Reservoir characteristics and its influence on transitional shale: An example from Permian Shanxi Formation shale, Daning-Jixian blocks, Ordos Basin

  • Qin ZHANG , 1, 2 ,
  • Zhen QIU , 1, 2 ,
  • Leifu ZHANG 1, 2 ,
  • Yuman WANG 1, 2 ,
  • Yufeng XIAO 1, 2 ,
  • Dan LIU 1, 2 ,
  • Wen LIU 1, 2 ,
  • Shuxin LI 3 ,
  • Xingtao LI 3
Expand
  • 1. PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China
  • 2. China National Energy Shale Gas Research (Experiment) Center,Langfang 065007,China
  • 3. PetroChina Coalbed Methane Company,Beijing 100028,China

Received date: 2021-04-28

  Revised date: 2021-07-04

  Online published: 2022-03-22

Supported by

The Scientific Research and Technological Development Programs of RIPED(2021yjcq02)

the 14th Five-Year Prospective Basic Project of CNPC(2021DJ2001)

Highlights

The shales in the 2nd member of Shanxi Formation in the Daning-Jixian blocks, east margin of the Ordos Basin were deposited in a marine-continental transitional environment during the Permian. The Shan2 3 sub-member is characterized by large thickness, few and thin interlayers, which is the key target for transitional shale gas exploration and development. However, there are relatively few related studies on the reservoir characteristics, especially the main controlling factors for the development of the high quality reservoirs need to be further clarified. In this paper, the reservoir characteristics of Shan2 3 sub-member in Daning-Jixian blocks are systematically studied and the main controlling factors of high quality reservoir development are discussed by using geochemical analysis, compositional analysis and microscopic characterization method. The results indicate that the lower section of the upper lagoon facies in the Shan2 3 sub-member has the characteristics of high TOC content, high brittle mineral content, high values of BET and BJH, which is the sweet spot for shale gas exploration and development. Pores developed in clay minerals and in organic matter contribute most to the porosity of the Shan2 3 sub-member, accounting for 76.9% and 18.7% of the total porosity respectively. SEM observation (resolution>6 nm) discloses that different components in shale have great difference in pore size distribution, and the pores developed in organic matter and calcite are mainly in meso-scale. The pore size distribution characteristics of clay minerals are similar with quartz pores where pores developed both in meso and macro scale. The pores developed in feldspar and pyrite distribute in a wide range and the distribution is relatively uniform. Single factor analysis shows that the content of the clay minerals is the dominant controlling factor for pore development in the Shan2 3 sub-member. The organic matter content has a certain effect on the pore development of shale, but the influence of the organic matter type on the pore development is not obvious.

Cite this article

Qin ZHANG , Zhen QIU , Leifu ZHANG , Yuman WANG , Yufeng XIAO , Dan LIU , Wen LIU , Shuxin LI , Xingtao LI . Reservoir characteristics and its influence on transitional shale: An example from Permian Shanxi Formation shale, Daning-Jixian blocks, Ordos Basin[J]. Natural Gas Geoscience, 2022 , 33(3) : 396 -407 . DOI: 10.11764/j.issn.1672-1926.2021.07.002

0 引言

中国页岩气资源潜力大,富有机质页岩分布面积广,海相、海陆过渡相、陆相页岩均有不同程度的发育1。经过多年的努力和持续攻关,目前已在四川盆地及周缘地区的五峰组—龙马溪组海相页岩中获得了突破,先后建成了涪陵、威远—长宁、昭通页岩气示范区,2020年页岩气产量突破200亿大关2-3,为我国能源结构的调整和低碳排放作出了巨大贡献。相比五峰组—龙马溪组海相页岩,海陆过渡相山西组页岩的勘探开发程度较低4,根据原国土资源部2012年的资源评价结果,我国上古生界海陆过渡相页岩气资源量可达到8.97×1012 m3,其中鄂尔多斯盆地及其周缘页岩气资源量为2.7×1012 m3[5,页岩气技术可采资源量为0.9×1012 m3,占全国技术可采资源量的7%6
在华北地区针对二叠系山西组先后实施了多口页岩气评价井,如鄂尔多斯盆地东缘大吉51井、大吉3-4井; 沁水盆地柿状北306井、寿阳Y01井等,均钻遇了大套黑色页岩,气测显示良好,鄂尔多斯盆地东南部延川地区3口水平井获得测试产量(2.0~5.3)×104 m3/d,鄂尔多斯盆地东缘大宁—吉县5口直井,均获工业气流,证实了二叠系山西组具备客观的页岩气资源基础。国内一些学者通过井下或露头样品对海陆过渡相山西组进行了页岩气成藏条件、勘探前景及储层特征研究7-14,认为海陆过渡相页岩具有相变快、非均质性强、有机质孔隙发育程度低等特点。前人15-19的研究多数是基于沁水盆地钻井资料,或四川盆地二叠系龙潭组/吴家坪组展开,而针对鄂尔多斯盆地东缘山西组的已有研究多集中于致密砂岩和煤层气方面20-23,以页岩气为对象进行的研究尚少,页岩储层特征以及主控因素尚未明确。因此,笔者以鄂东缘大宁—吉县区块山西组为例,对其页岩储层特征进行刻画,并分析其发育的主控因素,旨在为该区页岩气开发试验先导方案提供重要的参考资料。

1 研究区概况

鄂尔多斯盆地东缘大宁—吉县区块构造上位于鄂尔多斯盆地伊陕斜坡东部,南邻延川南区块,区块整体呈现为“一隆一凹两斜坡”的构造格局[图1(a)],即中部的桃园背斜带、蒲县凹陷带、东部的明珠斜坡带和西部斜坡带2124。石炭系—二叠系在研究区广泛沉积。研究区山西组为一套陆表海沉积,地层岩性为致密砂岩、泥岩互层,夹多层煤层。其层内可以分为山1段和山2段。山2段与山1段相比具有页岩单层厚度大,横向分布稳定,岩性颜色深、夹层数量少且薄的特点725。山2段由上至下又可细分为山2 1亚段、山2 2亚段和山2 3亚段[图1(b)],单层页岩厚度达到10 m,是该地区当前页岩气重点勘探层段。
图1 鄂尔多斯盆地大宁—吉县区块构造纲要图21(a)及山西组山2段地层综合柱状图(b)

Fig.1 Structural map of Daning-Jixian blocks in Ordos Basin21(a) and stratigraphic column(b) of 2nd member of Shanxi Formation

2 实验样品与方法

本文实验分析样品主要来自大宁—吉县地区大吉3-4井,该井位于研究区中北部,目的层位为二叠系山西组的山2 3亚段,针对山2 3亚段进行密集采样(样品总数100件),分别对样品进行烃源岩地球化学(TOC、显微组分、R O)、储层微观结构(气体吸附、高压压汞、扫描电镜、孔隙度)以及储层岩石学(全岩X-射线衍射、黏土X-射线衍射)分析,实验操作流程均参照相应的行业标准或国家标准进行。

3 山西组页岩储层特征

3.1 有机碳含量(TOC

2 3亚段岩性主要为黑色页岩、黑色炭质页岩、灰黑色泥岩、深灰色泥岩、灰黑色泥质粉砂岩、灰黑色粉砂质泥岩,部分层段见细砂岩、中砂岩、泥质粉砂岩和煤层。其沉积相可划分为潟湖相、三角洲相和潮坪相,潟湖相可分为上、下2段,在文中将上部潟湖相称为上潟湖相,下部潟湖相称为下潟湖相(图2)。潮坪相泥页岩TOC含量分布在0.11%~4.46%之间,均值为1.9%;上潟湖相页岩TOC值分布在0.82%~43.9%之间,平均值为10.75%,上潟湖相页岩TOC值具有从上至下逐渐增高的特点,底部为炭质页岩;三角洲相页岩TOC值分布在0.11%~14.6%之间,均值为3.17%,个别样品为高值;下潟湖相页岩TOC值分布在1.63%~2.25%之间,均值为1.86%。相比较而言,上潟湖页岩TOC含量最高,下潟湖相页岩TOC值集中分布在2%左右,三角洲相和潮坪相的TOC值含量呈现出高低不均分布的特征。
图2 大吉3-4井山2 3亚段TOC与主要矿物成分综合柱状图(数据引自参考文献[26])

Fig.2 TOC content and mineral compositions of shale reservoir in the Shan2 3 sub-member of Well Daji 3-4(the data from Ref.[26])

3.2 矿物组成特征

全岩矿物XRD分析结果表明,山2 3亚段页岩脆性矿物(石英、长石、碳酸盐矿物、黄铁矿)以石英为主,含量分布在10.2%~61.8%之间,均值为37.3%;长石含量小于5%,碳酸盐矿物仅在上潟湖相底部有所发育,平均含量为10%;黄铁矿也仅分布在上潟湖相页岩发育段,且底部含量最高能达到16.3%;黏土矿物含量较高,分布在26.8%~88%之间,均值为53.4%(图2)。黏土矿物组成主要为伊/蒙混层(含量在7.0%~80.4%之间,均值为38.7%)、伊利石(含量在7%~41%之间,均值为26.5%)、高岭石(含量在1.8%~75.2%之间,均值为30.1%)以及少量绿泥石(含量在0%~13.8%之间,均值为4.8%)(图2)。对不同沉积相矿物组分进行分析(图3),发现除上潟湖相外,潮坪相、三角洲相与下潟湖相均具有黏土矿物含量高于脆性矿物含量的特征,在黏土矿物的主要组成中又以伊/蒙混层和高岭石为主要成分,伊利石含量与绿泥石含量则相对较为稳定。
图3 不同沉积相带主要矿物成分分布柱状图

Fig.3 Column diagram of the main mineral composition distribution in different sedimentary facies

3.3 孔隙特征

3.3.1 孔隙的构成

依据总孔隙度由脆性矿物组成的骨架孔隙度、黏土矿物孔隙度和有机质孔隙度构成的思路,王玉满等27建立了页岩孔隙度岩石物理模型和计算方法,并在川南地区的五峰组—龙马溪组以及寒武系筇竹寺组中进行了应用。山2 3亚段页岩实测孔隙度为2.6%~4.3%,均值为3.4%,孔隙度主体分布在3.0%~4.0%之间。笔者以王玉满等27建立的方法对山2 3亚段页岩孔隙构成进行了计算,结果表明脆性矿物孔隙在页岩总孔隙中占比在1.9%~7.3%之间,平均值为4.4%;有机质孔隙在0.26%~44.1%之间,均值为18.7%;黏土孔隙在53.8%~93.3%之间,均值为76.9%(图4)。由此可初步判断,在山2 3亚段页岩孔隙构成中以黏土矿物孔隙和有机质孔隙为主,脆性矿物由于主要以石英为主,其自身发育孔隙能力较弱,导致其对孔隙度贡献较小。
图4 山2 3亚段页岩孔隙构成分布

Fig.4 Porosity percentage taking by major components of shale in the Shan2 3 sub-member

3.3.2 全孔径孔隙结构特征

低温氮气吸附表明山2 3亚段潮坪相、潟湖相与三角洲相BET、BJH以及孔径值相差不大,其中BET比表面积主要分布在10 ~15 m2/g之间,孔体积主要为0.02 ~0.04 cm3/g,孔径主体分布在10 ~13 nm之间,但是在上潟湖相底部页岩样品的BET与孔体积以及孔径均发生了明显变化,其中BET为8.0~32.4 m2/g,均值为19.5 m2/g,BJH孔体积分布在0.02~0.05 cm3/g之间,均值为0.03 cm3/g,孔径值较小,分布在5.1~12.11 nm之间,均值为8.6 nm(图5),说明上潟湖相底部页岩储集空间较为发育。在上潟湖相底部样品的孔体积明显增大,孔径值明显减小,可能是因为底部页岩具有高有机碳含量(TOC分布在8.33%~43.9%之间,均值为23.75%),有机碳含量的增高,使得有机质发育孔隙含量增加,因此页岩BJH孔体积增大,但由于有机质内发育的孔隙尺寸较小,导致页岩样品孔隙尺寸整体减小。
图5 山2 3亚段不同沉积相页岩BET比表面积、BJH孔体积以及孔径分布

Fig.5 BET, BJH and pore size distribution of different sedimentary microfacies in the Shan2 3 sub-member

由于上潟湖相底部页岩样品各项参数均优于潮坪相、三角洲相以及下潟湖相页岩,因此对其样品进行气体吸附(CO2吸附、N2吸附)以及高压压汞分析,CO2气体分子的直径小,可以进入到0.35 nm大小孔隙中,N2吸附实验可以用来测定页岩的中孔孔径分布(2~50 nm),高压压汞分析采用Washburn方程28计算对应压力点的孔隙半径和进汞量,孔径的测定范围为3~354 894 nm。针对CO2、N2以及高压压汞实验测定的孔径范围的不同,采用3种方法联合表征页岩全孔径分布(图6)。对测试孔径重合段采用加权平均进行整合,非重合段仍采用各自方法表征。山2 3亚段海陆过渡相页岩孔径分布曲线总体显示出双峰特征,峰值分别介于0.35~1.00 nm之间和2~50 nm之间,微孔曲线的包络面积与中孔曲线包络面积相当,中孔体积占总孔体积的37.97%~64.6%,平均为50.14%;微孔体积占总体积的21.95%~55.05%,均值为41.88%。比表面积随孔径变化主要呈单峰分布,且主要分布在微孔范围内,说明微孔对比表面积起主要贡献作用。计算结果表明微孔提供的比表面积占总比表面积的76.52%~89.45%,平均为83.12%。
图6 海陆过渡相页岩孔隙的全孔径分布(数据引自参考文献[26])

Fig.6 Full scale pore size distribution of the transitional shale(data form Ref.[26])

值得注意的是TOC含量略微增大时,其孔体积与比表面积并没有明显变化,只有当TOC呈倍数增大时,孔体积才发生较为明显增大,且中孔孔径向更小范围发展,宏孔也略有增加趋势,说明海陆过渡相页岩TOC含量对孔体积以及比表面积的发育并没有海相页岩孔隙发育的影响大。

3.3.3 不同岩石组分孔径分布

随机选取可满足纳米级孔隙分析需求的高分辨率扫描电镜图像(图7),图像视域由单一矿物或有机质构成,采用图像软件Image J的灰度分析功能,提取各组分的孔隙参数,采用等效圆的方法计算各组分孔径分布情况(图8)。从有机质孔隙的孔径分布曲线来看,孔径越小,其所占的孔隙面积的百分含量越高,表明有机质主要以10~50 nm孔隙为主;方解石中发育的溶蚀孔隙与有机质的孔隙具有相同特征,均是小尺寸的孔隙,其主体孔隙分布在10~100 nm之间,黏土矿物孔隙主体分布在10~400 nm之间,石英孔隙主要分布在100~400 nm之间,长石以及黄铁矿的孔径分布范围则较广,从10~1 000 nm均有分布。因此从孔径分布曲线上可知,小孔隙主要为有机质生烃产生的孔隙和方解石溶蚀产生的孔隙,大孔隙则主要由黏土和其他无机矿物提供。对海陆过渡相页岩来说,其无机矿物中,黏土矿物含量最高,页岩的孔隙以黏土矿物孔隙为主。海陆过渡相页岩中由于有机质类型以III型和II2型为主,与海相页岩以I型和II1型干酪根为主存在显著差异,其有机质孔隙相对发育较差,因此也就导致了当TOC含量增加的时候,页岩全孔径分布曲线中的微孔和中孔峰值并没有发生特别明显的变化。
图7 典型矿物孔隙发育特征

(a)石英孔隙,样品205,孔隙大小均有分布,孔隙边缘呈棱角状;(b)方解石孔隙,样品183,溶蚀孔隙密集发育,尺寸较为均一;(c)黏土晶间孔,样品229,孔隙非常发育,以条形孔为主;(d)长石孔隙,样品199,孔隙为解理缝,长条形为主;(e)黄铁矿晶间孔,样品225,孔隙形态不规则,三角形为主;(f)有机质孔,样品179,孔隙形态较为均一,孔隙尺寸小

Fig.7 Typical pores developed in different minerals

图8 不同矿物组分孔径分布特征

Fig.8 Pore size distribution of different components observed by SEM Images

4 页岩孔隙发育的控制因素

4.1  TOC含量与矿物成分

TOC含量是影响海相页岩孔隙发育、含气量的主要控制因素。但对其贡献,不同学者持不同态度,如LOUCKS等29和WANG等30认为有机质是海相页岩孔隙发育的主要媒介,具有亲油性,是页岩气富集和产出的主要通道;王玉满等27通过对页岩孔隙构成的计算,认为海相页岩中有机质孔隙仅占全部孔隙的1/3左右,黏土矿物和脆性矿物孔隙则是孔隙发育的主体;SONGDERGELD等31则认为页岩孔隙发育程度受矿物含量影响,有机质并非主体孔隙类型,JARVIE等32则发现TOC含量与页岩孔隙度呈负相关。
对山2 3亚段页岩中主要的组分(TOC、石英和黏土矿物)与孔隙度进行相关性分析(图9),可以看出,页岩孔隙度发育与TOC含量呈弱正相关,相关系数为0.33,说明有机质发育的孔隙对页岩的孔隙度具有一定的贡献作用。进一步观察发现样品中的TOC含量呈倍数变化时,其页岩孔隙度并没呈现倍数的变化,例如当TOC=10.1%,孔隙度为3.0%,而当TOC值增大到29.4%,孔隙度仅为3.3%(图4),其孔隙增加率仅为10%,与海相页岩的TOC增加,孔隙度明显增大存在较大差别。对氮气吸附法得到的BJH中孔孔容与TOC进行相关性分析(图10),当不分相带时其TOC与中孔孔容并无相关性,而对不同相带(潮坪相、上潟湖相、三角洲相、下潟湖相)单独分析则发现除潮坪相TOC与BJH孔体积相关性较弱外,其他相带中样品的TOC与BJH孔体积呈显著正相关,说明有机质主要发育中孔孔隙,这也与对扫描电镜图片进行定量分析得到的结论相一致。上潟湖相底部样品的TOC与BJH无相关性,推测可能与底部样品TOC值集中分布有关。页岩中黏土矿物含量与孔隙度呈正相关,相关系数为0.55,黏土矿物含量与BJH孔容呈正相关性,但是其相关性不如分不同相带的TOC与BJH孔容相关性,推测这主要与黏土矿物中的主要类型有关。样品中伊/蒙混层与高岭石是主要的黏土矿物组成,前人研究表明除蒙脱石外,伊/蒙混层与高岭石是黏土矿物中孔隙发育程度最高的成分33-34,这些黏土矿物中发育长条形孔隙(图7),扫描电镜定量分析表明黏土矿物孔隙尺寸分布在10~400 nm之间,其孔隙尺寸跨度大,且主体孔径大于50 nm,因此其对中孔的贡献相比有机质略有降低,导致其与BJH相关性要弱于TOC。石英含量与孔隙度含量呈负相关,相关系数为0.46%,石英含量与BJH孔容无相关性。
图9 山2 3亚段页岩主要组分与孔隙度相关关系

Fig.9 Relationships between major components and porosity in the Shan2 3 sub-member

图10 山2 3亚段页岩BJH与主要页岩组分相关关系

Fig.10 Relationships between BJH and major components in the Shan2 3 sub-member

石英作为脆性矿物其孔隙发育程度弱,电镜图片也表明石英孔隙仅少量发育,而且石英与黏土矿物作为页岩的两大主要成分,具有此消彼长的关系,石英含量增多,发育孔隙的黏土矿物含量减少,导致孔隙发育能力受限,因此使得石英含量与孔隙度呈负相关关系,另外,由于石英中孔径的分布范围较广,在10~1 000 nm之间均有分布,且各个尺寸的孔隙对孔隙贡献率相当,因此使得石英含量与BJH中孔孔容并无明显相关性。

4.2 有机质类型

对山2 3段页岩样品进行镜质体反射率测试,样品R O值分布在2.07%~2.61%之间,均值为2.31%,所有样品均处于干气阶段,由于镜质体反射率并没有大的变化,因此不将成熟度纳入影响因素进行探讨。对岩石中的干酪根显微组分进行鉴定;不同显微组分采用不同加权系数,经数理统计得出干酪根样品的类型指数,计算结果表明山2 3亚段页岩干酪根类型主要为II2型(腐泥—腐殖型)和III型(腐殖型)。为方便进行单因素的分析,挑选TOC、黏土含量相近的II2型和III型干酪根页岩样品进行孔隙结构参数的对比,发现在相近TOC与黏土矿物含量下,II2型干酪根页岩样品与III型干酪根页岩样品的BET比表面积和BJH孔体积并没有一致的变化规律(图11),例如样品215,干酪根为II2型,TOC值为1.7%,黏土矿物含量为55.3%,BET比表面积为11.91 m2/g,BJH孔体积为0.035 78 cm3/g;而样品127,干酪根为III型,TOC值为3.38%,黏土矿物含量为55.8%,BET比表面积为13.9 m2/g,BJH为0.032 7 cm3/g,而176样品,干酪根为II2型,TOC=8.66%,黏土矿物=44.3%,BET=12.418 m2/g,BJH=0.016 cm3/g;样品201,干酪根为III型,TOC=11.8%,黏土矿物=43.8%,BET=11.27 m2/g,BJH=0.019 7 cm3/g(图2图5)。另外对不同干酪根类型且TOC相近的样品进行扫描电镜观察,也发现不同类型的干酪根样品其孔隙发育程度相当,说明II2型与III型干酪根对页岩孔隙发育影响程度弱(图12)。
图11 黏土含量相近但干酪根类型不同页岩样品的BET与BJH分布特征

Fig. 11 BET and BJH distribution among shale samples with similar clay minerals but different kerogen types

图12 山2 3亚段不同干酪根类型孔隙发育特征

(a)TOC=3.53%,Ⅲ型, 有机质孔呈线装分布,以圆形孔为主; (b)TOC=4.04%,Ⅲ型, 有机质孔形态不规则,孔隙尺寸较大;(c)TOC=14.6%,Ⅲ型,孔隙形态椭圆形为主,具有定向排列特征; (d)TOC=3.38%,Ⅱ2型,多个孔隙相互连接成较大孔隙,孔隙以圆形孔为主;(e)TOC=4.19%,Ⅱ2型,孔隙形态不规则;(f)TOC=14.4%,Ⅱ2型,孔隙形态不规则,有圆形,椭圆形和三角形,定向性不明显

Fig.12 Characteristics of organic pores in shale samples with different kerogen types in the Shan2 3 sub-member

5 结论

通过对鄂尔多斯盆地大宁—吉县地区大吉3⁃4井山2 3亚段页岩样品的高精度采样和大量地球化学、岩石物理和显微结构观察,得出以下结论:
(1)鄂尔多斯盆地东缘大宁—吉县地区山西组山2 3亚段上潟湖相页岩底部具有高TOC含量、高脆性矿物含量、高BET比表面积和高BJH孔体积特征,是最优质的页岩层段。
(2)山2 3亚段页岩的孔隙度主体分布在3%~4%之间,孔隙的岩石组分分析表明山2 3亚段海陆过渡相页岩主体以黏土矿物孔隙为主,平均可占总孔隙度的76.9%,其次为有机质孔隙,平均占总孔隙的18.7%。
(3)页岩的全孔径分布其孔体积曲线以双峰为特征,比表面积曲线以单峰为特征,页岩中的不同组分孔隙的孔径分布差异显著,有机质和方解石主要发育介孔,黏土矿物与石英则主要发育宏孔,黄铁矿与长石中孔径分布范围广,且均匀分布。
(3)山2 3亚段的II2型与III型干酪根孔隙发育程度均较差,储层孔隙以黏土矿物孔为主,TOC含量则对孔隙的发育存在一定的影响。
1
邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

QIU Z, ZOU C N. Unconventional petroleum sedimentology: Connotation and prospect[J].Acta Sedimentologica Sinica,2020, 38(1):1-29.

2
邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14.

ZOU C N, ZHAO Q, CONG L Z, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):1-14.

3
马新华, 谢军,雍锐.四川盆地南部龙马溪组页岩气地质特征及高产控制因素[J].石油勘探与开发, 2020,47 (5):1-15.

MA X H, XIE J, YONG R. Geological characteristics and high production control factors of shale gas in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development. 2020, 47(5):1-15.

4
张吉振. 煤系页岩孔隙结构表征及其对页岩气赋存的影响研究[D]. 北京:中国矿业大学(北京), 2019:2-10.

ZHANG J Z. Pore Structure Characterization of Coal-bearing Shale and its Effect on Shale Gas Occurrence[D]. Beijing: China University of Mining & Technology, 2019:2-10.

5
国土资源部油气资源战略研究中心.全国页岩气资源潜力调查评价及有利区优选(2009—2011年)[R]. 北京:科学出版社,2014:10-15.

Strategic Research Center of Oil and Gas Resources, MNR. Survey and Evaluation of National Shale Gas Resource Potential and Optimization of Favorable Areas (2009-2011)[R]. Beijing: Science Press, 2014:10-15.

6
郑民, 李建忠, 吴晓智, 等.我国常规与非常规天然气资源潜力、重点领域与勘探方向[J]. 天然气地球科学,2018.29(10): 1383-1397.

ZHENG M, LI J H, WU X Z, et al. China's conventional and unconventional natural gas resource potential, key exploration fields and direction[J].Natural Gas Geoscience,2018,29(10): 1383-1397.

7
匡立春, 董大忠, 何文渊, 等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发, 2020,47(3):435-446.

KUANG L C, DONG D Z, HE W Y, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development,2020,47(3):435-446.

8
陈亚光, 朱崇林, 张锟, 等.鄂尔多斯盆地东缘上古生界煤系页岩气成藏地质条件[J].地质学刊, 2017, 41(1):54-61.

CHEN Y G, ZHU C L, ZHANG K, et al. Shale gas accumulations of the Upper Paleozoic coal measures in the eastern margin of the Ordos Basin[J]. Journal of Geology, 2017, 41(1):54-61.

9
董大忠, 邱振, 张磊夫, 等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报, 2021, 39(1): 29-45.

DONG D Z, QIU Z, ZHANG L F, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J].Acta Sedimentologica Sinica,2021,39(1):29-45.

10
范文田, 胡国华, 王涛. 鄂尔多斯盆地东缘海陆过渡相页岩孔隙结构定量化表征[J]. 中国科技论文, 2019, 14(4): 429-434.

FAN W T, HU G H, WANG T. Quantitative characterization of pore structure of marine-continental transitional facies shale in the eastern margin of Ordos Basin[J]. China Science Papers,2019, 14(4): 429-434.

11
赵可英,郭少斌. 海陆过渡相页岩气储层孔隙特征及主控因素分析——以鄂尔多斯盆地上古生界为例[J].石油实验地质, 2015, 37(2):141-149.

ZHAO K Y, GUO S B. Characteristics and main controlling factors of shale gas reservoirs in transitional facies[J]. Petroleum Geology & Experiment, 2015, 37(2):141-149.

12
LI G, QIN Y, WU M, et al. The pore structure of the transitional shale in the Taiyuan Formation, Linxing area, Ordos Basin[J].Journal of Petroleum Science and Engineering,2019, 181: 106183.

13
LI Y, WANG Z, PAN Z, et al. Pore structure and its fractal dimensions of transitional shale: A cross-section from east margin of the Ordos Basin, China[J]. Fuel, 2019, 241: 417-431.

14
WEI Z, WANG Y, WANG G, et al. Enrichment mechanism of the Upper Carboniferous-Lower Permian Transitional shale in the east margin of the Ordos Basin, China: Evidence from geochemical proxies[J]. Geofluids, 2020, 12 : 1-14.

15
曹涛涛, 曹清古, 刘虎, 等. 川东地区海陆过渡相泥页岩地球化学特征及吸附性能[J]. 煤炭学报, 2020, 45(4): 1445-1456.

CAO T T, CAO Q G, LIU H, et al. Geochemical characteristics and adsorption capacity of marine-continental transitional mudrock in eastern Sichuan Basin[J]. Journal of China Coal Society,2020, 45(4): 1445-1456.

16
XI Z, TANG S, WANG J, et al. Formation and development of pore structure in marine-continental transitional shale from northern China across a maturation gradient: Insights from gas adsorption and mercury intrusion[J]. International Journal of Coal Geology,2018,200:87-102.

17
何治亮, 聂海宽, 李双建, 等. 特提斯域板块构造约束下上扬子地区二叠系龙潭组页岩气的差异性赋存[J]. 石油与天然气地质, 2021, 42(1): 1-15.

HE Z L, NIE H K, LI S J, et al. Differential occurrence of shale gas in the Permian Longtan Formation of Upper Yangtze region constrained by plate tectonics in the Tethyan domain[J]. Oil & Gas Geology, 2021, 42(1): 1-15.

18
陈斐然, 魏祥峰, 刘珠江, 等. 四川盆地二叠系龙潭组页岩孔隙发育特征及主控因素[J]. 天然气地球科学,2020,31(11): 1593-1602.

CHEN F R, WEI X F, LIU Z J, et al. Pore development characteristics and main controlling factors of the Permian marine-continent transitional shale in the Sichuan Basin[J] Natural Gas Geoscience,2020,31(11):1593-1602.

19
马如英, 张健, 王猛, 等. 沁水盆地海陆过渡相页岩储层微观孔隙特征及含气性特征[J]. 河南理工大学学报(自然科学版), 2020,40(4):1-11.

MA R Y, ZHANG J, WANG M, et al. Micro-pore characteristics and gas-bearing characteristics of the shale reservoirs in the transitional facies in the Qinshui Basin[J].Journal of Henan Polytechnic University (Natural Science),2020,40(4):1-11.

20
郭乐乐, 李忠百, 张稳, 等. 鄂尔多斯盆地大宁—吉县区块主力致密砂岩储层孔隙结构分析[J]. 天然气工业, 2018, 38(S1): 18-23.

GUO L L, LI Z B, ZHANG W, et al. Pore structure characteristics of tight sand in Daning-Jixian block, Ordos Basin[J]. Natural Gas Industry. 2018, 38(S1): 18-23.

21
赵龙梅, 文桂华, 李星涛, 等. 鄂尔多斯盆地大宁—吉县区块山西组23亚段致密砂岩气储层“甜点区”评价[J]. 天然气工业, 2018, 38(S1): 5-10.

ZHAO L M, WEN G H, LI X T, et al. Sweet spot evaluation of tight sand gas in the 2-3 sub-member of Shanxi Formation, Daning-Jixian block, Ordos Basin[J]. Natural Gas Industry,2018,38(S1):5-10.

22
李永洲, 文桂华, 李星涛, 等. 沉积微相控制下的煤系地层致密砂岩气储层预测方法——以鄂尔多斯盆地大宁—吉县区块下二叠统山西组为例[J]. 天然气工业,2018,38(S1):11-17.

LI Y Z, WEN G H, LI X T, et al. Tight sand gas reservoir prediciton method of coal bearing formation under the control of sedimentary microfacies: Taking the Lower Permian Shanxi Formation in Daning-Jixian blocks, Ordos Basin as an example[J]. Natural Gas Industry, 2018, 38(S1): 11-17.

23
聂志宏, 巢海燕, 刘莹, 等. 鄂尔多斯盆地东缘深部煤层气生产特征及开发对策——以大宁—吉县区块为例[J]. 煤炭学报, 2018, 43(6): 1738-1746.

NIE Z H, CHAO H Y, LIU Y, et al. Development strategy and production charcteristics of deep coalbed methane in the east Ordos Basin: Taking Daning-Jixian block for example[J]. Journal of China Coal Society,2018,43(6):1738-1746.

24
李五忠,陈刚,孙斌,等.大宁—吉县地区煤层气成藏条件及富集规律[J].天然气地球科学,2011, 22(2):352-360.

LI W Z, CHEN G, SUN B, et al. Geological controls of coalbed methane enrichment in Daning-Jixian area, southeastern Ordos Basin[J].Natural Gas Geoscience,2011,22(2):352-360.

25
兰朝利, 郭伟, 王奇, 等.鄂尔多斯盆地东部二叠系山西组页岩气成藏条件与有利区筛选[J].地质学报, 2016, 90(1):177-188.

LAN C L, GUO W, WANG Q, et al. Shale gas accumulation condition and favorable area optimization of the Permian Shanxi Formation, eatern Ordos Basin[J]. Acta Geologica Sinica,2016, 90(1):177-188.

26
ZHANG Q, QIU Z, ZHAO Q, et al. Composition effect on the pore structure of transitional shale: A case study of the Permian Shanxi Formation in the Daning-Jixian block at the eastern margin of the Ordos Basin[J]. Frontiers in Earth Science, 2022. doi:10.3389/feart.2021.802713.

27
王玉满, 黄金亮, 李新景, 等.四川盆地下志留统龙马溪组页岩裂缝孔隙定量表征[J].天然气工业, 2015, 35(9):8-15.

WANG Y M, HUANG J L, LI X J, et al. Quantitative characterization of fractures and pores in shale beds of the Lower Silurian, Longmaxi Formation, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(9):8-15.

28
WASGBURN E W. Note on the method of determining the distribution of pore sizes in a porous material[J]. Proceedings of the National Academy of Sciences, 1921,7(4):115-116.

29
LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861.

30
WANG F P, REED R M, Geology E. Pore Networks and Fluid Flow in Gas Shales[C]. SPE 124253. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, 2009.

31
SONDERGELD C H. AMBROSE R J. RAI C S. Micro-Structural Studies of Gas Shales[C]. SPE Paper 131771. SPE Unconventional Gas Conference. Pittsburgh, Pennsylvania, USA, 2010.

32
JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014,12(4):307-325.

33
吉利明, 马向贤, 夏燕青, 等.黏土矿物甲烷吸附性能与微孔隙体积关系[J].天然气地球科学, 2014, 25(2):141-152.

JI L M, MA X X, XIA Y Q, et al. Relationship between methane adsorption capacity of clay minerals and micropore volume[J]. Natural Gas Geoscience,2014, 25(2):141-152.

34
吉利明, 邱军利, 夏燕青, 等.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J].石油学报, 2012, 33(2):249-256.

JI L M, QIU J L, XIA Y Q, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica,2012, 33(2):249-256.

Outlines

/