(a)—图8(c)],泸州地区五峰组—龙马溪组深层页岩发育有机质孔、无机矿物孔等[图8(d)—图8(f)],深水陆棚相富含生物硅质利于有机质孔的形成38,深层超压环境使有机质孔保存良好。与长宁地区龙马溪组中浅层页岩储层微观孔隙相比,泸州地区龙马溪组深层页岩有机质孔明显发育,而溶蚀孔欠发育。
图8 川南泸州—长宁地区五峰组—龙马溪组页岩样品不同类型孔隙FE-SEM电镜图像((d)-(f)引自文献[38])

Fig.8 FE-SEM images of different pores from Wufeng-Longmaxi formations shale samples in Luzhou and Changning areas, southern Sichuan Basin((d)-(f) cited from Ref.[38])

2.4 含气性分析

川南地区深层页岩经历的构造抬升剥蚀较少,而受中国南方板块构造演化,尤其是燕山运动以来的构造改造差异性影响,五峰组—龙马溪组页岩气保存条件比较复杂34。泸州地区五峰组—龙马溪组深层页岩处于沉积中心的深水还原环境中,有利于页岩气形成23。泸州地区龙马溪组深层页岩储层压力系数>2.0,属强超压范围,明显较长宁地区龙马溪组中浅层页岩高。从长宁地区的剥蚀线向泸州地区方向,龙马溪组压力系数随埋深增加而增大,与页岩埋深呈明显正相关,相关系数为0.901 2[图9(a)]。
图9 川南泸州—长宁地区压力系数(a)和游离气占比(a)与页岩埋深相关性

Fig.9 Correlation of pressure coefficient(a)and proportion of free gas (b)vs. shale burial depth in Luzhou and Changning areas, southern Sichuan Basin

页岩含气量对评价页岩气藏具有经济开采价值与否至关重要,内部与外部因素共同影响页岩含气量31-32。泸州地区龙马溪组深层页岩总含气量为4.10~7.90 m3/t,平均为7.08 m3/t,长宁地区龙马溪组中浅层页岩总含气量测试结果为1.02~4.98 m3/t,平均为2.76 m3/t。与长宁地区龙马溪组中浅层页岩相比,泸州地区龙马溪组深层页岩游离气量占比和总含气量较高,且游离气占比与页岩埋深呈正相关关系,相关系数为0.781 8[图9(b)];泸州地区龙马溪组深层页岩含气饱和度介于50%~70%之间,平均为65%,远高于长宁地区龙马溪组中浅层页岩19。泸州地区龙马溪组深层页岩为低陡褶皱构造类型和强超压环境,I级大断裂不发育,天然裂缝发育,有利于页岩气的富集保存,尤其为游离气,页岩气井的总含气量约为长宁地区的1.3~2.0倍以上。总气量中游离气含量所占比例较大,从而出现了泸州地区龙马溪组深层页岩气井的高试采含量现象。出现高试采,低EUR现象可能是由于页岩气保存程度不同,也可能与富有机质页岩厚度有关。
TOC含量影响页岩的物理化学性质和页岩含气量22-24,川南地区五峰组—龙马溪组页岩样品中TOC与页岩含气量呈现正相关性,相关系数为0.485 7[图10(a)],脆性矿物含量与页岩含气量也具有一定正相关性,相关系数为0.508 1[图10(b)]。泸州地区龙马溪组深层页岩具有高脆性矿物含量,易压裂形成孔裂隙,同时脆性矿物内部的刚性骨架对页岩储层孔隙起到较好的保护作用。也可能由于有机质在生烃的过程中排出有机酸溶蚀长石、碳酸盐矿物等产生孔隙9,使含气量增大。TOC含量越大,储层孔隙度越大,越有利于页岩气的富集。
图10 川南泸州—长宁地区TOC(a)、脆性矿物含量(b)、压力系数(c)、储层厚度(d)对页岩含气量的影响

Fig.10 Effect of TOC(a), brittle mineral content (b), pressure coefficient (c) and reservoir thickness (d) on shale gas content in Luzhou and Changning areas, southern Sichuan Basin

页岩气井高产关键因素之一是高压力系数,勘探实践表明已实现商业开发的中浅层页岩气井压力系数>1.2的高压区30-32,且单井初期产量与压力系数呈正相关关系。泸州地区龙马溪组深层页岩气井压力系数>2.0,属强超压区,单井产气量高于长宁地区[图10(c)]。测试产气量与I类储层厚度及其钻遇长度呈正相关[图10(d)]。与长宁地区相比33,泸州地区I类储层厚度大,测试产气量高出10%~25%。由于龙马溪组沉积早期,川南地区发生大规模海侵,缺氧滞留的深水还原环境使有机质富集,进而控制有机碳含量,有机质含量是页岩气储层物性和含气性的重要因素。因此,沉积环境对页岩气储层发育起到了主要控制作用。

3 结论

(1)川南泸州地区五峰组—龙马溪组深层页岩物性不同于长宁地区龙马溪组中浅层页岩,表现为泸州地区五峰组—龙马溪组深层页岩孔隙度较大,渗透率明显低;与长宁地区龙马溪组中浅层页岩相比,泸州地区龙马溪组深层页岩孔隙类型中有机质孔较发育,溶蚀孔欠发育。
(2)川南泸州地区五峰组—龙马溪组深层页岩具有高石英含量 (平均为44.25%),低黏土矿物含量(平均为29.03%)、高脆性矿物含量(平均为57.35%)和高脆性指数(脆性指数Ⅱ平均为67.44%)的特征,不同于长宁地区龙马溪组中浅层页岩,其储层可压裂性较好。
(3)川南泸州地区五峰组—龙马溪组深层页岩总含气量高(为4.10~7.90 m3/t),储层超压(压力系数>2.0),游离气占比、总含气量和储层压力系数与页岩埋深呈正相关关系,TOC含量、脆性矿物含量与总含气量也呈正相关关系。
1
刘树根,焦堃,张金川,等. 深层页岩气储层孔隙特征研究进展——以四川盆地下古生界海相页岩层系为例[J]. 天然气工业,2021,41(1):29-41.

LIU S G, JIAO K, ZHANG J C, et al. Research progress on the pore characteristics of deep shale gas reservoirs: An example from the Lower Paleozoic marine shale in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1):29-41.

2
戴金星,倪云燕,董大忠,等. “十四五”是中国天然气工业大发展期——对中国“十四五”天然气勘探开发的一些建议[J]. 天然气地球科学,2021,32(1):1-16.

DAI J X, NI Y Y, DONG D Z, et al. 2021-2025 is a period of great development of China's natural gas industry:Suggestions on the exploration and development of natural gas during the 14th Five-Year Plan in China[J]. Natural Gas Geoscience, 2021, 32(1):1-16.

3
邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1):1-14.

ZOU C N, ZHAO Q, CONG L Z, et al. Development progress, potential and prospect of shale gas in China forecast[J]. Natural Gas Industry, 2021, 41(1):1-14.

4
王哲,李贤庆,周宝刚,等. 川南地区下古生界页岩气储层微观孔隙结构表征及其对含气性的影响[J]. 煤炭学报,2016,41(9):2287-2297.

WANG Z, LI X Q, ZHOU B G, et al. Characterization of microscopic pore structure and its influence on gas content of shale gas reservoirs from the Lower Paleozoic in southern Sichuan Basin[J]. Journal of China Coal Society, 2016, 41(9): 2287-2297.

5
马新华,谢军,雍锐,等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发,2020,47(5):841-855.

MA X H, XIE J, YONG R, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2020,47(5): 841-855.

6
李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45-58.

LI Y, XUE Z J, CHENG Z, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020,25(1):45-58.

7
何治亮,聂海宽,蒋廷学. 四川盆地深层页岩气规模有效开发面临的挑战与对策[J].油气藏评价与开发,2021,11(2):1-11.

HE Z L,NIE H K,JIANG T X.Challenges and countermeasu-res of effective development with large scale of deep shale gas in Sichuan Basin[J]. Reservoir Evaluation and Development, 2021,11(2):1-11.

8
聂海宽,何治亮,刘光祥,等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020,49(1):12-34.

NIE H K, HE Z L, LIU G X, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology,2020,49(1):12-34.

9
戴金星,倪云燕,秦胜飞,等. 四川盆地超深层天然气地球化学特征[J]. 石油勘探与开发,2018,45(4):588-597.

DAI J X,NI Y Y,QIN S F,et al. Geochemical characteristics of ultra-deep natural gas in the Sichuan Basin,SW China[J]. Petroleum Exploration and Development,2018,45(4):588-597.

10
RICHARD M, POLLARTRO D M, JARVIE R. Geologic framework of the Mississippian Barnett shale, Barnett-Paleozoic total petroleum system, Bend archndash Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 4(91): 405-436.

11
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.

12
ROSS D J K, MARC B R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology,2009,26(6): 916-927.

13
JARVIE D M, HILL, R J, RUBLE, T E, et al. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.

14
WANG F Y, GUAN J, FENG W P, et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J].Petroleum Exploration and Development Online,2013, 40(6): 819-824.

15
KHAN I, ZHONG N N, LUO Q Y, et al. Maceral composition and origin of organic matter input in Neoproterozoic-Lower Cambrian organic-rich shales of Salt Range Formation, upper Indus Basin, Pakistan[J]. International Journal of Coal Geology, 2020, 217: 103319.

16
HAN Y, RAN B, LIU S, et al. Main controlling factors of organicmatter richment in the Ordovician-Silurian marine organic-rich mudrock in the Yangtze block, South China[J]. Marine and Petroleum Geology, 2021, 127: 104959.

17
王鹏万,李昌,张磊,等. 五峰组—龙马溪组储层特征及甜点层段评价——以昭通页岩气示范区A 井为例[J]. 煤炭学报,2017,42 (11) :2925-2935.

WANG P W, LI C, ZHANG L, et al. Characteristic of the shale gas reservoirs and evaluation of sweet spot in Wufeng-Longmaxi Formation: A case from the A well in Zhaotong shale gas demonsration zone[J].Journal of China Coal Society, 2017, 42 (11): 2925-2935.

18
YAN D, LI S, FU H, et al. Mineralogy and geochemistry of Lower Silurian black shales from the Yangtze platform, South China[J]. International Journal of Coal Geology, 2021, 237: 103706.

19
张成林,赵圣贤,张鉴,等. 川南地区深层页岩气富集条件差异分析与启示[J]. 天然气地球科学,2021,32(2):248-261.

ZHANG C L, ZHAO S X, ZHANG J, et al. Analysis and enlightenment of the difference of enrichment conditions for deep shale gas in southern Sichuan Basin[J]. Natural Gas Geoscien-ce,2021,32(2):248-261.

20
LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in Siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.

21
CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.

22
腾格尔,申宝剑,俞凌杰,等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发. 2017, 44(1): 69-78.

TENGER, SHEN B J, YU L J, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi formations, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78.

23
戴方尧,郝芳,胡海燕,等. 川东焦石坝五峰组—龙马溪组页岩气赋存机理及其主控因素[J].地球科学,2017,42(7):1185-1194.

DAI F Y,HAO F,HU H Y, et al. Occurrence mechanism and key controlling factors of Wufeng-Longmaxi shale gas, Eastern Sichuan Basin[J]. Earth Science,2017,42(7):1185-1194.

24
张光荣,聂海宽,唐玄,等. 基于有机孔和生物成因硅优选页岩气富集高产层段的方法及应用——以四川盆地及其周缘五峰组—龙马溪组页岩为例[J]. 天然气地球科学,2021,32(6):888-898.

ZHANG G R, NIE H K, TANG X, et al. Optimization method and application of shale gas enrichment layer based on biogenic silica and organic matter pore: Case study of Wufeng-Longmaxi formations shale in the Sichuan Basin and its periphery[J]. Natural Gas Geoscience, 2021, 32 (6): 888-898.

25
郭旭升,李宇平,腾格尔,等. 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发,2020,47(1):193-201.

GUO X S, LI Y P, TENGER, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 193-201.

26
WU J, LIANG C, HU Z Q, et al. Sedimentation mechanisms and enrichment of organic matter in the Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin[J]. Marine and Petroleum Geology, 2019, 101: 556-565.

27
张吉振,李贤庆,张学庆,等. 煤系页岩储层孔隙结构特征和演化[J]. 煤炭学报, 2019,44(S1):195-204.

ZHANG J Z, LI X Q, ZHANG X Q, et al. Microscopic characteristics of pore structure and evolution in the coal-bearing shale[J].Journal of China Coal Society,2019,44(S1):195-204.

28
CHALMERS G R, BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70(1): 223-239.

29
姜振学,宋岩,唐相路,等. 中国南方海相页岩气差异富集的控制因素[J]. 石油勘探与开发,2020,47(3):617-628.

JIANG Z X, SONG Y, TANG X L, et al. Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development, 2020, 47(3): 617-628.

30
金之钧,胡宗全,高波,等.川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J].地学前缘,2016,23(1):1-10.

JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi formations,southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10.

31
郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报,2014,88(7):1209-1218.

GUO X S. Rules of two-factor enrichiment for marine shale gas in southern China-understanding from the Longmaxi For⁃mation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica,2014,88(7):1209-1218.

32
李贤庆,王元,郭曼,等. 川南地区下古生界页岩气储层孔隙特征研究[J]. 天然气地球科学. 2015,26(8):1464-1471.

LI X Q,WANG Y,GUO M,et al. Pore characteristics of shale gas reservoirs from the Lower Paleozoic in the south of Sichuan Basin[J].Natural Gas Geoscience,2015,26(8):1464-1471.

33
杨洪志,赵圣贤,刘勇,等. 泸州区块深层页岩气富集高产主控因素[J]. 天然气工业,2019,39(11):55-63.

YANG H Z, ZHAO S X, LIU Y, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(11): 55-63.

34
ZHANG K,SONG Y,JIANG S,et al. Shale gas accumulation mechanism in a syncline setting based on multiple geological factors: An example of southern Sichuan and the Xiuwu Basin in the Yangtze Region[J]. Fuel, 2019, 241: 468-476.

35
李贤庆,赵佩,孙杰,等. 川南地区下古生界页岩气成藏条件研究[J]. 煤炭学报,2013,38(5):864-869.

LI X Q,ZHAO P,SUN J,et al. Study on the accumulation con-ditions of shale gas from the Lower Paleozoic in the south region of Sichuan Basin[J].Journal of China Coal Society, 2013,38(5):864-869.

36
陈吉,肖贤明. 南方古生界3 套富有机质页岩矿物组成与脆性分析[J]. 煤炭学报,2013,38 (5):822-826.

CHEN J, XIAO X M. Mineral composition and brittleness of three sets of Paleozoic organic-rich shales in China South area[J]. Journal of China Coal Society, 2013, 38 (5) : 822-826.

37
CHEN S B, ZHU Y M, WANG H Y, et al. Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China[J]. Energy, 2011, 36(11): 6609-6616.

38
陈洋,唐洪明,廖纪佳,等. 基于埋深变化的川南龙马溪组页岩孔隙特征及控制因素分析[J]. 中国地质,2021, https://kns.cnki.net/kcms/detail/11.1167.P.20210111.1432.008.html.

CHEN Y, TANG H M, LIAO J J, et al. Analysis of shale pore characteristics and controlling factors based on variation of buried depth in the Longmaxi Formation, southern Sichuan Basin[J]. Geology in China, 2021, https://kns.cnki.net/kcms/detail/11.1167.P.20210111.1432.008.html.

Outlines

/