Influencing factors of hydrocarbon mobility in sweet spot of the Lucaogou Formation shale in Jimusar Sag, Junggar Basin

  • Jian WANG , 1, 2, 3 ,
  • Lu ZHOU , 1 ,
  • Jin LIU 2, 3 ,
  • Jun CHEN 2, 3 ,
  • Menglin ZHENG 4 ,
  • Huan JIANG 2, 3 ,
  • Baozhen ZHANG 5
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China
  • 2. Research Institute of Experiment and Detection,Xinjiang Oilfield Company,PetroChina,Karamay 834000,China
  • 3. Xinjiang Key Laboratory of Shale Oil Exploration and Development,Karamay 834000,China
  • 4. Research Institute of Exploration and Development of Xinjiang Oilfield Company,PetroChina,Karamay 834000,China
  • 5. Fengcheng Oilfield Operation Area,Xinjiang Oilfield Company,PetroChina,Karamay 834000,China

Received date: 2021-04-24

  Revised date: 2021-09-07

  Online published: 2022-01-26

Supported by

The China National Science and Technology Major Project(2017ZX05008-004-008)

Highlights

In order to study the relationship between shale oil and fluidity and reservoir porosity and oil content, experimental techniques such as FESEM, LSCM, nano CT, high pressure mercury injection method and nitrogen adsorption combined analysis, NMR analysis and molecular simulation analysis were used to quantitatively analyze the full-scale distribution and occurrence characteristics of shale oil in the Lucaogou Formation. The results show that there are great differences in the pore distribution of various lithologies in shale oil reservoir, and the best one is feldspar lithic fine sand rock, with pores larger than 300 nm accounting for 74.1%, and the main body is intergranular (dissolved) pores and ingranular dissolved pores. Dolomite and ankerite transform the dolomitic siltstone more strongly, and the pore size distribution is relatively homogeneous. Fluid occurs with large heterogeneous in micro-nano scale, heavy components with fluorescence wavelength between 600 nm and 800 nm attached to mineral pore surface as thin film in pores with a radius above 300 nm, and filled in pores with a radius below 300 nm. The medium components with fluorescence wavelength between 490 nm and 600 nm occur in the center of pores above 300 nm. The water content is small, and it occurs in the center of the pores above 300 nm, and is wrapped by the medium component. The mobility of shale oil is comprehensively affected by the occurrence of hydrocarbon and reservoir pore structure. Sweet spot lithology has high oil saturation, average movable fluid saturation is 26.4%. The lower limit of pore throat production of shale oil in the Lucaogou Formation is 50 nm. Above 300 nm, the hydrocarbon in pore throat is easy to be used and is the main contribution system of current productivity. The recovered crude oil is medium oil in large pore above 300 nm. Pore-throats in 50 nm to 300 nm are difficult to use, which is the key to enhance oil recovery. Negative pressure and temperature rise can effectively improve the mobility of hydrocarbons in nanopores. On the whole, the dolomitic siltstone is the most favorable reservoir due to its high oil-bearing degree and homogeneous pore structure. The research results have important guiding significance for the study of EOR of Jimsar shale oil.

Cite this article

Jian WANG , Lu ZHOU , Jin LIU , Jun CHEN , Menglin ZHENG , Huan JIANG , Baozhen ZHANG . Influencing factors of hydrocarbon mobility in sweet spot of the Lucaogou Formation shale in Jimusar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2022 , 33(1) : 116 -124 . DOI: 10.11764/j.issn.1672-1926.2021.09.003

0 引言

准噶尔盆地吉木萨尔页岩油是国家级页岩油示范区。自2011年开始,凹陷内以吉25井、吉174井为代表的一批探井在二叠系芦草沟组均获得工业油流,从而奏响了准噶尔盆地页岩油勘探开发的号角1-3。与北美页岩油不同,吉木萨尔凹陷是我国陆相页岩油典型代表,具有源储一体、频繁互层,岩性复杂多变、源储没有明显界限等典型特征4-7。页岩油储层孔喉分布范围广8-11,烃类微观赋存状态复杂,页岩油储层中影响烃类可流动性的因素尚不清楚,这直接关系到页岩油有利目标区和开发方案的选择。
通过对页岩油储层岩心样品进行场发射扫描电镜、激光共聚焦、纳米CT、N2吸附、高压压汞和核磁共振综合实验分析,发挥各实验方法的优势,对芦草沟组页岩储层孔隙结构、含油性和烃类可流动性影响因素进行了综合研究,以期对吉木萨尔页岩油开发提供支撑。

1 区域地质概况

吉木萨尔凹陷为早—中二叠世形成的前陆型箕状凹陷[图1(a)]。二叠系芦草沟组广泛发育半深湖—深湖相细粒混合沉积岩12-13,沉积环境为半咸水状态的弱还原—还原环境14,同时受到火山喷发作用及热液活动的综合影响。储层矿物成分多样,主要有石英、长石、碳酸盐类矿物及黏土矿物,岩性主要为砂屑云岩、长石岩屑粉细砂岩、云质粉砂岩、云屑砂岩、泥岩、云质泥岩。芦草沟组自下而上分为一段(P2 l 1)和二段(P2 l 2),发育上、下2个“甜点”体,“甜点”段均获得工业油流15图1(b)]。芦草沟组烃源岩具有厚度大、面积广的特点16。生油母质类型主要为Ⅰ型、Ⅱ1型,TOC>2.0%,R O值为0.70%~1.30%,平均为0.78%,烃源岩有机质丰度高,属于好—最好的生油岩类型。沉积相类型主要为滨湖相、浅湖相和半深湖相。优势沉积微相为滨—浅湖相的砂质坝和云砂坪,优势储层岩性为砂屑云岩、长石岩屑粉细砂岩及云质粉砂岩。
图1 准噶尔盆地吉木萨尔凹陷构造特征(a)及芦草沟组地层柱状图(b)

Fig.1 Structural characteristics(a) and stratigraphic histogram(b) of Lucaogou Formation in Jimusar Sag,Junggar Basin

2 吉木萨尔凹陷芦草沟组优势储层微纳米孔隙分布特征

流体侵入是定量表征页岩孔隙结构的一种有效且应用最广泛的技术,但现有的流体侵入研究方法均不能独立地表征页岩中所有尺度的孔隙结构,因此将多种研究流体侵入方法结合起来至关重要17-23。通过高压压汞法与低温氮气吸附联测技术对芦草沟组主要岩性砂屑云岩、长石岩屑粉砂岩、云质粉砂岩2 nm以上孔隙进行表征,并结合氩离子抛光和场发射扫描电子显微镜对孔隙类型和不同尺度孔隙对应关系进行综合分析。
长石岩屑粉细砂岩:核磁孔隙度为13.2%~16.2%,平均为14.6%(表1)。大于300 nm孔隙占比74.1%,以粒间孔、粒内溶孔为主[图2(a)],粒内溶孔被蜂巢状伊/蒙混层矿物和钠长石晶体分割形成晶间孔[图2(f)]。50~300 nm孔隙占比21.4%,以纳米级碎屑粒间孔和晶间孔为主;小于50 nm孔隙占比仅为4.5%(图3)。
表1 准噶尔盆地吉木萨尔凹陷不同岩性及孔喉尺度下的渗透率贡献比例

Table 1 Permeability contribution ratio of different lithology and pore throat scale in Jimsar Sag, Junggar Basin

岩性 核磁孔隙度/% 可动流体饱和度/% >300 nm 50~300 nm <50 nm
占比/% 贡献/% 占比/% 贡献/% 占比/% 贡献/%
长石岩屑粉细砂岩 (13.2~16.2)/14.6 (14.2~41.8)/23.4 74.1 98 21.4 2 4.5 0
云质粉砂岩 (9.3~14.3)/12.85 (12.2~36.5)/22.4 59.8 82 23.0 18 17.2 0
砂屑云岩 (6.5~13.1)/9.6 (25.7~38.1)/26.4 40.5 70 52.1 30 7.4 0

注:(13.2~16.2)/14.6=(最大值—最小值)/平均值

图2 准噶尔盆地吉木萨尔凹陷芦草沟组储层孔隙特征

(a)粒间孔,长石岩屑粉细砂岩,铸体(蓝色)薄片,J10025井,3 542.31 m;(b)粒内溶孔,溶孔中有板条状钠长石充填,粉细细砂岩,铸体(蓝色)薄片,J10016井,3 318.69 m;(c)粒间孔,砂屑云岩,铸体(蓝色)薄片,J10025井,3 528.22 m;(d)白云石晶间孔,内部为油充填,氩离子抛光后扫描电镜观测,吉179井,3 334.89 m;(e)狭缝形伊/蒙混层矿物晶间孔,氩离子抛光后扫描电镜观测,J10012井,3 313.97 m;(f)长石粒内溶孔,内部板状钠长石和似蜂巢状伊/蒙混层矿物充填,纳米级—微米级全孔径含油特征,呈“大孔薄膜状,小孔充填状”赋存,氩离子抛光后扫描电镜观测,J10012井,3 313.99 m

Fig.2 Reservoir pore characteristics of Lucaogou Formation in Jimusar Sag, Junggar Basin

图3 准噶尔盆地吉木萨尔凹陷芦草沟组不同岩性储层孔隙分布

Fig.3 Pore distribution map of different lithological reservoirs of Lucaogou Formation in Jimusar Sag, Junggar Basin

云质粉砂岩:核磁孔隙度为9.3%~14.3%,平均为12.85%(表1)。大于300 nm孔隙占比59.8%,以溶蚀孔隙、白云石晶间孔和蜂巢状黏土矿物晶间孔为主[图2(b),图2(d)],50~300 nm孔隙占比23.0%,以纳米级晶间孔和黏土矿物晶间缝为主[图2(e)],小于50 nm孔隙占比为17.2%(图3)。
砂屑云岩:核磁孔隙度为6.5%~13.1%,平均为9.6%(表1)。大于300 nm孔隙占比40.5%,以砂屑粒间孔和溶蚀孔隙为主[图2(c)],部分孔隙可达500 μm以上,50~300 nm孔隙占比52.1%,以白云石晶间孔为主,小于50 nm孔隙占比为7.4%(图3)。N2吸附滞后环显示2~50 nm孔隙形状为圆柱形孔—V形孔。
从大于2 nm的孔隙分布来看,页岩油储层孔隙在纳米—亚微米—微米级均有分布,虽然部分岩性含有少量毫米级以上孔隙,但整体以微纳米孔隙为主。优势岩性中长石岩屑粉细砂岩由于颗粒粒度相对较大,原生孔隙发育,同时也为酸性流体的溶蚀提供了有利条件,因此孔隙性最好。云质粉砂岩整体受白云石和(含)铁白云石改造较为强烈,孔隙大小分布的均质性相对较好,孔隙度略低于长石岩屑粉细砂岩。
砂屑云岩以砂屑粒间孔和白云石晶间孔的发育为特征,孔隙度受砂屑颗粒大小及粒间亮晶碳酸盐含量充填程度影响较大,砂屑颗粒越大,亮晶碳酸盐充填越少,孔隙度越好。但整体上砂屑云岩孔隙度相对于其他优势岩性较差。

3 吉木萨尔凹陷芦草沟组烃类赋存特征

冷冻氩离子抛光后的扫描电镜实验表明,吉木萨尔凹陷页岩油在微纳米孔隙尺度以薄膜状、充填状和管束状3种形式赋存,半径300 nm以下的“小孔”中油为充填状,半径300 nm“大孔”中以薄膜状赋存于孔隙表面或矿物表面,随着含油饱和度的升高,赋存状态呈充填状的油所占比例提高,整体具有小孔充填状,大孔薄膜状,纳米孔—微米孔全尺度含油的赋存特征[图2(d),图2(f)]。核磁共振、激光共聚焦实验及CT扫描技术对于定量刻画页岩油的赋存量及赋存状态具有较好的应用效果24-28。密闭取心样品纳米CT分析表明,300 nm以下“小孔”中主要为油充填,300 nm以上“大孔”孔壁为油,孔隙中央有水充填,如J10014井的3 390.0 m处富含油级粉砂岩样品油水比例为94∶6。激光共聚焦实验结果表明,在亚微米级孔隙尺度以上,孔隙边缘主要为荧光波长600~800 nm的重质组分,孔隙中间为荧光波长490~600 nm的中质组分,中质组分与重质组分在平面上比值在0.75~2.05之间。密闭取心样品核磁共振结果表明,饱和锰后水信号被屏蔽,长驰豫信号下降,T 2谱线向左移动,样品中孔隙水存在于亚微米级以上的“大孔”中。
综合各类实验方法,吉木萨尔凹陷芦草沟组页岩油赋存具有以下特征:①重质组分具有全尺度分布特征,半径300 nm以上孔隙中央主要附着于矿物、孔隙表面,呈薄膜状,300 nm以下呈充填状赋存于孔隙中(图4);②中质组分主要赋存于300 nm以上孔隙中央(图4);③孔隙水含量较少,赋存于300 nm以上孔隙中央,被中质组分包裹,呈孤立状(图4)。
图4 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油微观赋存特征

Fig.4 Microscopic occurrence characteristics of Lucaogou Formation shale oil in Jimusar Sag, Junggar Basin

4 吉木萨尔凹陷页岩油可流动性影响因素分析

4.1 吉木萨尔凹陷页岩油可动流体分布特征

芦草沟组页岩油储层长石岩屑粉细砂岩可动流体饱和度(油、孔隙水)为14.2%~41.8%,均值为23.4%,云质粉砂岩为12.2%~36.5%,均值为22.4%,砂屑云岩为25.7%~38.1%,均值为26.4%(表1)。综合“甜点”各类岩性的可动流体饱和度特征,取芦草沟储层可动流体饱和度为24.0%,对应毛细管压力曲线上压力值为13.25~15.35 MPa,均值为14.45 MPa,根据式(1),孔隙半径约为50 nm(图5)。总体来看,芦草沟组页岩油流动性孔隙半径下限约为50 nm。
图5 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油储层毛细管压力曲线

Fig.5 Capillary pressure curve of shale oil reservoir of Lucaogou Formation in Jimusar Sag, Junggar Basin

优势储层油、水相对渗透率曲线形态则呈现出“微弓型”,体现了页岩油储层孔隙喉道狭小,渗流能力弱的特征(图6)。储层束缚水饱和度较低,在20%以下,束缚油饱和度为62%~68%,随着含水饱和度的增加,油的渗透率急剧下降,孔隙水的渗透率增长较慢,岩石整体表现为油润湿特征,油质相对较重。油、水两相流动范围较宽,共渗点饱和度较低,在46%以下,共渗点过后,随着含水饱和度的升高,水的渗透率变化很小(图6)。整体来看,吉木萨尔页岩油无水期驱油效率为19.1%~27.9%,最终水驱油效率为53.8%~63.8%,相对较高。
图6 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油储层油水相对渗透率曲线

Fig.6 Oil-water relative permeability curve of shale oil reservoir of Lucaogou Formation in Jimusar Sag, Junggar Basin

R m i n = 0.735 P H g = 0.735 14.45 50   n m
式中:R min为流动下限孔隙半径,μm;P Hg为毛细管压力,MPa。

4.2 吉木萨尔凹陷芦草沟组孔隙结构的影响

页岩油储层孔隙结构的巨大差异,导致流体在不同岩心中表现出不同的渗流特征。从孔隙连通性来看,纳米CT分析显示页岩储层孔隙中局部存在少量的大孔隙,而这些大孔呈孤立状分布,大孔之间的连通只能依靠孔径为0.01~1 μm级的喉道,根据扫描电镜观察及统计结果,优势岩性喉道类型主要为孔隙缩小型,孔隙一般有2~4个喉道相连通,连通程度相对较好,但由于喉道细小,页岩油整体的渗流能力较低[图7(a)—图7(c)]。页岩油储层的孔隙分布及孔喉配置关系决定了页岩油非线性渗流、启动压力梯度高和低速渗流三大特点,并且在低渗流速度下渗流曲线呈现明显的非线性特征。
图7 准噶尔盆地吉木萨尔芦草沟组页岩储层纳米CT孔隙结构特征

(a)、(b)孔隙分布的球棍模型,红色节点为孔隙,连接线是喉道,吉305井,3 579.36 m,粉细砂岩; (c)喉道模型图;(d)渗流模拟图,渗流趋势线以平行岩石层理的方向为主,垂直层理分布的趋势线较少

Fig.7 Nano-CT pore structure characteristics of shale reservoir of Lucaogou Formation in Jimusar Sag, Junggar Basin

与其他岩性相比,优势岩性粒度较粗,原生的粒间孔及喉道具有一定的保存空间。颗粒越大,粒间孔和喉道的尺度就越大,连通性越好。芦草沟组优势岩性与烃源岩一般呈薄互层式,烃源岩热演化过程中产生的有机酸更易排进物性较好的优势岩性中,产生溶蚀作用,并对储层进行建设性改善,加大了优势岩性的孔隙性和渗流能力[图2(a),图2(b)]。从水饱和后和离心后的核磁信号强度对比可以看出,大孔隙较为发育的长石岩屑粉细砂岩、砂屑云岩和云质粉砂岩,离心后的核磁T 2谱信号明显下降,粗孔喉相对发育,连通性相对较好,其可动流体饱和度较高,在12.2%~41.8%之间,均值为24.0%(表1)。从孔隙分布来看,300 nm以上孔喉易动用,孔隙类型主要为粒间孔和溶蚀孔,是当前渗透率主要贡献体系,贡献率在70%~98%之间,以长石岩屑粉细砂岩最好。50~300 nm孔喉较难动用,贡献在2%~30%之间,孔隙以纳米级碎屑粒间孔和晶间孔为主,是提高采收率的攻关重点。50 nm以下孔喉无法动用,以黏土矿物晶间孔为主,不具开发价值(表1)。
此外,从纳米CT渗流模拟图可以看出,受沉积层理的影响,垂向上的孔喉连通性远远小于水平方向上的孔喉连通性[图7(d)],因此压裂改造可增强页岩储层整体孔喉的连通性,是提高采收率的必要手段。

4.3 吉木萨尔凹陷页岩油赋存特征的影响

受烃源岩母质类型和成熟度影响,吉木萨尔页岩油主体为低成熟—成熟的重质油—中质油。现今可动用及开采的页岩油主体为300 nm以上孔隙中的中质油,50~300 nm“大孔”孔壁重质油和“小孔”中的重质油基本未动用。芦草沟组地面原油密度为0.888~0.918 g/cm3,50 ℃下黏度为73~300 mPa·s,属于中质原油29,也说明了目前动用的为300 nm尺度以上孔隙中央的中质油。从开发效果来看,含水饱和度较高的层位,页岩油油井开发过程中含水率上升较快,证实了甜点中水分布于300 nm以上“大孔”中,可动性强的特征。
优势储层由于成藏差异,含油饱和度变化较大,长石岩屑粉细砂岩、砂屑云岩以邻源优质烃源岩供烃为主,含油饱和度在33.4%~91.2%之间,平均为73.38%。云质粉砂岩与优质烃源岩频繁交互,生油量高、排油量高,储层含油性好,微观上云质粉砂岩孔隙分布相对均质,由于白云石及(含)铁白云石强烈改造,大于50 μm孔隙较少,成藏过程中孔隙水排出较彻底,云质粉砂岩含油饱和度在64.5%~95.6%之间,平均为83.4%。
整体来看,云质粉砂岩由于含油程度高,孔隙结构均质,是最有利的储层。长石岩屑粉细砂岩及砂屑云岩次之。
如何动用50~300 nm孔隙中的重质油,是提高页岩油采收率的关键。通过液氮冷冻氩离子抛光技术富含油页岩储层样品进行抛光,在CRESSINGTON 108auto型离子溅射仪下溅射黄金30 s,金膜厚度约为15 nm。在场发射扫描电子显微镜下采取15 kV加速电压对纳米级晶间孔中充填状及薄膜状赋存的油进行电子束加热,结果显示在真空、负压条件下,随着时间的累积和温度的升高,以充填状赋存的油由于受热撕裂金膜层,横截面产生“龟裂”现象,纳米孔中以薄膜状赋存的油由于受热膨胀及孔隙内部油受热外溢30,油膜厚度随时间积累逐渐增厚,逐渐充填满整个纳米孔,赋存形式由薄膜状向充填状转化(图8)。这一实验结果表明50~300 nm孔隙中的吸附油在加热情况下可以由吸附油转化为游离油,可动性变强,为页岩油加热开发和提高采收率提供了新思路和实验证据。
图8 准噶尔盆地吉木萨尔凹陷吉31井负压和升温下纳米孔中原油随时间变化

Fig. 8 Variation of crude oil in nanopores with time under negative pressure and heating of Well Ji 31 in Jimusar Sag, Junggar Basin

5 结论

(1)准噶尔盆地吉木萨尔凹陷芦草沟组页岩油储层甜点体岩性孔隙分布存在较大差异性,长石岩屑粉细砂岩孔隙性最好,孔隙度平均达14.6%,大于300 nm孔隙占比74.1%,主体为粒间(溶)孔、粒内溶孔。云质粉砂岩整体受白云石和(含)铁白云石改造较为强烈,孔隙大小分布的均质性较好。
(2)微纳米尺度流体赋存具有较大的分异性。重质组分在半径300 nm以上孔隙中呈薄膜状附着于矿物、孔隙表面,300 nm以下呈充填状;中质组分赋存于300 nm以上孔隙中央;水含量较少,赋存于300 nm以上孔隙中央,被中质组分包裹。
(3)页岩油可流动性受储层孔隙结构、烃类赋存特征综合影响。甜点岩性含油饱和度高,可动流体饱和度均值为26.4%,孔喉动用下限为50 nm,300 nm以上孔喉中烃类易动用,是当前产能主要贡献体系,采出原油为300 nm以上“大孔”中的中质油,50~300 nm孔喉较难动用,是提高采收率的关键。云质粉砂岩由于含油程度高,孔隙结构均质性好,是最有利的储层。
1
王小军, 杨智峰, 郭旭光, 等. 准噶尔盆地吉木萨尔凹陷页岩油勘探实践与展望[J]. 新疆石油地质, 2019, 40(4): 402-413.

WANG X J, YANG Z F, GUO X G, et al. Practices and prospects of shale oil exploration in Jimsar sag of Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(4): 402-413.

2
高阳, 叶义平, 何吉祥, 等. 准噶尔盆地吉木萨尔凹陷陆相页岩油开发实践[J]. 中国石油勘探, 2020, 25(2): 133-141.

GAO Y, YE Y P, HE J X, et al. Development practice of continental shale oil in Jimsar sag in the Junggar Basin[J]. China Petroleum Exploration, 2020, 25(2): 133-141.

3
支东明, 唐勇, 杨智峰, 等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质, 2019, 40(3): 524-534.

ZHI D M, TANG Y, YANG Z F, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534.

4
张林晔,李钜源, 李政, 等. 北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J]. 地球科学进展,2014, 29(6): 700-711.

ZHANG L Y, LI J Y, LI Z, et al. Advances in shale oil/gas research in North America and considerations on exploration for continental shale oil/gas in China[J]. Advances in Earth Sci-ence, 2014, 29(6): 700-711.

5
李登华, 刘卓亚, 张国生, 等. 中美致密油成藏条件、分布特征和开发现状对比与启示[J]. 天然气地球科学, 2017, 28(7): 1126-1138.

LI D H, LIU Z Y, ZHANG G S, et al. Comparison and revelation of tight oil accumulation conditions, distribution characteristics and development status between China and US[J]. Natural Gas Geoscience, 2017, 28(7): 1126-1138.

6
胡素云, 赵文智, 侯连华, 等. 陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发, 2020, 47(4): 1-10.

HU S Y, ZHAO W Z, HOU L H, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 1-10.

7
杜金虎, 胡素云, 庞正炼, 等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探, 2019, 24(5): 560-568.

DU J H,HU S Y,PANG Z L,et al. The types potential sand prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5):560-568.

8
LOUCKS R G,REED R M,RUPPEL S C,et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6):1071-1098.

9
LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shales[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.

10
CHALMERSGR, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012 , 96(6): 1099-1119.

11
AKSNES D W, FORLAND K, KIMTYS L. Pore size distribution in mesoporous materials as studied by H NMR[J]. Phy-sical Chemistry Chemical Physics, 2001, 3: 3203-3207.

12
马克, 侯加根, 刘钰铭, 等.吉木萨尔凹陷二叠系芦草沟组咸化湖混合沉积模式[J].石油学报, 2017, 38(6): 636-648.

MA K, HOU J G, LIU Y M, et al.The sedimentary model of saline lacustrine mixed sedimentation in Permian Lucaogou Formation Jimsar sag[J]. Acta Petrolei Sinica, 2017,38(6): 636-648.

13
张亚奇,马世忠, 高阳, 等.吉木萨尔凹陷芦草沟组致密油储层沉积相分析[J].沉积学报, 2017, 35(2):358-370.

ZHANG Y Q,MA S Z,GAO Y,et al. Depositional facies analysis on tight reservoir of Lucaogou Formation in Jimsar sag, Junggar Basin[J]. Acta Sedimentologica Sinica, 2017, 35(2): 358-370.

14
彭雪峰, 汪立今, 姜丽萍. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境指示意义[J]. 矿物岩石地球化学通报, 2014, 31(2): 121-127.

PENG X F,WANG L J,JIANG L P. Geochemical characteristics of the Lucaogou Formation oil shale in the southeastern margin of the Junggar Basin and its environmental implications[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2014, 31(2): 121-127.

15
王小军, 梁利喜, 赵龙, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价[J]. 石油与天然气地质, 2019, 40(3):661-668.

WANG X J, LIANG L X, ZHAO L, et al. Rock mechanics and fracability evaluation of the Lucaogou Formation oil shales in Jimusaer sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 661-668.

16
曲长胜,邱隆伟, 操应长, 等.吉木萨尔凹陷二叠系芦草沟组烃源岩有机岩石学特征及其赋存状态[J]. 中国石油大学学报(自然科学版), 2017, 41(2):30-38.

QU C S, QIU L W, CAO Y C, et al. Organic petrology characteristics andoccurrence of source rocks in Permian Lucaogou Formation, Jimsar sag[J]. Journal of China University of Petroleum(Edition of Natural Science), 2017, 41(2): 30-38.

17
CLARKSON C R, FREEMAN M, HE L, et al. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis[J]. Fuel,2012,95:371-385.

18
TIAN H, PAN L, XIAO X M, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine and Petroleum Geology, 2013, 48:8-19.

19
何晶,何生,刘早学,等.鄂西黄陵背斜南翼下寒武统水井沱组页岩孔隙结构与吸附能力[J].石油学报,2020,41(1): 27-42.

HE J, HE S, LIU Z X, et al. Pore structure and adsorption capacity of shale in the Lower Cambrian Shuijingtuo Formation in the southern flank of Huangling anticline, western Hubei[J]. Acta Petrolei Sinica, 2020, 41(1):27-42.

20
刘明进, 李晨宇. 页岩气煤层气典型气体吸附模型分析[J]. 复杂油气藏, 2015, 8(3): 50-54.

LIU M J, LI C Y. Analysis on typical gas adsorption models for shale gas or coalbed methane[J]. Complex Hydrocarbon Reservoirs, 2015, 8(3): 50-54.

21
王子龙, 郭少斌. 鄂尔多斯盆地延安地区山西组泥页岩孔隙表征[J]. 石油地质实验, 2019, 41(1): 99-107.

WANG Z L, GUO S B. Pore characterization of shale in Shanxi Formation,Yan'an area,Ordos Basin[J].Petroleum Geology & Experiment,2019,41(1):99-107.

22
欧阳思琪, 孙卫, 黄何鑫. 多方法协同表征特低渗砂岩储层全孔径孔隙结构——以鄂尔多斯盆地合水地区砂岩储层为例[J]. 石油实验地质, 2018, 40(4): 595-604.

OUYANG S Q, SUN W,HUANG H X. Multi-method synergistic characterization of total pore structure of extra-low permeability sandstone reservoirs: A case study of the Heshui area of Ordos Basin[J].Petroleum Geology & Experiment,2018,40(4): 595-604.

23
YANG F, NING Z F, ZHANG S D, et al. Characterization of pore structures in shales through nitrogen adsorption experiment[J]. Natural Gas Industry, 2013, 33(4):135-140.

24
靳军, 向宝力, 杨召, 等. 实验分析技术在吉木萨尔凹陷致密储层研究中的应用[J]. 岩性油气藏, 2015, 27(3): 24-32.

JIN J, XIANG B L, YANG Z, et al. Application of experimental analysis technology to research of tight reservoir in Jimsar sag[J]. Lithologic Reservoirs, 2015, 27(3): 24-32.

25
张天付, 范光旭, 李玉文, 等. 吉木萨尔凹陷芦草沟组致密油储层微观孔喉结构研究[J]. CT理论与应用研究, 2016, 25(4): 425-434.

ZHANG T F, FAN G X, LI Y W, et al. Pore-throat characterization of tight oil reservoir in the Lucaogou Formation, Jimusar Sag[J]. CT Theory and Applications, 2016, 25(4): 425-434.

26
李佳琦, 陈蓓蓓, 孔明炜, 等. 页岩油储集层数字岩心重构及微尺度下渗流特征——以吉木萨尔凹陷二叠系芦草沟组页岩油为例[J]. 新疆石油地质, 2019, 40(3): 319-327.

LI J Q, CHEN B B, KONG M W, et al. Digital core reconstruction and research on microscale flow characteristics of shale oil reservoir: A case of the shale oil in Permian Lucaogou Formation, Jimsar sag[J]. Xinjiang Petroleum Geology,2019,40(3): 319-327.

27
刘一杉, 东晓虎, 闫林, 等. 吉木萨尔凹陷芦草沟组孔隙结构定量表征[J]. 新疆石油地质, 2019, 40(3): 284-289.

LIU Y S, DONG X H, YAN L, et al. Quantitative characterization of pore structure of Lucaogou Formation in Jimsar Sag[J]. Xinjiang Petroleum Geology, 2019, 40(3): 284-289.

28
靳军, 杨召, 依力哈木•尔西丁, 等. 准噶尔盆地吉木萨尔凹陷致密油储层纳米孔隙特征及其含油性[J].地球科学, 2018, 43(5): 1594-1601.

JIN J, YANG Z, YILIHEMU E, et al. Nanopore characteristics and oil-bearing properties of tight oil reservoirs in Jim-sar sag,Junggar Basin[J]. Earth Science, 2018,43(5):1594-1601.

29
吴承美, 郭智能, 唐伏平, 等. 吉木萨尔凹陷二叠系芦草沟组致密油初期开采特征[J].新疆石油地质, 2014, 35(5): 570-573.

WU C M, GUO Z N, TANG F P, et al. Early exploitation characteristics of Lucaogou tight oil of Permian in Jimusaer sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(5): 570-573.

30
许琳, 常秋生, 杨成克, 等. 吉木萨尔凹陷二叠系芦草沟组页岩油储层特征及含油性[J]. 石油与天然气地质, 2019, 40(3): 535-549.

XU L, CHANG Q S, YANG C K, et al. Characteristics and oil-bearing capability of shale oil reservoir in the Permian Lucaogou Formation, Jimusaer Sag[J]. Oil & Gas Geology, 2019, 40(3): 535-549.

Outlines

/