Isotopic geochemical characteristics and identification indexes of shale gas hydraulic fracturing flowback water/produced water

  • Yunyan NI , 1, 2 ,
  • Limiao YAO 1, 2 ,
  • Jianli SUI 3 ,
  • Jianping CHEN 1, 2
Expand
  • 1. Key Laboratory of Petroleum Geochemistry, China National Petroleum Corporation, Beijing 100083, China
  • 2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
  • 3. Institution of Geology, China Earthquake Administration, Beijing 100029, China

Received date: 2021-05-18

  Revised date: 2021-08-02

  Online published: 2022-01-26

Supported by

The National Key R & D Projects of China(2019YFC1805505)

the Petrochina Basic Research and Strategic Reserve Technology Research Project(2017D-5008-08)

PetroChina Scientific Research and Technology Development Project(2021DJ5302)

Highlights

China is rich in shale gas resources, which are mainly distributed in densely populated southern marine carbonate areas. The geological and surface conditions are complex, the ecological environment is fragile, and water resources are scarce or unevenly distributed. Therefore, large-scale fracturing mining has high pressure of water resources utilization and serious risk of water environment pollution. In this paper, the geochemical characteristics of traditional and non-traditional stable isotopes such as hydrogen, oxygen, boron, lithium, strontium in shale gas hydraulic fracturing flowback water/produced water were comprehensively analyzed. The results show that, the hydrogen and oxygen isotopic composition of the flowback water/produced water in Sichuan Basin has similar evolution trend with the produced water of conventional wells from Cambrian, Permian and Triassic Xujiahe, Jialingjiang and Leikoupo formations, but different from that of the Sinian conventional produced water. It indicates that the flowback water/produced water in Sichuan Basin is a mixture of fracturing injected fluid and formation brine retained in Silurian shale. The saline end member is close to the formation water of Cambrian, but with higher δ11B values. The flowback water/produced water in Sichuan Basin has δ11B values close to that of the Marcellus flowback water/produced water, and both are derived from the evaporated seawater. The δ11B values of flowback water/produced water in Sichuan Basin have overlap with that of the conventional produced water from different strata, so it can not be precisely distinguished. However, the δ11B and B/Cl values of the flowback water/produced water in Sichuan Basin can clearly distinguished from the river and the flowback water/produced water from non-marine facies shale in Qaidam Basin. The flowback water/produced water in Sichuan Basin has slightly higher δ7Li values than that of the Marcellus flowback water/produced water, but has overlap with that of the Yangtze River. The average value of 87Sr/86Sr of flowback water/produced water is 0.719 7 in Weiyuan and 0.719 3 in Changning, which is much higher than that of the produced water from conventional wells in different formations. This is because the Silurian shale is affected by terrestrial siliceous sediments and the underlying Sr-rich fluids. As a result, 87Sr/86Sr values measured in the Silurian strata in southern Sichuan Basin are high, which makes 87Sr/86Sr values become an effective index to distinguish shale gas fracturing flowback water/produced water from conventional gas well produced water and shallow groundwater in Sichuan Basin.

Cite this article

Yunyan NI , Limiao YAO , Jianli SUI , Jianping CHEN . Isotopic geochemical characteristics and identification indexes of shale gas hydraulic fracturing flowback water/produced water[J]. Natural Gas Geoscience, 2022 , 33(1) : 78 -91 . DOI: 10.11764/j.issn.1672-1926.2021.08.004

0 引言

中国页岩气资源丰富,经过十余年的勘探开发,以四川盆地埋深3 500 m以浅的海相页岩区为重点,2020年页岩气产量达200×108 m3,其中中国石油天然气集团有限公司在蜀南的长宁、威远和昭通等区块实现页岩气产量116×108 m3[1。 水力压裂技术是页岩气开发的核心技术之一,但我国页岩气资源主要分布在人口密集的南方海相碳酸盐岩分布区,地质地表条件复杂,生态环境脆弱,水资源匮乏或分布不均,大规模压裂开采存在很高水资源利用压力和严重水环境污染风险。倪云燕等2系统论述了四川盆地威远地区返排液/采出水的元素地球化学组成,研究了返排液/采出水的潜在环境影响,提出了排放处理建议。本文将在此基础上,深入探讨四川盆地页岩气压裂返排液/采出水的氢、氧、锶、锂、硼等同位素地球化学组成,明确返排液/采出水的成因机理与鉴别指标,以期为页岩气的绿色可持续发展提供科学依据。

1 四川盆地长宁—威远页岩气示范区

长宁勘探开发区位于四川省宜宾市的长宁县、筠连县、兴文县、珙县境内,包括水富—叙永和沐川—宜宾2 个区块,含气面积为525.3 km2,储层埋深小于4 000 m的有利区面积为4 450 km2,探明地质储量为4 446.8×108 m3,2020年页岩气产量为56×108 m3[1。威远勘探开发区位于四川省和重庆市境内,包括内江—犍为、泸县—长宁、安岳—潼南、璧山—合江和大足—自贡等 5 个区块,含气面积为225.92 km2,储层埋深小于4 000 m的有利区面积为8 500 km2,探明地质储量为1 838.95×108 m3,2020年页岩气产量为39×108 m3 13
与美国Marcellus相比,长宁—威远区块页岩埋深普遍更深、热演化程度普遍更高、甲烷含量与天然气干燥系数普遍更高14-5表1)。长宁—威远区块位于四川盆地乐山—龙女寺古隆起带上,由于古隆起抬升,下志留统大部分地层遭受严重风化剥蚀。尽管龙马溪组厚度可达187.3 m,但有效泥页岩厚度较低,长宁区块,五峰组—龙马溪组净厚度为60~80 m,威远区块五峰组—龙马溪组净厚度为30~60 m1。有机质类型以腐泥型的I型干酪根为主,干酪根碳同位素值为-29‰~-28‰,有机碳含量普遍大于1%,在长宁区块平均为4.0%,在威远区块平均为2.8%14。长宁—威远区块主力产层五峰组—龙马溪组为一套深水陆棚相沉积,位于强还原缺氧深水洼陷区,古水深在100 m以上,底部优质页岩段(龙马溪组一段1亚段)U/Th值为1.25~2.00,V/Cr值为4.5~10.76。长宁页岩气开发区内地表出露的地层主要为二叠系、三叠系和侏罗系,周边区域有出露寒武系、奥陶系和志留系,其中侏罗系自流井组和沙溪庙组为陆相砂泥岩地层,含层间裂隙水和构造裂隙水;三叠系须家河组为陆相砂岩夹泥页岩地层,含层间裂隙水;三叠系飞仙关组以砂泥岩为主,含少量构造裂隙水;二叠系和三叠系嘉陵江组与雷口坡组主要为海相碳酸盐岩,含岩溶水;志留系为以泥岩为主的碎屑岩夹少量碳酸盐岩,几乎不含水,为隔水层;寒武系和奥陶系主要为碳酸盐岩夹碎屑岩7。总体上,长宁开发区内广泛分布岩溶地下水,矿化度主要为300~500 mg/L7
表1 中国四川长宁—威远与美国Marcellus页岩气开发区块相关参数对比[1,4-5]

Table 1 Relevant parameters of the Changning-Weiyuan shale gas development area in Sichuan, China and the Marcellus shale gas development area in the United States[1,4-5]

对比项目 美国 Marcellus 蜀南/长宁 蜀南 / 威远
发现时间/年份 2008 2011 2010
沉积盆地 Appalachian 四川 四川
盆地类型 前陆 克拉通 克拉通
地貌特征 平原 平原和丘陵 平原和丘陵
地层时代 泥盆纪 奥陶纪—志留纪 奥陶纪—志留纪
地层名称 Marcellus 五峰组—龙马溪组 五峰组—龙马溪组
深度/m 600 ~ 2 500 1 500 ~ 6 000 2 000 ~ 3 700
净厚度/m 18 ~ 83 60 ~ 80 30 ~ 60
沉积环境 陆表海 深水陆棚 深水陆棚
构造背景 平缓向斜和斜坡 平缓斜坡 平缓斜坡
岩性 硅质和黏土质页岩 硅质和钙质页岩 硅质和钙质页岩
有机质类型 I、II1 I、II1 I、II1
TOC/% 4.4 ~ 9.7 1.9 ~ 7.3 (4) 1 ~ 10.2 (2.8)
R O/% 1.2 ~ 2.6 2.3 ~ 2.8 1.8 ~ 3.1
总孔隙度/% 9 ~ 11 3.4 ~ 8.4 (5.5) 1.7 ~ 10.9 (5.6)
基质渗透率/(10-3 μm2 0.1 ~ 0.7 0.22 ~ 1.9 0.01 ~ 7.1
含气量/(m3/ t) 1.7 ~ 2.83 3.1 ~ 7.8 (5.3) 2.3 ~ 7.5 (4.8)
游离气所占比例/% 40 ~ 90 60 ~ 80 60 ~ 80
甲烷含量/% 80 ~ 96 96 ~ 99 97 ~ 99
脆性矿物含量/% 40 ~ 70 42 ~ 95 42 ~ 96
泊松比 0.15 ~ 0.35 0.16 ~ 0.33 0.12 ~ 0.26
压力系数 0.8 ~ 1.5 1.3 ~ 2 1.4 ~ 2
储量丰度/(108 m3/km2 8 8.3 7.4
2020 年产量/(108 m3 2 375 56 39

注:括号中为平均值

2 返排液/采出水的水质特征

大规模水力压裂技术的应用,导致大量淡水资源的消耗,并带来大量压裂返排液/采出水,而返排液/采出水具有矿化度高、重金属等有毒物质含量高等特点。美国Marcellus压裂用水量在2011年时平均为23 400 m3/井,前12个月返排液/采出水产量平均为567 m3/井,到了2016年压裂用水量增长为27 950 m3/井,前12个月返排液/采出水产量平均为820 m3/井8。四川盆地威远页岩气开发区压裂用水量平均为34 000 m3/井,前12个月返排液/采出水产量平均为19 800 m3/井,返排率达58%以上9表2展示了四川盆地长宁—威远页岩气示范区和美国Marcellus页岩气开发区压裂返排液/采出水的元素地球化学组成和中国的《生活饮用水卫生标准》(GB5749—2006)颁布的相应饮用水标准9-15。返排液/采出水矿化度高,氯含量在威远地区平均为12 578 mg/L(n=70),长宁地区平均为21 073 mg/L(n=85),美国Marcellus地区平均值高达71 386 mg/L(n=172),远高于饮用水标准<250 mg/L。长宁—威远示范区返排液/采出水的化学组成总体上远低于美国Marcellus地区的,如钠含量均值,在威远地区为7 334 mg/L(n=63),长宁地区为12 574 mg/L(n=85),但在Marcellus地区则为29 834 mg/L(n=173),都远高于饮用水标准(<200 mg/L);钙含量差异最大,钙含量均值在威远地区为297 mg/L(n=62),长宁地区为686 mg/L(n=85),在Marcellus地区则为10 190 mg/L(n=177)。对环境影响较大的重金属元素如Cd、As等以及NH4 +等含量都远超饮用水标准,无法直接排放(表2)。
表2 返排液/采出水元素地球化学组成(数据来自文献[9-15])

Table 2 Elemental geochemical composition of flowback/produced water (data from Refs.[9-15])

元素 单位 威远返排液/采出水 长宁返排液/采出水 Marcellus返排液/采出水

饮用水

标准

数值 平均值 数值 平均值 数值 平均值
K mg/L 83~164 119~485 314 (18) 8~4 080 458 (123)
Na mg/L 3 954~20 864 7 334 (63) 4 465~18 690 12 574 (85) 69~117 000 29 834 (173) 200
Ca mg/L 118~1 823 297 (62) 186~1 203 686 (85) 38~41 000 10 190 (177)
Mg mg/L 14~49 32 (42) 22~134 89 (53) 17~3 670 957 (173)
NH4 + mg/L 4.1~75.9 36.5 (49) 0.2~115 85 (67) 2.8~416 118 (64) 0.5
Cl mg/L 5 370~37 068 12 578 (70) 7 691~31 688 21 073 (85) 64~196 000 71 386 (172) 250
Br mg/L 21~257 72 (70) 34~1 370 436 (85) 0.2~1 990 642 (144)
B mg/L 11.5~56.2 38.2 (64) 9.1~66.3 40.3 (85) 0.01~155 18.6 (128) 0.5
Li mg/L 10.6~59.0 17.5 (64) 11.8~48.6 32.5 (85) 0.5~323 78.4 (146)
Sr mg/L 33.6~418.9 73.1 (64) 40.8~271.4 167.7 (85) 0.6~10 300 2 087 (177)
Ba mg/L 58.3~503.8 153.1 (64) 85.2~517 296.2 (85) 0.2~22 400 2 448 (177) 0.7
Mn mg/L 0.6~5.2 1.8 (35) 0.5~8.9 1.3 (35) 0.1~24 4.8 (124) 0.1
Si mg/L 32.1~107.6 62.5 (35) 14.4~780.2 87.0 (35)
Rb mg/L 0.2~1.1 0.5 (65) 0.5~1.0 0.8 (35) 0.4~1.0 0.8 (22)
Fe mg/L 38~60 0.5~6.6 2.5 (32) 1.1~220 67.2 (139) 0.3
Al mg/L 0.01~1.71 0.19 (28) 0.04~2.0 0.6 (67) 0.2
Ni μg/L 1.0~27.7 8.3 (27) 4.1~19 200 1 108 (80) 0.02
V μg/L 62.0~140.0 99.5 (32)
Cd μg/L 2.0~8.7 4.8 (32) 1.2~100 30 (67) 0.005
Mo μg/L 0.9~46.7 8.4 (25) 4.2~800 208 (67) 0.07
As μg/L 6.4~34.7 24.6 (32) 5~100 48 (67) 0.01
Se μg/L 9.6~169.2 110.5 (32) 5~100 45 (67) 0.01
Cu μg/L 1.7~75.3 27.2 (7) 6.5~18 000 406 (115) 1

注:括号中为样品数

3 返排液/采出水同位素地球化学特征

表3显示了四川盆地威远和长宁地区以及美国Marcellus页岩气开发区返排液/采出水、四川盆地震旦系、寒武系、二叠系和上三叠统须家河组常规井采出水的氢(δ2H)、氧(δ18O)、锶(87Sr/86Sr)、锂(δ7Li)、硼(δ11B)等同位素组成。四川盆地不同层系地层水的化学组成变化很大,如,二叠系以上地层水矿化度主要在200~300 g/L之间,而石炭系以下地层水矿化度一般低于70 g/L16。如表3所示,不同层系常规井采出水的同位素组成变化非常大9-121517
表3 非常规井返排液/采出水和常规井采出水同位素地球化学组成(数据来自文献[9-12,15,17])

Table 3 Isotopic geochemical composition of unconventional flowback/produced water and conventional produced water (data from Refs.[9-12,15,17])

样品类型 数值及平均值 δ18O/‰ δ2H/‰ 87Sr/86Sr δ7Li/‰ δ11B/‰
Marcellus 数值 -5.9~-0.4 -49.1~-30.2 0.709 4~0.712 1 6.4~15.0 25.5~32.3
返排液/采出水 平均值 -2.2 (56) -39.7 (56) 0.711 4 (66) 9.2 (50) 30.1 (19)
威远返排液/采出水 数值 -2.1~2.5 -32.8~-15.6 0.716 6~0.720 3 6.5~12.4 22.5~33.5
平均值 0.7 (67) -23.9 (67) 0.719 7 (40) 8.7 (7) 26.8 (39)
长宁返排液/采出水 数值 -0.5~1.9 -34.7~-24.5 0.717 2~0.719 9 8.9~13.9 27.2~31.6
平均值 1.1 (35) -28.2 (35) 0.719 3 (61) 11.0 (18) 29.6 (19)
柴达木返排液/采出水 数值 -8.0~-4.7 -69.0~-51.0 0.713 1~0.713 6 -10.2~—6.4
平均值 -6.0 (5) -59.0 (5) 0.713 5 (5) -8.3 (5)
震旦系地层水 数值 -3.9~6.3 -42.8~-22.9 0.710 2~0.723 4 11~22.2
平均值 -0.2 (3) -35.1 (3) 0.716 8 (2) 16.6 (2)
寒武系地层水 数值 1.9~5.2 -25.6~12.8 0.712 9~0.713 0 13.8~17.1
平均值 3.7 (3) -5.5 (3) 0.713 0 (3) 15.0 (3)
二叠系地层水 数值 -2.8~3.8 -26.9~-15.7 0.708 1~0.708 6 23.9~26
平均值 1.3 (8) -20.9 (8) 0.708 3 (3) 24.8 (3)
须家河组地层水 数值 -5.1~3.8 -53.5~-13.7 0.710 2~0.715 2 28.5~55.8
平均值 -1.6 (44) -40.0 (43) 0.712 6 (15) 42.2 (15)

注:括号里的数字为样品数

3.1 氢氧同位素地球化学特征

不同成因水的氢氧稳定同位素组成变化很大。深层海水的氢氧同位素组成非常均匀,在0附近。大气降水氢氧同位素组成相对海水贫2H和18O,其δ2H值从50%到-500‰,δ18O值从10%到-55‰,总体遵循Craig的全球大气降水线(GMWL)18。这主要是因为水在蒸发、凝聚过程中不断发生同位素分馏效应,存在雨量效应、温度效应、纬度效应、大陆效应、高度效应等,即随着雨量增大、温度降低、纬度升高、高度增加以及从沿海向大陆内部,大气降水的氢氧同位素值逐渐降低。
图1显示四川盆地页岩气压裂返排液/采出水和压裂液的氢氧同位素组成特征,同时展示的还有中国不同地区地表水、四川盆地河水和不同层系常规井采出水、塔里木盆地奥陶系、石炭系、三叠系、侏罗系地层水、渤海湾冀中地区下古生界—震旦系、古近系、第四系—新近系地层水的氢氧同位素组成91719-20。四川盆地地表河流的氢氧同位素值变化范围较大,但大致遵循Craig的全球大气降水线。四川盆地不同层系常规井采出水和页岩气井返排液/采出水的氢氧同位素值都落在全球大气降水线右下方,相对大气降水更加富18O。不同层系常规井采出水由于成因不同,其氢氧同位素组成差异明显,氢氧同位素值趋势线呈现非线性关系。四川盆地震旦系常规井采出水,其氧同位素组成与雷口坡组、二叠系、寒武系的相似,但氢同位素要轻得多,差异可达20‰左右,主要被认为是海源同生沉积卤水受到岩浆水的影响。寒武系、二叠系、三叠系嘉陵江组和雷口坡组常规井采出水主要为海源同生沉积卤水21-22,其氢同位素值相对偏高,主要为-10‰~-30‰。侏罗系常规井采出水为大气降水补给为主的盐卤水,其氢同位素值比较低,为-50‰~-80‰。须家河组常规井采出水氢同位素值范围跨度大,主要为-20‰~-70‰,大部分在-40‰左右,氧同位素值为-5.1‰~3.8‰。对其成因,目前众说纷纭。林耀庭等22认为其为海源沉积水与大气降水叠加型气田卤水,雍自权等23认为其为陆相河湖淡水和海相盐水的混源水,李伟等20认为其主要为外来海相地层水,宋鹤彬等21认为其主要为混合型卤水。相对于其他层系,须家河组常规井采出水氯含量跨度大,为11 646~281 157 mg/L,同时氢氧同位素值相对较低(δ2H=-40‰,δ18O=-1.6‰,平均值),说明其为开放体系,与淡水之间发生大幅度的稀释作用919图2)。
图1 地表水、地层水、常规井采出水、非常规井返排液/采出水和压裂液氢氧同位素特征对比(修改自文献[20],数据来自文献[9171920])

Fig.1 Plot of δ2H versus δ18O of surface water, formation water, conventional produced water, unconventional flowback/produced water and hydraulic fracturing fluid (modified from Ref.[20],data from Refs.[9171920])

图2 威远非常规井返排液/采出水、震旦系、寒武系、二叠系、上三叠统须家河组常规井采出水δ2H—Cl (a) and δ18O—Cl (b)图(数据来自文献[919])

Fig.2 Plots of δ2H versus Cl (a) and δ18O versus Cl (b) of flowback/produced water of Weiyuan unconventional wells, and produced water of the Sinian, Cambrian, Permian, Upper Triassic Xujiahe conventional wells (data from Refs.[919])

长宁—威远示范区页岩气开发过程中所注入的压裂液,根据氢氧同位素数据,可以分为2种类型:一种压裂液以淡水为主,其氢氧同位素值大致接近于Craig的全球大气降水线,但总体上氢氧同位素值偏高,部分压裂液由于加入少量返排液/采出水使得氧同位素组成偏重而偏离Craig的全球大气降水线;另一种压裂液则以循环利用的返排液/采出水为主,其氢氧同位素值与返排液/采出水类似(图1)。长宁—威远示范区返排液/采出水氢氧同位素组成比须家河组常规井采出水的重,但是比三叠系嘉陵江组和雷口坡组、二叠系、寒武系的轻,如,威远示范区返排液/采出水的δ2H值从-32.8‰到-15.6‰(均值为-23.9‰,n=67),δ18O值从-2.1‰到2.5‰(均值为0.7‰,n=67),长宁示范区返排液/采出水的δ2H值从-34.7‰到-24.5‰(均值为-28.2‰,n=35),δ18O值从-0.5‰到1.9‰(均值为1.1‰,n=35)。美国Marcellus页岩气区压裂返排液/采出水的氢氧同位素组成则与四川盆地上三叠统须家河组常规井采出水的更相似,δ2H值从-49.1‰到-30.2‰(均值为-39.7‰,n=56),δ18O值从-5.9‰到-0.4‰(均值为-2.2‰,n=56),氢氧同位素值明显比长宁—威远页岩气示范区返排液/采出水的低(图1)。但不管是四川盆地长宁—威远页岩气示范区还是美国Marcellus页岩气开发区,其返排液/采出水的氢氧同位素值都远高于陆相地层的柴达木盆地北缘柴页1井中侏罗统大煤沟组页岩气压裂返排液/采出水,后者δ2H值为-69.0‰~-51.0‰(均值为-59.0‰,n=5),δ18O值为-8.0‰~-4.7‰(均值为-6.0‰,n=5)。

3.2 锶同位素地球化学特征

四川盆地威远示范区非常规井返排液/采出水87Sr/86Sr值变化范围为0.716 6~0.720 2(均值为0.719 7,n=40),长宁示范区则为0.717 2~0.719 9(均值为0.719 3,n=61),高于现代海水的87Sr/86Sr值(0.709 1),与壳源硅铝质岩石的风化产物相近(0.720±0.005)9-121724-25图3),说明有放射性Sr的贡献,可能来自页岩9。两者都高于美国Marcellus页岩气区压裂返排液/采出水的87Sr/86Sr值(0.709 4~0.712 1,均值为0.711 4,n=66),也高于陆相地层的柴达木盆地北缘柴页1井中侏罗统大煤沟组页岩气压裂返排液/采出水的87Sr/86Sr值(0.713 1~0.713 6,均值为0.713 5,n=5)。一般认为,87Sr/86Sr值主要受控于Sr的来源,不会因为物理、化学和生物过程而发生同位素分馏作用。海水87Sr/86Sr值受以下3个来源控制:87Sr/86Sr值为0.704±0.002的年轻火山岩;87Sr/86Sr平均值大约为0.720±0.005的陆壳古老硅铝质岩石;87Sr/86Sr值为0.708±0.001的显生宙时期的海洋碳酸盐岩24。页岩、碎屑岩、泥质岩等因含大量陆源不稳定铝硅酸岩矿物,放射性Sr含量高,其87Sr/86Sr值一般比碳酸盐岩高。当流体与页岩、泥质岩等接触,溶解其中的陆源不稳定铝硅酸岩矿物,使得放射性成因Sr含量大增,导致87Sr/86Sr值增高,如加拿大西部沉积盆地泥盆系白云岩储层中白云石和方解石具有很高的Sr同位素比值,与溶解有大量陆源不稳定铝硅酸盐矿物而具有很高壳源Sr含量的地层流体有关26-27。四川盆地志留系碳酸盐岩也具有较高的87Sr/86Sr值。尽管VEIZER等28公布的87Sr/86Sr值地层曲线志留系平均值大约只有0.708 5,但川南地区实测的87Sr/86Sr值都较高。扬子地台西缘宁蒗泸沽湖剖面志留系碳酸盐岩87Sr/86Sr值变化范围为0.709 3~0.719 6,平均值为0.711 4,上奥陶统87Sr/86Sr值为0.720 2,从上奥陶统到志留系87Sr/86Sr值逐渐降低,与VEIZER等28公布的从上奥陶统到志留系明显增高的趋势刚好相反,说明Sr主要来源于康滇古陆的陆壳硅铝质岩石的风化产物28-29。四川盆地南部龙马溪组富有机质页岩方解石脉87Sr/86Sr值变化范围为0.719 4~0.721 3,平均值为0.720 3,认为除了受到陆源硅质沉积物的影响外,还可能受到下伏富Sr流体的影响30。四川盆地南缘纂江观音桥剖面上奥陶统87Sr/86Sr值为0.701 7,到奥陶系和志留系交界处为0.712 1,志留系底部可达0.714 0,认为与海平面升降引起的陆源Sr的输入变化有关31
图3 非常规井返排液/采出水、常规井采出水、浅层地下水87Sr/86Sr—Sr/Cl图(数据来自文献[9-121725])

Fig.3 Plot of 87Sr/86Sr versus Sr/Cl of flowback/produced water of unconventional wells, produced water of conventional wells and shallow ground water (data from Refs.[9-121725])

与非常规井返排液/采出水87Sr/86Sr值相比,常规井采出水87Sr/86Sr值要低得多。须家河组常规井采出水87Sr/86Sr平均值为0.712 6(n=15),寒武系的87Sr/86Sr平均值为0.713 0(n=3),二叠系的 87Sr/86Sr平均值为0.708 3(n=3)。震旦系2个样品 87Sr/86Sr值相差较大,一个样品87Sr/86Sr值为0.710 2,另一个样品的87Sr/86Sr值为0.723 4,可能受到干扰。四川盆地非常规井返排液/采出水87Sr/86Sr值变化幅度比较小,为0.003 6,但常规井采出水的87Sr/86Sr值变化幅度大,为0.007 1(不包括震旦系87Sr/86Sr值为0.723 4的样品),比非常规井返排液/采出水的(0.005)大得多。二叠系常规井采出水87Sr/86Sr值(0.708 3)与二叠系海水的87Sr/86Sr值(0.706 8~0.708 0)相近,说明二叠系地层水放射性Sr含量低,其Sr可能主要来自不具有放射性的海相碳酸盐岩9。须家河组常规井采出水的87Sr/86Sr值(0.712 6)介于这两者之间,说明其Sr来源既有页岩的贡献,也有海相碳酸盐岩的贡献9

3.3 硼同位素地球化学特征

硼有10B和11B 2个稳定同位素,其相对丰度分别为19.9%和80.1%。B为易溶元素,广泛存在于各种水体中,其同位素组成变化非常大,为-10‰~ 57‰9122532-44图4)。在自然界水体中硼主要以B(OH)3和B(OH)4 2种形式存在。硼没有价态变化,硼同位素分馏受控于体系中B(OH)3和B(OH)4的相对含量。重同位素11B优先富集在三次配位的B(OH)3中,轻同位素10B优先富集在四次配位的B(OH)4中。黏土矿物对硼具有很强的吸附作用,在这一硼吸附过程中,轻同位素10B优先进入黏土矿物,残余的流体则富集重同位素11B,这一过程发生明显的同位素分馏,致使流体硼同位素升高45-47
图4 不同地质流体硼同位素组成(数据来自文献[9122532-44])

Fig.4 Boron isotopic composition of various geological fluids (data from Refs.[9122532-44])

四川盆地威远地区非常规井返排液/采出水δ11B值变化范围为22.5‰~33.5‰(均值为26.8‰,n=39),长宁非常规井压返排液/采出水δ11B值变化范围为27.2‰~31.6‰(均值为29.6‰,n=19),都低于海水δ11B值(39.5‰)911-12172548图5),但与美国Marcellus页岩气压裂返排液/采出水δ11B值相近,为25.5‰~32.3‰(均值为30.1‰,n=19)12。这归因于两者都是海相页岩,海相蒸发硼酸盐矿物δ11B值普遍较高,为18‰~32‰49。非海相蒸发硼酸盐矿物δ11B值则低得多,为-30‰~8‰49,如柴达木盆地北缘柴页1井中侏罗统大煤沟组地层水δ11B值为-1.1‰,大煤沟组页岩返排液/采出水δ11B值为-10‰~-6‰25
图5 非常规井返排液/采出水和常规井采出水δ11B—B/Cl图(数据来自文献[911-12172548])

Fig.5 Plot of δ11B versus B/Cl of unconventional flowback/produced water and conventional produced water (data from Refs.[911-12172548])

盆地内须家河组常规气井采出水δ11B值最高,其变化范围为28.5‰~55.8‰,平均值为42.2‰(n=15)。震旦系和寒武系常规气井采出水δ11B值最低,平均值分别为16.6‰(n=2)和15.0‰(n=3)。二叠系常规气井采出水δ11B值与非常规页岩气井返排液/采出水的相近,平均值为24.8‰(n=3)。总体上来看,非常规井返排液/采出水和常规井采出水δ11B值与B/Cl值之间存在一定的负相关性,如须家河组常规井采出水δ11B值最高,B/Cl值最低,说明可能发生诸如黏土矿物的硼吸附作用导致质量轻的10B被优先吸附在黏土矿物上,或者说明其原始蒸发相海水具有高δ11B值和低B/Cl值的特点;而寒武系、震旦系、二叠系常规井采出水和非常规页岩气井返排液/采出水则具有较高的B/Cl值和较低的δ11B值,说明可能发生母岩的硼解吸附作用导致质量轻的10B优先进入流体相9。非常规井返排液/采出水和常规井采出水δ11B值的增加伴随着B/Cl值的降低,而δ11B值的降低,伴随着B/Cl值的增加(图5)。

3.4 锂同位素地球化学特征

锂有6Li和7Li 2个稳定同位素,其平均丰度分别为7.42%和92.58%,相对质量差达16.7%,导致锂在各种地质演化过程中发生明显的同位素分馏,尤其在某些与流体相关的过程中,具有强烈的流体活动性,会产生较大程度同位素分馏,可高达100‰50图6)。
图6 不同地质流体锂同位素组成(修改自文献[50])

Fig.6 Lithium isotopic composition of various geological fluids (modified from Ref.[50])

四川盆地威远页岩气示范区压裂返排液/采出水δ7Li值变化范围为6.5‰~12.4‰(均值为8.7‰,n=7),长宁页岩气示范区压裂返排液/采出水δ7Li值变化范围为8.9‰~13.9‰(均值为11.0‰,n=18),稍高于美国Marcellus页岩气区压裂返排液/采出水δ7Li值(6.4‰~15.0‰,均值为9.2‰,n=50),都远低于海水δ7Li值(31.0‰),但返排液/采出水具有较高的Li/Cl值(0.007 597),比海水的Li/Cl值(0.000 054)高了约2个数量级911-121751图7)。因此,与海水相比,页岩气压裂返排液/采出水具有较低的δ7Li值和较高的Li/Cl值。返排液/采出水的Br、Cl含量主要受混合稀释作用的影响,与压裂注入液的Br、Cl之间有着非常好的线性关系2,但返排液/采出水的Li含量、δ7Li值、B含量、δ11B值等的影响因素更复杂。当压裂液注入到页岩地层中时,初期将使B和Li从黏土矿物中解吸附,导致质量轻的6Li和10B优先进入流体相,使得返排液中的δ7Li值和δ11B值变轻,而B含量和Li含量则增加9
图7 长江水,非常规页岩气压裂返排液/采出水和美国Appalachian盆地油气田水δ7Li—Li/Cl图(数据来自文献[911-121751])

Fig.7 Plot of δ7Li versus Li/Cl of unconventional flowback/produced water, conventional oilfield water in Appalachian Basin and Yangtze River (data from Refs.[911-121751])

美国Appalachian盆地油气田水与Marcellus页岩气压裂返排液/采出水相比,前者δ7Li值总体上比后者高,但Li/Cl值比后者小,说明压裂注入液进入页岩地层后,发生锂与黏土矿物之间的解吸附作用,使得流体相δ7Li值变轻、Li含量增加12。目前没有四川盆地不同层系常规井采出水的锂同位素值,无法比较。长江水的δ7Li值变化非常大,与四川盆地非常规页岩气压裂返排液/采出水有一定的重合,其B/Cl值整体上低于压裂返排液/采出水的。

4 返排液/采出水成因与来源

研究发现,压裂返排液/采出水主要为压裂注入液与页岩地层滞留的高盐卤水的混合产物1252-55。四川盆地威远页岩气开发区压裂返排液/采出水与压裂注入液的氢氧同位素(R 2=0.937 1)以及溴氯含量(R 2=0.953 9)之间都存在良好的线性关系9图8),说明返排液/采出水为压裂注入液与滞留在志留系页岩中的地层卤水的混合产物,即高盐度的地层卤水与低盐度的压裂注入液(大部分Cl含量在500 mg/L以下)之间的混合稀释作用9。Log Cl—Log Br和Log Na—Log Br分析也表明存在这种蒸发相海水与淡水之间的混合稀释作用2。返排液/采出水的高盐度端元来源,其组成与寒武系和震旦系蒸发相海水相近9,倪云燕等2进一步发现威远页岩气开发区返排液/采出水、压裂注入液与寒武系常规气井采出水的溴氯含量有着很好的线性关系(R 2=0.967 3),且比震旦系的好(R 2=0.862 9),提出高盐度端元化学组成与寒武系地层卤水更接近。
图8 威远页岩气开发区压裂液和返排液/采出水氢氧(a)、Br—Cl同位素(b)9

Fig.8 Plots of δ2H versus δ18O (a) and Br versus Cl (b) of hydraulic fracturing fluid and flowback/produced water in the Weiyuan shale gas development area9

氢氧同位素数据能够更好地说明返排液/采出水来源的高盐度端元与寒武系地层卤水相似,而不同于震旦系地层卤水。图1显示,返排液/采出水的氢氧同位素值总体上比寒武系常规井采出水的轻,但两者总体上都落在侏罗系、三叠系、二叠系、寒武系常规气井采出水氢氧同位素演化趋势线上,震旦系常规井采出水则明显位于该趋势线下方,其氧同位素值与寒武系的相近,但氢同位素值比寒武系常规气井采出水轻约20‰左右。返排液/采出水的氧同位素值比震旦系常规气井采出水的稍低,但氢同位素值明显比震旦系常规气井采出水的高。这是由于震旦系常规气井采出水为蒸发相海水受到岩浆水影响的产物,而寒武系常规气井采出水主要为蒸发相海水,因此,返排液/采出水的高盐度端元的化学组成类似于来自蒸发相海水的寒武系地层卤水21-22
返排液/采出水的高盐度端元与来自蒸发相海水的寒武系地层卤水类似,但又不完全相同。与后者相比,返排液/采出水高盐度端元应该具有更高的δ11B值和更低的B/Cl值。当压裂注入液进入页岩地层,与滞留在页岩中的地层卤水发生混合时,压裂注入液与页岩中的矿物发生水岩反应,B从黏土矿物解吸附,使得10B优先进入返排液中,导致返排液的δ11B值变低、B/Cl值变大912。随着时间推移,在后期高盐度端元的地层卤水占比越来越大,则B被吸附到黏土矿物,使残留的返排液/采出水更富11B,导致δ11B值变大9。不管是B的吸附还是解吸附过程,返排液/采出水的δ11B值都高于寒武系的,B/Cl值则低于寒武系的。
压裂返排液/采出水可以看成是压裂注入液与页岩地层滞留的高盐卤水之间二元混合的产物,则可以根据压裂注入液和页岩地层高盐卤水的端元组分计算返排液中原始压裂注入液和地层高盐卤水的占比。压裂注入液的组成按90%淡水和10%回用的返排液估算,页岩地层卤水端元组分则按寒武系地层水的化学组成估算,根据Br/Cl元素质量平衡计算,威远页岩气田返排液/采出水中原始压裂注入液占比达28%~49%9。据此可以估算返排液/采出水的总矿化度、金属离子等含量,这对返排液/采出水的处理有重要的指导意义。

5 返排液/采出水鉴别指标

页岩气压裂返排液/采出水由于高含各种盐类、重金属、放射性物质等,对地下水、地表水、土壤、人类等存在严重污染风险,受到各国政府与民众的关注,因此,在常规天然气与非常规页岩气共存的产气区,页岩气压裂返排液/采出水与常规天然气井采出水之间的鉴别尤为重要。研究发现在美国Appalachian盆地,Marcellus页岩气压裂返排液/采出水与常规油气田采出水和河水的87Sr/86Sr值和δ7Li值都有一定程度的重合,但δ11B值明显比常规油气田采出水的轻,比河水的重,这使得δ11B值成为鉴别页岩气压裂返排液/采出水与常规天然气井采出水和河水的有效地球化学指标。
图5可以看出,四川盆地不同层系常规井采出水、四川盆地和Marcellus非常规页岩气井返排液/采出水都与蒸发相海水有关,其δ11B值和B/Cl值与河水和非海相的柴达木盆地页岩气井返排液/采出水能够明显区分。河水的δ11B值基本上小于-20‰,与震旦系和寒武系常规井采出水δ11B值有一定的重合,但前者的B/Cl值明显比后者的低,与Marcellus页岩气压裂返排液/采出水的B/Cl值相当,说明河水与四川盆地不同层系常规井采出水、四川盆地和Marcellus非常规页岩气井返排液/采出水不是一个体系的,可以根据δ11B—B/Cl值进行区分。但四川盆地非常规井返排液/采出水的δ11B值基本上比上三叠统须家河组常规井采出水的低,比寒武系常规井采出水的高,与震旦系、二叠系及上三叠统须家河组常规井采出水有一定程度的重合(图5)。这使得无法有效利用δ11B值鉴别四川盆地长宁—威远页岩气压裂返排液/采出水与不同层系常规井采出水。
在四川盆地南部地区,87Sr/86Sr值是鉴别页岩气压裂返排液/采出水与常规气井采出水和浅层地下水的有效指标。如图3所示,长宁—威远页岩气示范区压裂返排液/采出水的87Sr/86Sr值明显高于常规气井采出水、浅层地下水、美国Appalachian盆地Marcellus页岩气压裂返排液/采出水以及海水等。这是由于四川盆地南部志留系地层除了受到陆源硅质沉积物的影响外,还可能受到下伏富Sr流体的影响,导致实测的87Sr/86Sr值都比较高,如四川盆地南部龙马溪组富有机质页岩方解石脉87Sr/86Sr平均值达0.720 330,这明显高于VEIZER等28公布的87Sr/86Sr值地层曲线志留系平均值(0.708 5)。页岩与泥质岩由于含有大量陆源不稳定铝硅酸岩矿物,放射性Sr含量本来就高,加上下伏富Sr流体的影响,其87Sr/86Sr值更高。当压裂注入液与返排液/采出水等与富放射性成因Sr的页岩、泥质岩等接触,发生水岩反应,使得放射性成因Sr含量大增,导致87Sr/86Sr值增高。这使得87Sr/86Sr值成为鉴别四川盆地长宁—威远页岩气压裂返排液/采出水与常规气井采出水及浅层地下水的有效指标。这对页岩气压裂返排液/采出水的排放监控及对当地地表水和地下水的污染鉴别具有重要的意义,为页岩气开发过程中的水污染评估提供了有效指标。这对有效缓解民众对于页岩气开发和水力压裂技术潜在的污染风险的恐慌有重要的作用。

6 返排液/采出水排放处理建议

页岩气压裂返排液/采出水的成因来源注定了其含盐量高的普遍特点,且随压裂时间增加而逐渐增加并与地层卤水相近,这也为返排液/采出水的后期处理提供了重要参考依据。由于地质特点与地层水化学组成的差异,与美国页岩气压裂返排液/采出水相比,中国四川盆地页岩气压裂返排液/采出水含盐量明显偏低(表1表2),后期波动明显9。中美地质条件的差异、返排液/采出水化学组成的差异决定了返排液/采出水排放处理工艺上的区别,国内的页岩气压裂返排液/采出水的排放处理立足页岩气开发现场的具体地质条件及其对返排液/采出水的影响,采取针对性的措施,达到回用或者排放的要求。返排液/采出水的处理工艺设计中需要考虑各种因素,如总矿化度(TDS)、总悬浮物含量(TSS)、重金属含量、有机物含量等。总矿化度高、悬浮物含量高,容易析出沉淀,改变流体行为,降低添加剂如降阻剂的效果,堵塞孔隙或者回注回用系统。重金属含量高,则容易形成碳酸盐或硫酸盐沉淀,堵塞页岩孔隙或裂缝,从而降低页岩气产量,或者堵塞设备系统,造成不利影响。
返排液/采出水在回用或外排前需要经过多级处理,降低总矿化度和悬浮物含量,去除钙、镁、钡、铁、锶等金属离子,并通过降低氯离子来进一步降低盐度。目前压裂返排液/采出水的处理多是以回用为主,需要有效去除返排液/采出水中的悬浮物、重金属离子等,降低盐度,达到回用标准。不管是使用膜分离、重力分离还是离心分离等物理方法还是絮凝沉降、氧化还原、中和法、微电解法、微生物作用等生化方法,或者联合处理方法,都需要综合考虑压裂返排液/采出水的成因机制与演化规律。①压裂返排液/采出水为压裂注入液与页岩地层滞留的高盐卤水的混合产物,其总矿化度在返排期间变化很大,返排初期不到2 500 mg/L,到返排后期接近60 000 mg/L,平均值为22 974 ml/L(n=91),而由于水岩反应、吸附—解吸附等作用,硼、锂、锶等金属离子含量在返排后期随时间增加还有较大变化,与美国后期返排液/采出水成分接近地层水的特点不同,蜀南地区返排液/采出水在后期波动变化大,其排放处理工艺都需做适当调整。②与美国返排液/采出水相比,蜀南地区返排液/采出水氯、钙、镁、锶、钡等含量都相对比较低,尤其是钙、镁、氯等含量(表2),这将降低返排液/采出水的脱盐处理工艺的难度和要求。③四川盆地压裂返排液/采出水中硼含量平均为38.2 mg/L(n=64),整体上高于美国Marcellus压裂返排液/采出水中硼含量(平均为18.6 mg/L,n=128),这说明四川盆地压裂返排液/采出水的处理工艺需要更加关注硼的有效去除。硼离子会影响返排液/采出水处理后进行回用时配制压裂液的基液黏度和携砂性能。结合硼离子含量与其他钙、镁、锶等金属离子含量的最高浓度和浓度演化规律,设计合适的处理工艺,做到经济实效。

7 结论

(1)四川盆地威远示范区返排液/采出水的δ2H值为-32.8‰~-15.6‰(均值为-23.9‰,n=67),δ18O值为-2.1‰~2.5‰(均值为0.7‰,n=67),长宁示范区返排液/采出水的δ2H值为-34.7‰~-24.5‰(均值为-28.2‰,n=35),δ18O值为-0.5‰~1.9‰(均值为1.1‰,n=35),比须家河组常规井采出水的高,但是比三叠系嘉陵江组和雷口坡组、二叠系、寒武系的轻。δ2H—δ18O、Br—Cl、Log Cl—Log Br、Log Na—Log Br等分析表明,四川盆地返排液/采出水为压裂注入液与滞留在志留系页岩中的地层卤水的混合产物,其高盐度端元化学组成更接近寒武系地层卤水,但其δ11B值要高于寒武系地层卤水。
(2)威远返排液/采出水δ11B值为22.5‰~33.5‰(均值为26.8‰,n=39),δ7Li值为6.5‰~12.4‰(均值为8.7‰,n=7),长宁返排液/采出水δ11B值为27.2‰~31.6‰(均值为29.6‰,n=19),δ7Li值为8.9‰~13.9‰(均值为11.0‰,n=18)。长宁—威远示范区返排液/采出水δ11B值与美国Marcellus的相近,与盆地内不同层系常规井采出水有一定的重合,但都与蒸发相海水有关,其δ11B值和B/Cl值与河水和非海相的柴达木盆地页岩气井返排液/采出水能够明显区分。压裂液进入地层后,初期将发生B、Li与黏土矿物的解吸附作用,导致质量轻的6Li和10B优先进入流体相,使得返排液中的δ7Li值和δ11B值变小,而B含量和Li含量则增加。
(3)威远示范区返排液/采出水87Sr/86Sr值为0.716 6~0.720 2(均值为0.719 7,n=40),长宁示范区则为0.717 2~0.719 9(均值为0.719 3,n=61)。四川盆地南部志留系实测87Sr/86Sr值偏高,可能受到陆源硅质沉积物和下伏富Sr流体的影响,使得四川盆地返排液/采出水远高于常规气井采出水的87Sr/86Sr值,使87Sr/86Sr值成为鉴别页岩气压裂返排液/采出水与常规气井采出水和浅层地下水的有效指标。
1
邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14.

ZOU C N, ZHAO Q, CONG L Z, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14.

2
倪云燕, 姚立邈, 廖凤蓉, 等. 四川盆地威远返排液元素地球化学特征及排放处理建议[J]. 天然气地球科学, 2021, 32(4): 492-509.

NI Y Y, YAO L M, LIAO F R, et al. Geochemical characteristics of the elements in hydraulic fracturing flowback water from the Weiyuan shale gas development area in Sichuan Basin,China[J]. Natural Gas Geoscience,2021,32(4):492-509.

3
杨德敏, 喻元秀, 梁睿, 等. 我国页岩气重点建产区开发进展、环保现状及对策建议[J]. 现代化工, 2019, 39(1): 1-6.

YANG D M, YU Y X, LIANG R, et al. Development progress and environmental protection status in China's key shale gas construction areas and suggestions[J]. Modern Chemical In-dustry, 2019, 39(1): 1-6.

4
王禹, 李夏伟, 孙冬华. 四川盆地长宁—威远地区页岩气开采现状及潜力分析[J]. 山东化工, 2020, 49(14): 134-135.

WANG Y, LI X W, SUN D H. Shale gas exploitation status and potential analysis in Changning-Weiyuan mining area, Sichuan Basin[J]. Shangdong Chemical Industry,2020,49(14): 134-135.

5
王淑芳, 董大忠, 王玉满, 等. 中美海相页岩气地质特征对比研究[J]. 天然气地球科学, 2015, 26(9): 1666-1678.

WANG S F, DONG D Z, WANG Y M, et al. A comparative study of the geological feature of marine shale gas between China and United States[J]. Natural Gas Geoscience, 2015, 26(9): 1666-1678.

6
何骁, 吴建发, 雍锐, 等. 四川盆地长宁—威远区块海相页岩气田成藏条件及勘探开发关键技术[J]. 石油学报, 2021, 42(2): 259-272.

HE X, WU J F, YONG R, et al. Accumulation conditions and key exploration and development technologies of marine shale gas field in Changning-Weiyuan block, Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(2): 259-272.

7
莫裕科, 孙东, 杨海军, 等. 长宁页岩气开发区水文地质条件及地下水环境保护[J]. 四川地质学报,2018,38(4):671-675.

MO Y K, SUN D, YANG H J, et al. Hydrogeological condition and groundwater environment protection in the Changning shale gas development zone[J].Acta Geologica Sichuan,2018, 38(4): 671-675.

8
KONDASH A J,LAUER N E,VENGOSH A. The intensification of the water footprint of hydraulic fracturing[J]. Science Advances,2018,4(8): eaar5982.

9
NI Y Y, ZOU C N, CUI H Y, et al. The origin of flowback and produced waters from Sichuan Basin, China[J]. Environmental Science & Technology, 2018, 52: 14519-14527.

10
GAO J L, ZOU C N, LI W, et al. Hydrochemistry of flowback water from Changning shale gas field and associated shallow groundwater in Southern Sichuan Basin, China: Implications for the possible impact of shale gas development on groundwater quality[J]. Science of the Total Environment,2020,713:136591.

11
LIU D, LI J, ZOU C N, et al. Recycling flowback water for hydraulic fracturing in Sichuan Basin, China: Implications for gas production, water footprint, and water quality of regenerated flowback water[J]. Fuel, 2020, 272: 117621.

12
WARNER N R, DARRAH T H, JACKSON R B, et al. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations[J]. Environmental Science & Technology, 2014, 48(21): 12552-12560.

13
ROWAN E, ENGLE M, KRAEMER T, et al. Geochemical and isotopic evolution of water produced from Middle Devonian Marcellus shale gas wells, Appalachian Basin, Pennsylvania[J]. AAPG Bulletin, 2015, 99(2): 181-206.

14
HAYES T D. Sampling and Analysis of Water Streams Associated with the Development of Marcellus Shale Gas[R]. Des Plaines:Gas Technology Institute,2009.https://www.waterre-search.net/naturalgasPA/pdffiles/MSCommission-Report.pdf.

15
CHAPMAN E C, CAPO R C, STEWART B W, et al. Geochemical and strontium isotope characterization of produced waters from Marcellus shale natural gas extraction[J]. Environmental Science & Technology, 2012, 46(6): 3545-3553.

16
李伟, 杨金利, 姜均伟, 等. 四川盆地中部上三叠统地层水成因与天然气地质意义[J]. 石油勘探与开发, 2009, 36(4): 428-435.

LI W, YANG J L, JIANG J W, et al. Origin of Upper Triassic formation water in middle Sichuan Basin and its natural gas significance[J].Petroleum Exploration and Development,2009, 36(4): 428-435.

17
刘丹. 四川盆地压裂返排液地球化学特征研究[D]. 北京: 中国科学院地质与地球物理研究所, 2020.

LIU D. Research on Geochemistry of Flowback and Produced Water in Sichuan Basin, China[D]. Beijing: Research Institute of Geology and Geophysics, Chinese Academy of Sciences, 2020.

18
CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133: 1702-1703.

19
QIN S F, LI F, LI W, et al. Formation mechanism of tight coal-derived-gas reservoirs with medium-low abundance in Xujiahe Formation, central Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 89: 144-154.

20
李伟, 秦胜飞. 四川盆地须家河组地层水微量元素与氢氧同位素特征[J]. 石油学报, 2012, 33(1): 55-63.

LI W, QIN S F. Charactristics of trace elements and hydrogen and oxygen isotoopes in the formation water of the Xujiahe Formation, Sichuan Basin[J]. Acta Petrolei Sinica,2012, 33(1): 55-63.

21
宋鹤彬, 李亚文. 中国南海海水蒸发实验过程中地球化学行径[J]. 地球学报, 1994(1-2): 157-167.

SONG H B, LI Y W. Indoor evaporation experiment on water of south China Sea[J]. Acta Geoscientia Sinica, 1994(1-2): 157-167.

22
林耀庭, 熊淑君. 氢氧同位素在四川气田地层水中的分布特征及其成因分类[J]. 海相油气地质, 1999, 4(4): 39-45.

LIN Y T, XIONG S J. The distribution characteristics of stable isotope and its genesis category of the formation water in gas field, Sichuan Basin[J]. Marine Origin Petroleum Geology, 1999, 4(4): 39-45.

23
雍自权, 李俊良, 周仲礼, 等. 川中地区上三叠统香溪群四段地层水化学特征及其油气意义[J]. 物探化探计算技术, 2006, 28(1): 41-45.

YONG Z Q, LI J L, ZHOU Z L, et al. The formation water chemical characters and petroleum significance of the fourth segment reservoirs of Xiangxi Group in center of Sichuan Basin[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2006, 28(1): 41-45.

24
FAURE G. Principles of Isotope Geology[M]. 2nd Edition. New York: John Wiley & Sons,1986: 589.

25
ZHENG Z X,ZHANG H D,CHEN Z Y,et al.Hydrogeochemical and isotopic indicators of hydraulic fracturing flowback fluids in shallow groundwater and stream water, derived from Dameigou shale gas extraction in the northern Qaidam Basin[J]. Environmental Science & Technology,2017,51:5889-5898.

26
MACHEL H G, CAVELL P A, PATEY K S. Isotopic evidence for carbonate cementation and recrystallization, and for tectonic expulsion of fluids into the western Canada sedimentary basin[J]. Geological Society of America Bulletin,1996,108: 1108-1119.

27
MOUNTJOY E W, ACHEL H G M, GREEN D, et al. Devonian matrix dolomites and deep burial carbonate cements: A comparison between the Rimbey-Meadowbrook reef trend and the deep basin of west-central Alberta[J]. Bulletin of Canadian Petroleum Geology, 1999, 47(4): 487-509.

28
VEIZER J, FRITZ P, JONES B. Geochemistry of brachiopods: Oxygen and carbon isotopic records of Paleozoic oceans[J].Geochimica et Cosmochimica Acta,1986,50(8):1679-1691.

29
李忠雄, 管士平. 扬子地台西缘宁蒗泸沽湖地区志留系沉积旋回及锶、碳、氧同位素特征[J]. 古地理学报, 2001, 3(4): 69-76.

LI Z X, GUAN S P. Sedimentary cycle and strontium, carbon, oxygen isotopes of the Silurian at Luguhu region in Ninglang county of western margin of Yangtze platform[J]. Journal of Palaeogeography, 2001, 3(4): 69-76.

30
吴安彬, 张景坤, 王井伶, 等. 富有机质页岩方解石脉成因、成岩模式与地质意义——以四川盆地南部龙马溪组为例[J]. 地质论评, 2020, 66(1): 88-100.

WU A B, ZHANG J K, WANG J L, et al. Genesis, diagenetic model and geological significance of calcite veins in organic-rich shale: A case study of the Longmaxi Formation, southern Sichuan Basin, China[J]. Geological Review, 2020, 66(1): 88-100.

31
张廷山, 俞剑华, 边立曾, 等. 四川盆地南北缘志留系的锶和碳、氧同位素演化及其地质意义[J]. 岩相古地理, 1998, 18(3): 41-49.

ZHANG T S, YU J H, BIAN L Z, et al. Strontium, carbon and oxygen isotopic compositions and their geological significance: The Silurian strata on the northern and southern margins of the Sichuan Basin[J]. Sedimentary Facies and Palaeogeography, 1998, 18(3): 41-49.

32
VENGOSH A, CHIVAS A R, STARINSKY A, et al. Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China[J]. Chemical Geology, 1995, 120(1): 135-154.

33
XIAO Y K, SUN D P, WANG Y H, et al. Boron isotopic compositions of brine, sediments, and source water in Da Qaidam Lake, Qinghai, China[J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1561-1568.

34
MEREDITH K, MORIGUTI T, TOMASCAK P, et al. The lithium, boron and strontium isotopic systematics of groundwaters from an arid aquifer system: Implications for recharge and weathering processes[J]. Geochimica et Cosmochimica Acta, 2013, 112: 20-31.

35
SPIVACK A J,PALMER M R,EDMOND J M. The sedimentary cycle of the boron isotopes[J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1939-1949.

36
PALMER M R. Boron isotope systematics of hydrothermal fluids and tourmalines: A synthesis[J]. Chemical Geology, 1991, 94(2): 111-121.

37
SPIVACK A J,EDMOND J M. Boron isotope exchange between seawater and the oceanic crust[J]. Geochimica et Cosmochimica Acta, 1987, 51(5): 1033-1043.

38
VENGOSH A, SPIVACK A J, ARTZI Y, et al. Geochemical and boron, strontium, and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean Coast of Israel[J]. Water Resources Research, 1999, 35(6): 1877-1894.

39
VENGOSH A, HELVACI C, KARAMANDERESI I H. Geochemical constraints for the origin of thermal waters from western Turkey[J]. Applied Geochemistry, 2002, 17(3): 163-183.

40
VENGOSH A, STARINSKY A, KOLODNY Y, et al. Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel[J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 1689-1695.

41
PALMER M R, STURCHIO N C. The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2811-2815.

42
SPIVACK A J. Boron Isotope Geochemistry[D]. Cambridge:Massachusetts Institute of Technology,1986.

43
AGGARWAL J K, PALMER M R, RAGNARSDOTTIR K V. Boron Isotopic Composition of Icelandic Hydrothermal Systems[C]// KHARAKA Y K, MAEST A S(eds). The 7th International Symposium on Water-Rock Interaction (WRI-7) Park City Utah, USA,1992:893-895.

44
MUSASHI M, NOMURA M, OKAMOTO M, et al. Regional variation in the boron isotopic composition of hot spring waters from central Japan[J]. Geochemical Journal, 1988, 22(5): 205-214.

45
SCHWARCZ H P,AGYEI E K,MCMULLEN C C. Boron isotopic fractionation during clay adsorption from sea-water[J]. Earth and Planetary Science Letters,1969,6(1):1-5.

46
PALMER M R, SPIVACK A J, EDMOND J M. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay[J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2319-2323.

47
VENGOSH A, STARINSKY A, KOLODNY Y, et al. Boron isotope variations during fractional evaporation of sea water: New constraints on the marine vs. nonmarine debate[J]. Geology, 1992, 20(9): 799-802.

48
李廷伟, 李建森, 马海州, 等. 柴达木盆地西部油田卤水硼同位素地球化学研究[J]. 盐湖研究, 2013, 21(6): 1-9.

LI T W, LI J S, MA H Z, et al. Boron isotope geochemical study on oil-field brine in western Qaidam Basin[J]. Journal of Salt Lake Research, 2013, 21(6): 1-9.

49
SWIHART G H, MOORE P B, CALLIS E L. Boron isotopic composition of marine and nonmarine evaporite borates[J]. Geochimica et Cosmochimica Acta, 1986, 50(6): 1297-1301.

50
李雪, 周伦, 蔺洁, 等. 锂同位素在水环境领域的研究进展[J]. 安全与环境工程, 2016, 23(3): 1-9, 16.

LI X, ZHOU L, LIN J, et al. Research advancement on lithium isotopes in water environment[J]. Safety and Environmental Engineering, 2016, 23(3): 1-9, 16.

51
汪齐连, 刘丛强, 赵志琦, 等. 长江流域河水和悬浮物的锂同位素地球化学研究[J]. 地球科学进展, 2008, 23(9): 952-958.

WANG Q L, LIU C Q, ZHAO Z Q, et al. Lithium isotopic composition of the Dissolved and suspended loads of the Yangtze River, China[J]. Advances in Earth Science,2008,23(9): 952-958.

52
OSSELIN F, NIGHTINGALE M, HEARN G, et al. Quantifying the extent of flowback of hydraulic fracturing fluids using chemical and isotopic tracer approaches[J]. Applied Geochemistry, 2018, 93: 20-29.

53
BARBOT E, VIDIC N S, GREGORY K B, et al. Spatial and temporal correlation of water quality parameters of produced waters from Devonian-Age shale following hydraulic fracturing[J]. Environmental Science & Technology, 2013, 47(6): 2562-2569.

54
HALUSZCZAK L O, ROSE A W, KUMP L R. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania,USA[J].Applied Geochemistry,2013,28:55-61.

55
VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology, 2014, 48(15): 8334-8348.

Outlines

/