The application of microgravity monitoring technology in gas reservoir development

  • Qianghan FENG , 1 ,
  • Qiansheng WEI 1 ,
  • Lei JIANG 1 ,
  • Zhenlu LI 1 ,
  • Shuai CHEN 1 ,
  • Guolin HE , 2, 3
Expand
  • 1. No. 3 Gas Production Plant,PetroChina Changqing Oilfield Company,Xi'an 710018,China
  • 2. Guokan Petroleum Technology Co. ,Ltd. ,Beijing 100083,China
  • 3. Beijing Geoscience Energy Technology Co. ,Ltd. ,Beijing 100083,China

Received date: 2020-11-29

  Revised date: 2021-07-12

  Online published: 2021-10-21

Highlights

The microgravity monitoring technology is to convert the superposition field into the difference field, and obtain the more real information of the change field. The result has nothing to do with the single well point. It is the objective description of the overall density and fluid change of the oil and gas reservoir, and it is the overall monitoring of the oil and gas reservoir. It creates conditions for overcoming the multi-solution of interpretation, and its monitoring results are closer to the truth. Therefore, this paper proposes to use the microgravity monitoring results to describe the distribution of residual gas, and to evaluate the development well location and the development potential of residual gas. Firstly, the characteristics of gas bearing formation on microgravity abnormal section are analyzed. Secondly, the development well location evaluation and residual gas potential evaluation model are established. Finally, the microgravity monitoring technology is applied to the Su14 infilled well area, the remaining gas plane distribution is described, the development well location and the remaining gas development potential of the Su14 infilled well area are evaluated, and the next step of the remaining gas development comprehensive adjustment plan and countermeasures for potential tapping are proposed. The adjustment method carried out index prediction, and used the numerical simulation results of the Su14 infilled well area and the production performance analysis results of the development wells to verify the accuracy of the microgravity monitoring residual gas distribution results and the evaluation model.

Cite this article

Qianghan FENG , Qiansheng WEI , Lei JIANG , Zhenlu LI , Shuai CHEN , Guolin HE . The application of microgravity monitoring technology in gas reservoir development[J]. Natural Gas Geoscience, 2021 , 32(10) : 1571 -1580 . DOI: 10.11764/j.issn.1672-1926.2021.07.012

0 引言

作为“西气东输”工程的主要气源区,苏里格气田的高效开发是保持气田长期高产稳产和平稳供气的关键。而随着开发的不断深入,不同年份投产新井的初期递减率不断增大,区块内低产、低效气井逐年增多,气井产水情况日趋复杂,部分气井未能达到方案指标。受主要储层单层厚度薄、横向相变快、整体物性差、非均质性强等因素影响,单生产井控制范围窄、控制储量低1-3。因此,要提高低产、低效井剩余气采收率以及对井网间剩余气进行挖潜,需研究生产井位附近区域以及生产井网间剩余气分布规律,并对开发井位以及剩余气开发潜力进行评价。
从文献调研看,目前国内外针对致密砂岩气藏开发,对井间剩余气分布规律研究和开发潜力评价最直接的方法是通过对已开发井网进行加密,然后通过单井动态分析法、区块地质统计等方法对剩余气分布规律进行研究和开发潜力评价4-7。在室内研究方法方面,国内外学者提出了剩余气分布的定量描述和定性分析法。其中,定量描述剩余气分布方法包括利用地层压力变化量分析法8-9、通过有效剩余气可采数量的不稳定分析法10-12以及采用修正后的现代产量递减分析法13、动态分析法以及数值模拟14-15等,定量描述法通过研究单井点剩余气储量分布,从而预测气藏整体剩余气储量分布;而定性分析剩余气分布的方法主要有基于静态地质模型的数值模拟法和位置平衡法16、容积法17,以及基于3种新技术(地震精细标定和多井约束地震地层反演技术、三维地震振幅属性数据体地质建模技术和气水三维两相的数值模拟技术)相结合的剩余气分布描述技术18,定性分析能够描述剩余气在低渗砂岩气藏中分布的甜点区域。
以上方法均是基于单井点数据和基于建立地质模型的剩余气描述方法。其中基于单井点数据描述方法没有整体性,无法准确预测井网间剩余气分布,而基于建立地质模型描述方法虽具有整体性,但其描述精度依赖于所建立地质模型的精度,且人为干扰因素较大。而时移微重力监测技术是近年来发展起来的油气动态监测技术,该技术是将叠加场转换为差异场,得到较为真实的变化场信息,其监测结果与单井点无关,是对油气藏整体密度及变化的客观描述,是对油气藏的整体监测,为克服解释的多解性创造了条件,其监测结果更接近于事实真相。该项技术目前最主要应用于稠油热采蒸汽腔发育形态描述和生产动态描述19-21;而在国内外气藏微重力监测方面,微重力技术主要应用在水驱前缘监测、气水边界监测以及对储层内物质的运移过程中产生的密度动态变化监测22-27
从以上文献调研可以看出,微重力监测技术还未被应用到剩余气分布监测、开发井位评价以及剩余气开发潜力评价中。因此,本文提出利用微重力监测成果直接对Su14加密井区全局剩余气分布进行描述,并落实剩余气动用潜力评价和开发井位评价,以期为下步气井挖潜改造及区块加密井部署提供重要支撑。

1 含气地层在重力异常剖面上的特征

针对岩性圈闭致密砂岩气藏,根据油气聚集规律,圈闭的高部位是天然气聚集的主要场所。在非含气圈闭位置上,重力呈“正向”显示,即重力高值往往是圈闭密度高部位的反映。但在含气圈闭位置上(图1),重力呈“负向”(或镜像)显示,即在重力高值背景异常上出现局部重力低异常,局部重力低值部位对应剩余气聚集区,局部重力低的极值部位是含气丰度高的位置。
图1 含气地层重力异常特征

Fig.1 Characteristics of gravity anomalies in gas-bearing formations

在实际微重力监测结果中,在对应低值异常部位均出现一个(或两个)“两高夹一低”异常;重力异常具典型的“隆中凹”特征。这些重力异常特征可以作为区分含气区、不含气区,以及判断含气丰度等的依据:重力低值异常的范围就是天然气的分布范围,重力低的极值部位就是含气丰度最高部位,重力异常由高向低或由低向高的转折部位就是气田的气水边界。

2 微重力监测剩余气开发潜力及开发井评价模型建立

监测区已开发井位处剩余重力异常可分为3个区域:正异常区(异常极值均位于正异常区)、负异常区(异常极值均位于负异常区)、正负异常过渡带(异常极大值位于正异常区,异常极小值位于负异常区)。
因此,可根据划分的异常区域建立基于微重力监测结果的井位附近剩余气开发潜力评价和开发井位评价模型(图2)。
图2 剩余重力异常不同分区剩余气开发潜力及开发井位评价模型

Fig.2 Evaluation model of remaining gas development potential and development well location in different zones of residual gravity anomaly

利用归一化处理技术,针对划分的异常区域建立基于微重力监测结果的井位附近剩余气开发潜力评价和开发井位评价数学模型:
针对正异常区,建立数学评价模型,用式(1)表示:
γ = G r v e - m i n / G r v
针对负异常区,建立数学评价模型,用式(2)表示:
γ = G r v / G r v e - m a x
针对异常过渡区评价模型,存在2种模式[图2(c),图2(d)],针对模式一,评价模型数学表达式可用式(1)表示;针对模式二,评价模型数学表达式用式(3)表示:
γ = G r v - G r v e - m i n / G r v e - m a x - G r v e - m i n
式中: γ为剩余气开发潜力评价和开发井位评价因子;Grv 为钻井位置处剩余重力异常值;Grv e-min为井位附近异常极小值点的剩余重力异常值;Grv e-max为井位附近异常极大值点的剩余重力异常值。
(1)对于正异常区、负异常区以及正负异常过渡区中的模式一:当 γ越趋于1时,说明已开发井位越好。自气藏开发以来, γ越趋于1处的井位对应的天然气采收程度越高,且已开发井位附近区域的剩余气开发潜力越大。
(2)对于正负异常过渡区中的模式二:当 γ越趋于0时,说明已开发井位越好。自气藏开发以来, γ越趋于0处的井位对应天然气采收程度越高,且已开发位附近区域的剩余气开发潜力越大。

3 微重力监测成果在Su14加密井区应用

本文在Su14加密井区实施微重力监测,研究的目的层段为盒8段和山1段,试验区含气面积为4.8 km2,覆盖井数共18口,其中核心工区井数15口。

3.1 微重力监测结果描述Su14加密井区剩余气分布及评价剩余气开发潜力

对于含气地层,含气丰度越大,气藏剩余密度越小。图3(a)为Su14加密井区微重力监测剩余重力异常成果图,监测区整体表现为西南部和中部微重力负异常明显,剩余密度低,说明天然气剩余储量大,剩余气普遍分布;北部、东部和东南部微重力在局部区域出现负异常,对应含气体积相对较大,剩余气局部富集。图3(b)为数值模拟结果,在研究区的东部受边界影响较大,剩余气分布结果参考价值不大。对比图3可知,整体上微重力监测剩余气分布结果与数值模拟结果一致。
图3 Su14区块监测工区目标层剩余重力异常分布和地层含气体积平面分布

Fig.3 Distribution of residual gravity anomaly in the target layer and plane distribution map of formation gas volume in block Su14

根据含气地层在剩余重力异常剖面的特征,以Su14井位所在区为例(图4),分别沿长轴方向(白色线)和短轴方向(黑色线)切取剩余重力异常剖面,从异常剖面曲线上可以看出,异常极值大小均约为-20.25 μgal,长轴方向异常过渡带的区域剩余异常值大小约为-4.2 μgal,相差约为-16.05 μgal,该绝对值的3/4约为12.037 5 μgal,由于剩余重力异常是所有剩余密度体产生剩余重力异常的叠加。因此,在长轴方向气藏开发潜力较大的异常区域分布范围约在-8.212 5~-20.25 μgal之间。同理,短轴方向气藏开发潜力较大的异常区域分布范围约在-7.537~-20.25 μgal之间。
图4 Su14井位区沿椭圆形异常区长轴(a)和短轴(b)方向剩余重力异常剖面

Fig.4 Sectional view of residual gravity anomaly along the long axis(a) and short axis(b) of the elliptical anomaly area in the Well Su14 site area

综合长轴与短轴方向剩余重力异常范围,Su14井区异常区域分布在-7.875~-20.25 μgal之间,则可以圈划出Su14井位处剩余气的分布区域(图4圈划范围)。
根据Su14井位附近剩余气分布描述方式,可以圈划目标区所有井位附近以及井网间剩余气潜在区(图5)。图中紫色圈划部分为潜在剩余气分布区,在这些区域未钻井;红色圈划部分为已开发井附近剩余气分布潜在区(相当生产井气源区)。
图5 Su14区块井位附近及井网间剩余气分布

Fig.5 Distribution map of remaining gas near well locations and between well patterns in block Su14

将微重力监测剩余气分布成果导入Petrel中(图6),可以得到加密试验核心区域剩余气富集面积为0.689 km2,其中已钻井位附近剩余气富集面积为0.452 km2,未钻井的潜力区域富集面积为0.237 km2
图6 Su14区块监测工区剩余储量平面分布

Fig.6 Plane distribution map of remaining reserves in the monitoring work area of block Su14

结合数值模拟计算结果,可以看出,核心区域剩余气储量为1.035 5×108 m3(其中已开发井位附近剩余气储量为6 849×104 m3,未钻井潜力区域剩余气储量为3 506×104 m3)。对比通过地质建模和数值模拟计算得到的研究区剩余气储量为1.18×108 m³,其结果相差较小,说明了微重力监测剩余气结果的可靠性。微重力监测结果稍微偏小,是因为微重力监测描述的剩余气结果主要为可动用剩余气储量,而通过地质建模和数值模拟结果计算的剩余气储量为整个区块剩余气储量(包括不可动用部分)。

3.2 开发井位评价及井位附近区域剩余气开发潜力评价

根据微重力监测剩余重力异常结果,将Su14加密井区井位按照正异常区、负异常区和正负异常过渡区进行分区,统计各区井位处剩余重力异常值、井位附近区剩余气聚集区异常极值以及各井开发数据(表1表4),并根据表1表4绘制与之对应的评价因子与开发采出程度对比条形图(图7图10),最后根据建立的开发井位评价和井位附近剩余气开发潜力评价模型进行评价。
表1 Su14区块微重力监测正异常区各开发井统计

Table 1 Statistics of development wells in the positive anomaly area of microgravity monitoring in block Su14

井号 Grv /μgal Grv e-min/μgal 评价因子/10-2 累计产量/(104 m3 动储量/(104 m3 采出程度/%
Su14-J4 8.950 6.550 72.326 1 452 2 050 70.83
Su14-J1 4.099 2.050 50.017 1 780 2 430 73.26
Su14-J3 7.146 4.850 67.867 1 213 1 798 67.46
Su14-18-37 10.603 10.150 95.728 3 926 4 695 83.62
表2 Su14区块微重力监测负异常区各开发井统计

Table 2 Statistics of development wells in the negative anomaly area of microgravity monitoring in block Su 14

井号 Grv /μgal Grv e-max/μgal 评价因子/10-2 累计产量/(104 m3 动储量/(104 m3 采出程度/%
Su14 -6.527 -20.250 32.232 2 532 4 635 54.63
Su14-18-33 -5.094 -10.000 50.937 1 911 2 841 67.26
Su14-18-35 -15.264 -19.550 62.121 1 330 1 858 71.56
Su14-J7 -5.872 -12.750 62.715 3 655 4 673 78.21
Su14-J6 -7.463 -8.650 86.277 1 643 2 258 72.76
表3 模式一:Su14区块微重力监测区正负异常过渡区各开发井统计

Table 3 Model one: Statistics of development wells in the positive and negative anomaly transition area of microgravity monitoring in block Su14

井号 Grv /μgal Grv e-min/μgal 评价因子/10-2 累计产量/(104 m3 动储量/(104 m3 采出程度/%
Su14-J9 -1.039 -37.950 2.738 1 559 2 261 68.97
Su14-19-37 -0.459 -12.050 3.809 2 983 4 420 67.49
Su14-J8 -0.203 -1.625 12.507 1 329 1 725 77.04
Su14-J5 -3.890 -6.413 60.654 2 494 3 182 78.39
表4 模式二: Su14区块微重力监测区正负异常过渡区统计

Table 4 Model two: Statistics of development wells in the positive and negative anomaly transition area of microgravity monitoring in block Su14

井名 Grv /μgal Grv e-max/μgal Grv e-min/μgal 评价因子/10-2 累计产量/(104 m3 动储量/(104 m3 采出程度/%
Su14-18-36 1.156 1.464 -4.700 95.002 963 1 352 71.22
Su14-J2 2.573 3.731 -2.393 81.086 1 261 1 875 67.23
Su14-J10 0.992 2.324 -4.675 80.959 1 706 2 435 70.06
Su14-18-38 4.279 5.736 -0.846 77.860 4 493 5 922 75.88
图7 正异常区开发井位附近剩余气开发潜力评价因子与采出程度对比条形图

Fig.7 The comparing of bar graph between the development potential evaluation factors and the recovery degree of the remaining gas near the development well location in the positive anomaly area

图8 负异常区开发井位附近剩余气开发潜力评价因子与采出程度对比条形图

Fig.8 The comparing of bar graph between the development potential evaluation factors and the recovery degree of the remaining gas near the development well location in the negative anomaly area

图9 模式一: 正负异常过渡区域开发井位附近剩余气开发潜力评价因子与采出程度对比条形图

Fig.9 Model one: The comparing of bar graph between the development potential evaluation factors and the recovery degree of the remaining gas near the development well location in the positive and negative anomaly transition area

图10 模式二: 正负异常过渡区域开发井位附近剩余气开发潜力评价因子与采出程度对比条形图

Fig.10 Model two: The comparing of bar graph between the development potential evaluation factors and the recovery degree of the remaining gas near the development well location in the positive and negative anomaly transition area

从各区开发井位和井位附近剩余气开发潜力评价因子 γ与采出程度对比条形图可以看出,微重力监测结果与各井累产量生产规律相符。统计的17口井中,只有在正异常区Su14-J4井微重力监测结果与累产量结果不符,总符合率达到94.12%,验证了评价模型的准确性。

3.3 挖潜措施及效果预测

根据微重力监测剩余气分布描述、开发井位和井位附近剩余气开发潜力评价,并结合研究区实际情况,研究区下一步综合调整挖潜措施方案为:在井距大、井控程度低且剩余储量高的Su14-J8井和Su14-J7井两井之间部署一口加密井Su14-J11井(图11),井距缩小为350 m;进行布井加密;在井距小、井控程度高但剩余储量仍然较大的Su14井和Su14-J9井建议通过进一步生产调控,结合动静态资料,调整射孔层位,提高单井采气速度。
图11 Su14加密试验区措施调整部署(微重力)

Fig.11 Adjustment and deployment of measures in the Su14 encrypted test area (microgravity)

利用数值模拟技术,对调整方案进行指标预测,并与目前方案进行对比,设计单井废弃产量为400 m³/d,采取井组产量控制模式,进行生产指标预测10年。
从效果预测(图12)和地层压力变化(图13)看出,核心区按15口投产井继续生产,预计到2030年底,最终累计产气量3.14×108 m³,地层压力降为14.0 MPa,采出程度54.2%。调整部署后,最终累计产气量3.42×108 m³,地层压力降为13.1 MPa,采出程度达到59.0%,累计产气量增加0.28×108 m³,采收率提高4.8%(表5)。
图12 核心区不同方案效果预测对比

Fig.12 Comparison chart of effect prediction of different schemes in the core area

图13 核心区不同方案地层压力变化对比

Fig.13 Comparison of formation pressure changes of different schemes in the core area

表5 Su14加密试验区调整挖潜方案指标对比

Table 5 Comparison table of indicators for adjustment of potential tapping schemes in Su14 encryption test area

序号 对比内容 地质储量/(108 m³) 井均累计产气量/(104 m³) 工区累计产气量/(104 m³) 采出程度/%
方案一 目前投产井预测废弃期末 5.8 2 094 3.14 54.2
方案二 部署1口新井,老井增产2口 5.8 2 281 3.42 59.0

4 结论

(1)明确了含气地层在微重力监测剖面的特征:重力低值异常的范围是天然气的分布范围;重力低的极值部位是含气丰度最高部位;重力异常由高向低或由低向高的转折部位是气田的气水边界。通过在Su14加密井区微重力监测,描述了剩余气在井位附近分布和井网间分布范围,并确定了研究区平面上剩余气分布规律:研究区西南部和中部剩余气普遍分布,剩余储量大;而北部和东南部剩余气局部富集。
(2)建立了微重力监测成果开发井位评价和剩余气开发潜力评价模型,并将评价模型应用于Su14加密井区,对开发井井位以及剩余气开发潜力进行了评价,评价结果与各井累产量生产规律符合率达到了94.12%,验证了建立的微重力监测成果评价模型的正确性。
(3)根据剩余重力监测剩余气分布描述结果和开发井位评价以及剩余气开发潜力评价结果,明确了工区下步调整挖潜方向,能有效改善工区开发效果,预计10年增加可采储量0.28×108 m3,提高采收率4.8%。
1
卢涛, 刘艳侠, 武力超, 等. 鄂尔多斯盆地苏里格气田致密砂岩气藏稳产难点与对策[J].天然气工业, 2015, 35(6):43-52.

LU T, LIU Y X, WU L C, et al. Challenges to and countermeasures for the production stabilization of tight sandstone gas reservoirs of the Sulige Gasfield, Ordos Basin[J]. Nature Gas Industry, 2015, 35(6):43-52.

2
齐海乐. 苏里格气田苏14区水平井适应性研究[D]. 北京:中国地质大学(北京), 2012.

QI H L. Study on the Adaptability of Horizontal Well Technology of Su14 Block in Sulige Gas Field[D]. Beijing: Universty of Geosciences(Beijing), 2012.

3
RAZA A, GHOLAMI R, REZAEE R, et al. Well selection in depleted oil and gas fields for a safe CO2 storage practice: A case study from Malaysia[J]. Petroleum,2016,3(1):167-177.

4
贾爱林,王国亭,孟德伟,等.大型低渗—致密气田井网加密提高采收率对策———以鄂尔多斯盆地苏里格气田为例[J].石油学报,2018, 39(7): 802-813.

JIA A L, WANG G T, MENG D W, et al. Well pattern infilling strategy to enhance oil recovery of giant low-permeability tight gasfield: A case study of Sulige Gasfield, Ordos Basin[J].Acta Petrolei Sinica, 2018, 39(7): 802-813.

5
万玉金, 罗瑞兰, 韩永新. 透镜状致密砂岩气藏井网加密技术与应用[J]. 科技创新导报, 2014,11(28):41-44.

WAN Y J, LUO R L, HAN Y X. The infill technology and application of lenticular tightsands gas reservoir[J]. Science and Technology Innovation Herald, 2014, 11(28):41-44.

6
MCCAIN W D, VONEIFF G W, HUNT E R, et al. A tight gas field study: Carthage (Cotton Valley) Field [C]//SPE Gas Technology Symposium, Calgary, Alberta, Canada: Society of Petroleum Engineers,1993(6):28-30.

7
李奇, 高树生, 刘华勋,等. 致密砂岩气藏井网加密与采收率评价[J]. 天然气地球科学, 2020,31(6):865-876.

LI Q, GAO S S, LIU H X, et al. Well network densification and recovery evaluation of tight sandstone gas reservoirs[J]. Natural Gas Geoscience, 2020, 31(6): 865-876.

8
陈世春, 王树超. 小井眼侧钻短半径水平井钻井技术[J].石油钻采工艺, 2007, 29(3):11-14.

CHEN S C, WANG S C. Slim hole sidetracking and short-radius horizontal well drilling technology[J].Oil Drilling & Production Technology, 2007, 29(3):11-14.

9
MILLIGAN M R, ANDREYCHUK M T, LUNAN W B. Coiled-tubing drilling of horizontal sidetrack in House Mountain Field, Alberta[J]. SPE Drilling & Completion, 2000, 15(2):92-96.

10
王昔彬, 刘传喜, 郑祥克, 等. 低渗特低渗气藏剩余气分布的描述[J]. 石油与天然气地质,2003,24(4):401-403,416.

WANG X B, LIU C X, ZHENG X K, et al. Quantitative description of remaining gas distribution in low and extremely-low permeability gas reservoirs[J]. Oil & Gas Geology, 2003,24(4),401-403.

11
崔丽萍, 何顺利, 张秀玲, 等. 产量不稳定法评价水平气井动态储量[J]. 天然气工业, 2010, 30(4):61-63.

CUI L P, HE S L, ZHANG X L, et al. Rate transient analysis: A method to evaluate dynamic reserves of horizontal gas wells[J].Natural Gas Industry, 2010, 30(4):61-63.

12
SVEINBJORNSSON B M, THORHALLSSON S. Drilling performance, injectivity and productivity of geothermal wells[J]. Geothermics, 2014, 50(2):76-84.

13
肖翠, 王伟, 李鑫, 等. 基于现代产量递减分析的延川南煤层气田剩余气分布数值模拟研究[J]. 油气藏评价与开发, 2020,10(4):25-31.

XIAO C, WANG W, LI X, et al. Numerical simulation of residual gas distribution in CBM gas field of south Yanchuan based on advanced production data analysis[J]. Reservoir Evaluation and Development, 2020, 10(4): 25-31.

14
姬江. 丘东气田西山窑组剩余气分布规律研究[D].西安:西安石油大学,2013.

JI J. Research of Remaining Gas Distribution in Qiudong Gas Field[D]. Xi’an: Xi’an Shiyou University, 2013.

15
郭奇. 松南盆地孤家子气田气藏精细描述及剩余气分布规律研究[D].北京:中国地质大学(北京),2017.

GUO Q. Detailed Description and Residual Gas Distribution of Gujiazi Gas Reservoir in South of Songliao Basin[D]. Beijing: China University of Geosciences (Beijing),2017.

16
李明波. 苏里格气田苏10,苏11区块剩余气挖潜技术研究[D]. 大庆:东北石油大学,2015.

LI M B. Research on Production Technology of Remaining Gas in Su10、Su11 Area[D]. Daqing: Northeast Petroleum University, 2015.

17
李进步, 李娅, 张吉,等. 苏里格气田西南部致密砂岩气藏资源评价方法及评价参数的影响因素[J]. 石油与天然气地质, 2020,41(4):730-743.

LI J B,LI Y,ZHANG J,et al. Resource evaluation method and influence factors of its parameters for tight sand gas reservoir in southwestern Sulige Gas Field[J]. Oil & Gas Geology, 2020, 41(4):730-743.

18
刘正中. 低渗砂岩气藏剩余气分布规律研究——以新场气田蓬二气藏为例[D].成都:成都理工大学,2005.

LIU Z Z. Research of Residual Gas of Low-permeability Sandstone: Application in Peng-er Gas Reservoir of Xinchang Field[D]. Chengdu: Chengdu University of Technology, 2005.

19
蔡宁骁, 王真理, 周大胜, 等. 注蒸汽稠油热采开发区浅层汽窜的微重力勘探方法[J].石油地球物理勘探, 2019,54(1):235-242.

CAI N X, WANG Z L, ZHOU D S, et al. A microgravity method for prospecting shallow steam channeling in thermal recovery zones[J]. Oil Geophysical Prospecting, 2019, 54(1):235-242.

20
李玉君,任芳祥,杨立强,等.稠油注蒸汽开采蒸汽腔扩展形态4D微重力测量技术[J]. 石油勘探与开发,2013,40(3):381-384.

LI Y J, REN F X, YANG L Q, et al. Description of steam chamber shape in heavy oil recovery using 4D microgravity measurement technology[J].Petroleum Exploration and Development, 2013,40(3):381-384.

21
辛坤烈. 蒸汽腔立体监测技术在SAGD开发中的应用[J].中外能源, 2018, 23(9):43-51.

XIN K L. Application of three-dimensional monitoring technique of steam chamber to SAGD development[J]. Sino-Foreign Energy,2018, 23(9):43-51.

22
HARE J L, FERGUSON J F, BRADY J L. The 4D microgravity method for waterflood surveillance: Part IV-Modeling and interpretation of early epoch 4D gravity surveys at Prudhoe Bay, Alaska[J]. Geophysics, 2008, 73(6):WA173-WA180.

23
ZUMBERGE M, ALNES H, EIKEN O, et al. Precision of seafloor gravity and pressure measurements for reservoir monitoring[J]. Geophysics, 2008, 73(6): WA133-WA141.

24
HARE J L, FERGUSON J F, AIKEN C L V, et al. The 4-D microgravity method for waterflood surveillance: A model study for the Prudhoe Bay reservoir, Alaska[J]. Geophysics, 1999, 64(1):78-87.

25
徐桂芬, 赵文举, 何展翔,等.时移微重力监测技术在油气田开发中的应用[C]//中国石油学会物探专业委员会,中国石油学会2017 年物探技术研讨会论文集,涿州:石油地球物理勘探编辑部,2017: 788-790.

XU G F, ZHAO W J, HE Z X, et al. Application of time-shifted microgravity monitoring technology in oil and gas field evelopment[C]// Geophysical Prospecting Committee of China Petroleum Institute,Proceedings of the 2017 China Geophysical Society Symposium on Geophysical Prospecting,Zhuozhou: Geophysical Prospecting Committee of China Petroleum Institute: Petroleum Geophysical Exploration Editorial Department,2017: 788-790.

26
LIU Y, ZHAO W. Progress in time-lapse microgravity monitoring technique and application[C]// Global Meeting. Society of Exploration Geophysicists and and Chinese Geophysical Society, 2015:19-22.

27
KRAHENBUHL, RICHARD A, LI Y G, et al. 4D gravity monitoring of fluid movement at Delhi Field, LA: A feasibility study with seismic and well data[C]// SEG Annual Meeting Denver: Society of Exploration Geophysicists, 2010:4210-4214.

Outlines

/