Thermodynamics and kinetics model of fluid-rock interaction in carbonate-evaporite paragenesis and its application in Cambrian reservoir in Tabei area, Tarim Basin

  • Qiuhong CHANG , 1 ,
  • Guangyou ZHU 2 ,
  • Zhuang RUAN 1 ,
  • Yinghui CAO 2 ,
  • Zhenhuan SHEN 1 ,
  • Yaqian GUI 1 ,
  • Guoping CHEN 1 ,
  • Bingsong YU , 1
Expand
  • 1. China University of Geosciences (Beijing),Beijing 100083,China
  • 2. PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China

Received date: 2021-03-18

  Revised date: 2021-04-20

  Online published: 2021-10-21

Supported by

The China National Petroleum Corporation Science & Technology Major Project(2019B-04)

the National Natural Science Foundation of China(2652014036)

Highlights

The dissolution and precipitation of carbonate and gypsum have a great impact on burial karst and pore preservation during burial process. In order to carry out the fine evaluation of carbonate-evaporite composite reservoir, we take the Cambrian reservoir in Tabei Uplift of Tarim Basin as the object, and establish the thermodynamics and kinetics models of fluid-mineral interaction according to the formation water ion content from 14 wells in Yingmai and Yaha areas and Well Luntan 1, combined with petrologic characteristics such as thin section observation and porosity. Results showed that the dissolution and precipitation reaction rate of carbonate minerals and gypsum and its ΔG relationship is a good index, dissolution rate increases with the decrease of ΔG and precipitation rate increases with the increase of ΔG. Calculation results show that Tabei Uplift Cambrian buried environment in general is beneficial to the dissolution of carbonate mineral gypsum combination and karstification is stronger in the northwest than that in the southeast, which is in good agreement with the test results of reservoir physical properties. This study provides a new method for quantitative prediction and evaluation of the favorable reservoir area of the deep burial carbonate-evaporite paragenetic association reservoir.

Cite this article

Qiuhong CHANG , Guangyou ZHU , Zhuang RUAN , Yinghui CAO , Zhenhuan SHEN , Yaqian GUI , Guoping CHEN , Bingsong YU . Thermodynamics and kinetics model of fluid-rock interaction in carbonate-evaporite paragenesis and its application in Cambrian reservoir in Tabei area, Tarim Basin[J]. Natural Gas Geoscience, 2021 , 32(10) : 1474 -1488 . DOI: 10.11764/j.issn.1672-1926.2021.04.012

1
ABRANTES F R, NOGUEIRA C R,SOARES J L. Permian paleogeography of west-central Pangea: Reconstruction using sabkha-type gypsum-bearing deposits of Parnaíba Basin, northern Brazil[J].Sedimentary Geology,2016,341:175-188.

2
马奎,胡素云,王铜山,等.膏盐岩对碳酸盐层系油气成藏的影响及勘探领域分析[J].地质科技情报,2016,35(2):169-176.

MA K, HU S Y, WANG T S, et al. Effect of gypsum rock on the hydrocarbon accumulation in carbonate layers and analysis of exploration field[J]. Geological Science and Technology Information, 2016,35(2):169-176.

3
胡安平,沈安江,杨翰轩,等.碳酸盐岩—膏盐岩共生体系白云岩成因及储盖组合[J].石油勘探与开发,2019,46(5):916-928.

HU A P, SHEN A J, YANG H X, et al.Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system[J]. Petroleum Exploration and Development, 2019,46(5):916-928.

4
HEYDARI E. Meteoric versus burial control on porosity evolution of the Smackover Formation[J]. AAPG Bulletin,2003,87(11): 1779-1797.

5
MOORE C H. Developments in Sedimentology:Volumes[M]. Amsterdam:Elsevier,2001:444.

6
BJØRLYKKE K,JAHREN J. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, 2012,96(12): 2193-2214.

7
BJØRLYKKE K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins[J]. Sedimentary Geology, 2014,301:1-14.

8
魏巍,朱筱敏,孟元林,等.基于热力学与动力学方法预测碎屑岩的次生孔隙发育带[J].中南大学学报:自然科学版, 2015,46(10): 3822-3831.

WEI W, ZHU X M, MENG Y L, et al. Prediction of secondary porosity developmental zones based on thermodynamics and dynamics methods[J]. Journal of Central South University:Science and Technology, 2015,46(10): 3822-3831.

9
赵振宇,周瑶琪,马晓鸣,等.含油气盆地中膏盐岩层对油气成藏的重要影响[J].石油与天然气地质,2007,28(2):299-308.

ZHAO Z Y, ZHOU Y Q, MA X M, et al.The impact of saline deposit upon the hydrocarbon accumulation in petroliferous basin[J]. Oil & Gas Geology, 2007,28(2):299-308.

10
朱光有,张水昌,王欢欢,等.塔里木盆地北部深层风化壳储层的形成与分布[J].岩石学报,2009,25(10):2384-2398.

ZHU G Y, ZHANG S C, WANG H H, et al.The formation and distribution of deep weathering crust in north Tarim Basin[J].Acta Petrologica Sinica,2009,25(10):2384-2398.

11
金之钧,周雁,云金表,等.我国海相地层膏盐岩盖层分布与近期油气勘探方向[J].石油与天然气地质,2010,31(6): 715-724.

JIN Z J, ZHOU Y, YUN J B, et al. Distribution of gypsum-salt cap rocks and near-term hydrocarbon exploration targets in the marine sequences of China[J]. Oil & Gas Geology, 2010,31(6):715-724.

12
胡素云,石书缘,王铜山,等.膏盐环境对碳酸盐岩层系成烃-成储和成藏的影响[J].中国石油勘探, 2016,21(2):20-27.

HU S Y, SHI S Y, WANG T S, et al.Effect of gypsum-salt environment on hydrocarbon generation, reservoir-forming and hydrocarbon accumulation in carbonate strata[J]. China Petroleum Exploration, 2016,21(2): 20-27.

13
WEN Y X, SÁNCHEZ-ROMÁN M, LI Y L, et al. Nucleation and stabilization of Eocene dolomite in evaporative lacustrine deposits from central Tibetan plateau[J]. Sedimentology,2020,67(6):3333-3354.

14
朱童,王兴志,沈忠民,等.川中雷口坡组膏盐岩成因及对储层的影响[J].中国地质, 2014,41(1): 122-134.

ZHU T, WANG X Z, SHEN Z M, et al.The origin of gypsum-salt rock of Leikoupo Formation and its influence on the gas reservoir in central Sichuan Basin[J].Geology in China, 2014,41(1): 122-134.

15
彭军,王雪龙,韩浩东,等.塔里木盆地寒武系碳酸盐岩溶蚀作用机理模拟实验[J].石油勘探与开发,2018,45(3): 415-425.

PENG J, WANG X L, HAN H D,et al.Simulation for the dissolution mechanism of Cambrian carbonate rocks in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2018,45(3): 415-425.

16
陈龙,王从军,林畅松,等.塔北隆起西部库姆格列木群底砂岩段储层特征及其控制因素[J].长江大学学报:自然科学版,2018,15(15):6-10,29.

CHEN L, WANG C J, LIN C S, et al.Reservoir characteristics on the bottom of sandstone of the Qumgarimu group in the west of north Tarim Uplift and its controlling factors[J]. Journal of Yangtze University:Natural Science Edition,2018,15(15):6-10,29.

17
马德波,崔文娟,陶小晚,等.塔北隆起轮南低凸起断裂构造特征与形成演化[J].天然气地球科学,2020,31(5):647-657.

MA D B, CUI W J, TAO X W, et al.Structural characteristics and evolution process of faults in the Lunnan low uplift,Tabei Uplift in the Tarim Basin,NW China[J].Natural Gas Geoscience, 2020,31(5):647-657.

18
杨海军,刘永福,苏洲,等.塔北隆起深层碎屑岩优质储层形成主控因素[J].地质论评,2020,66(1): 169-179.

YANG H J, LIU Y F, SU Z, et al.The main controlling factors for the formation of high quality clastic reservoirs in deeply buried strata of Tabei Uplift[J].Geological Review, 2020,66(1): 169-179.

19
CHEN J Q, ZHANG X G, CHEN Z H, et al. Hydrocarbon expulsion evaluation based on pyrolysis rock-eval data: Implications for Ordovician carbonates exploration in the Tabei Uplift, Tarim[J]. Journal of Petroleum Science and Engineering, 2020,196: 107614.

20
马玉新,赵勇生,田海芹.塔北隆起区碎屑岩深埋优质储层成岩作用分析[J].地球学报, 1999, 20: 478-483.

MA Y X, ZHAO Y S, TIAN H Q.Diagenesis analysis on the excellent clastic reservoirs deep-buried in north of Tarim Uplift[J].Acta Geoscientia Sinica, 1999, 20: 478-483.

21
张德民,鲍志东,郝雁,等.塔里木盆地牙哈—英买力寒武系潜山区优质储层形成模式[J].天然气地球科学,2016,27(10):1797-1807.

ZHANG D M, BAO Z D, HAO Y, et al.Formation model of high-quality reservoirs within Cambrian buried hill in Yaha-Yingmaili area,Tarim Basin[J].Natural Gas Geoscience,2016,27(10):1797-1807.

22
JIANG L, CAI C F, WORDEN R H,et al. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin,northwest China[J].Sedimentology,2016,63(7): 2130-2157.

23
王珊,曹颖辉,杜德道,等.塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控[J].天然气地球科学,2018,29(6):784-795.

WANG S, CAO Y H, DU D D, et al. The characteristics and main controlling factors of dolostone reservoir in Lower Cambrian Xiaoerbulake Formation in Keping-Bachu area,Tarim Basin,NW China[J]. Natural Gas Geoscience, 2018,29(6):784-795.

24
沈安江,郑剑锋,陈永权,等.塔里木盆地中下寒武统白云岩储集层特征、成因及分布[J].石油勘探与开发,2016,43(3):340-349.

SHEN A J, ZHENG J F, CHEN Y Q, et al. Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle Cambrian, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016,43(3):340-349.

25
于炳松,林畅松.油气储层埋藏成岩过程中的地球化学热力学[J].沉积学报,2009,27(5): 896-903.

YU B S, LIN C S. Geochemical thermodynamics of diagenesis in reservoirs for oil and gas[J]. Acta Sedimentologica Sinica, 2009,27(5):896-903.

26
阮壮,于炳松,李朝晖,等.埋藏条件下方解石热力学平衡及其在塔河油田埋藏岩溶预测中的应用[J].吉林大学学报:地球科学版,2011,41(4):1020-1027.

RUAN Z, YU B S, LI Z H, et al. Thermodynamic equilibrium of calcite in strata environment and its application of burial karst forcasting in Tahe Oil Field,Tarim Basin[J]. Journal of Jilin University:Earth Science Edition,2011,41(4):1020-1027.

27
陈圆圆,于炳松.碳酸盐岩溶解—沉淀热力学模型及其在塔北地区的应用[J].沉积学报, 2012,30(2): 219-230.

CHEN Y Y, YU B S. Dissolution-precipitation thermodynamic models of carbonate rock and the application in the northern part of Tarim Basin[J]. Acta Sedimentologica Sinica, 2012,30(2): 219-230.

28
钱会,马致远.水文地球化学[M].北京:地质出版社,2005:32-39.

QIAN H, MA Z Y. Hydrogeochemistry[M].Beijing: Geological Publishing House,2005:32-39.

29
HOLLAND T, POWELL R. Thermodynamics of order-disorder in minerals: I. Symmetric formalism applied to minerals of fixed composition[J].American Mineralogist,1996,81(11-12):1413-1424.

30
HELGESON H C, DELANY J M, NESBITT H W, et al. Summary and critique of the thermodynamic properties of rock-forming minerals[J]. American Journal of Science,1978,278-A: 1-229.

31
黄思静.碳酸盐岩的成岩作用[M].北京:地质出版社,2010:67-87.

HUANG S J. Carbonate Diagenesis[M]. Beijing: Geological Publishing House,2010:67-87.

32
HOLLOWAY J R. Fugacity and activity of molecular species in supercritical fluids[J]. Thermodynamics in Geology, 1977, 30: 161-181.

33
HOLLAND T, POWELL R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 2011,29(3): 333-383.

34
林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册[M].北京:科技出版社,1985: 1-354.

LIN C X, BAI Z H, ZHANG Z R. The Thermodynamic Data Handbook of Mineral and Related Compounds[M]. Beijing: Science and Technology Press,1985: 1-354.

35
STEEFEL C I, LASAGA A C. A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems[J]. American Journal of Science, 1994,294(5): 529-592.

36
LASAGA A C. Chemical kinetics of water-rock interactions[J]. Journal of Geophysical Research: Solid Earth, 1984,89(B6): 4009-4025.

37
HELLEVANG H,PHAM V,AAGAARD P. Kinetic modelling of CO2-water-rock interactions[J]. International Journal of Greenhouse Gas Control,2013,15:3-15.

38
XU T F, APPS J A, PRUESS K. Mineral sequestration of carbon dioxide in a sandstone-shale system[J]. Chemical Geology, 2005,217(3-4): 295-318.

39
PALANDRI J, KHARAKA Y K. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling[M]. California:U.S.Geological Survey,2004.

40
YANG L L, XU T F, LIU K Y, et al. Fluid-rock interactions during continuous diagenesis of sandstone reservoirs and their effects on reservoir porosity[J]. Sedimentology,2017, 64(5): 1303-1321.

41
朱光有,孙崇浩,赵斌,等.7000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限[J].天然气地球科学,2020,31(5):587-601.

ZHU G Y, SUN C H, ZHAO B, et al.Formation,evaluation technology and preservation lower limit of ultra-deep ancient fracture-cavity carbonate reservoirs below 7000 m[J].Natural Gas Geoscience,2020,31(5):587-601.

42
彭军,王雪龙,韩浩东,等.塔里木盆地寒武系碳酸盐岩溶蚀作用机理模拟实验[J].石油勘探与开发,2018,45(3):415-425.

PENG J,WANG X L,HAN H D,et al. Simulation for the dissolution mechanism of Cambrian carbonate rocks in Tarim Basin, NW China[J]. Petroleum Exploration and Development,2018,45(3):415-425.

Outlines

/