Research and application of acoustic time difference response characteristics of high temperature and overpressure gas reservoir in Yinggehai Basin
Received date: 2020-07-23
Revised date: 2020-09-09
Online published: 2021-03-10
Supported by
The Science and Technology Major Project of China National Offshore Oil Corporation Limited(CNOOC-KJ135ZDXM38ZJ01ZJ)
The Comprehensive Science and Technology Project of China National Offshore Oil Corporation Limited(YXKY-2019-ZJ-01)
High temperature and overpressure gas fields such as DFX-1, DFX-2 and LDX-1 have been discovered in Yinggehai Basin in recent years. Due to the high-temperature and overpressure conditions, low-speed mudstone is widely distributed. It is difficult to obtain accurate compaction correction factor (C p) and the mudstone acoustic time (DT sh) in acoustic time difference analysis. The method of evaluating the primary porosity using the Wyllie formula encountered challenges. By analyzing the response characteristics and influencing factors of acoustic wave velocity of mudstone and sandstone in high temperature and overpressure strata, on the basis of clarifying the history of hydrocarbon accumulation, a large-scale statistical chart of formation pressure and gas saturation with C p is established in different regions, which can obtain C p under different pressures and different fluids. By analyzing the relationship between mud distribution in clastic reservoir and the history of accumulation, an accurate method for obtaining DT sh is established, which improved the evaluation accuracy of sonic porosity in high-temperature and overpressured formations, and lays a foundation for subsequent pore structure and classification evaluation. This method has achieved good results in the evaluation of related exploratory wells, and has the value of promotion and application.
Yi-xiong WU , Xiang-yang HU , Juan-zi YI , Dong YANG , Yu-nan LIANG . Research and application of acoustic time difference response characteristics of high temperature and overpressure gas reservoir in Yinggehai Basin[J]. Natural Gas Geoscience, 2021 , 32(2) : 298 -307 . DOI: 10.11764/j.issn.1672-1926.2020.09.007
1 |
吴仕玖,范彩伟,招湛杰,等. 莺歌海盆地乐东区碳酸盐胶结物成因及地质意义[J],地球科学,2019,44(8):2686-2694.
WU S J, FAN C W, ZHAO Z J,et al. Origin of carbonate cement in reservoirs of Ledong area,Yinggehai Basin and its geological significance[J]. Earth Science,2019,44(8):2686-2694.
|
2 |
张振城,孙建孟,施振飞,等. 测井资料评价次生孔隙的方法、原理及实例[J],沉积学报,2005,23(4):613-619.
ZHANG Z C, SUN J M, SHI Z F,et al. Application of well logging information to secondary porosity analysis[J]. Acta Sedimentologica Sinica, 2005,23(4):613-619.
|
3 |
邓勇,李洋森,刘仕友,等. 莺歌海盆地乐东区暗点型气藏形成原因及识别方法[J]. 地球物理学进展,2018,33(6):2535-2540.
DENG Y, LI Y S, LIU S Y,et al. Formation and identification of dark-spot gas reservoirs in Yinggehai Basin[J].Progress in Geophysics,2018,33(6):2535-2540.
|
4 |
MARION D,NUR A,YIN H,et al.Compressional velocity and porosity in sand-clay mixtures[J]. Geophysics,1992,57(4) :554-563.
|
5 |
杨涛涛,范国章,吕福亮,等. 烃源岩测井响应特征及识别评价方法[J].天然气地球科学,2013,24(2):414-422.
YANG T T, FAN G Z, LÜ F L, et al.The logging features and identification methods of source rock[J].Natural Gas Geoscience, 2013,24(2):414-422.
|
6 |
邓继新,王尚旭,俞军.不同压力条件下部分饱和砂岩速度实验结果及理论解释[J].石油地球物理勘探,2005,40(5):530-534.
DENG J X, WANG S X, YU J. Experimental results in parially saturated sandstone under condition of different pressure and their theoretical interpretation[J]. Oil Geophysical Prospecting,2005,40(5):530-534.
|
7 |
王京印,程远方,严智武,等. 高温高压下气体声学性质的实验研究[J]. 天然气工业,2006,26(2):138-140.
WANG J Y, CHENG Y F, YAN Z W,et al. Study on gaseous sonic property under high temperature and high pressure[J]. Natural Gas Industry, 2006,26(2):138-140.
|
8 |
周家雄,何胜林,陈一健,等.CO2天然气藏岩石电阻率声速规律研究[J].西南石油大学学报:自然科学版,2017,39(1):73-79.
ZHOU J X, HE S L, CHEN Y J,et al. A study in acoustic velocity and resistivity of rocks in CO2/natural gas accumulation[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2017,39(1):73-79.
|
9 |
施行觉,夏从俊,吴永钢,等.储层条件下波速的变化规律及其影响因素的实验研究[J].地球物理学报,1998,41(2):234-240.
SHI X J, XIA C J, WU Y G, et al.The laboratory study on wave velocity under reservoir condition and its affction factors[J]. Acta Geophysica Scinica, 1998,41(2):234-240.
|
10 |
陈颙,黄庭芳. 岩石物理学[M].北京:北京大学出版社,2001:41-67.
CHEN Y, HUANG T F. Rock Physics[M]. Beijing:Peking University Press,2001: 41-67.
|
11 |
刘国勇,金之钧,张刘平,碎屑岩成岩压实作用模拟实验研究[J].沉积学报,2006,24(3):407-413.
LIU G Y, JIN Z J, ZHANG L P, Experimental study on diagenetic compaction of clastic rocks[J]. Acta Sedimentologica Sinica, 2006,24(3):407-413.
|
12 |
刘明洁,刘震,刘静静,等.砂岩储集层致密与成藏耦合关系——以鄂尔多斯盆地西峰—安塞地区延长组为例[J].石油勘探与开发,2014,41(2):168-175.
LIU M J, LIU Z, LIU J J,et al. Coupling relationship between sandstone reservoir densification and hydrocarbon accumulation: A case from the Yanchang Formation of the Xifeng and Ansai areas, Ordos Basin[J]. Petroleum Exploration and Development, 2014,41(2):168-175.
|
13 |
高志勇,崔金钢,冯佳睿,等,埋藏压实作用对前缘盆地深部储层的作用过程与改造机制[J].石油学报,2013,34(5):865-876.
GAO Z Y, CUI J G, FENG J R, et al. An effect of burial compaction on deep reservoirs of foreland basins and its reworking mechanism[J].Acta Petrolei Sinica,2013,34(5):865-876.
|
14 |
石良,金振奎,闫伟,等. 异常高压对储集层压实和胶结作用的影响——以渤海湾盆地渤中凹陷西北次凹为例[J].石油勘探与开发,2015,42(3):310-318.
SHI L, JIN Z K, YAN W, et al. Influence of overpressure on reservoir compaction and cementation: A case from northwestern subsag, Bozhong Sag, Bohai Bay Basin, east China[J]. Petroleum Exploration and Development,2015,42(3):310-318.
|
15 |
郭潇潇,徐新德,熊小峰,等. 莺歌海盆地中深层天然气成藏特征与有利勘探领域[J].天然气地球科学,2017,28(12):1864-1872.
GUO X X, XU X D, XIONG X F, et al. Gas accumulation characteristics and favorable exploration directions in mid-deep strata of the Yinggehai Basin[J].Natural Gas Geoscience, 2017,28(12):1864-1872.
|
16 |
雍世和,张超谟.测井数据处理与综合解释[M].东营:中国石油大学出版社,2002:152-162.
YONG S H, ZHANG C M, Logging Data Processing and Comprehensive Interpretation[M].Dongying:China University of Petroleum Press,2002:152-162.
|
17 |
韩学辉,聂俊光,郭俊鑫,等.泥质砂岩中接触胶结泥质定量估算及对砂岩弹性的影响[J].地球物理学报,2020,63(4):1654-1662.
HAN X H, NIE J G, GUO J X,et al. Quantitative estimation of contact cemented clay in clayey sandstone and its effect on elastic properties of sandstone[J].Chinese Journal of Geophysics, 2020,63(4):1654-1662.
|
18 |
韩学辉,郭俊鑫,李峰弼,等. 基于CCT模型的基底式胶结疏松砂岩声波速度校正模型[J]. 中国石油大学学报,2013,37(4):76-82.
HAN X H, GUO J X, LI F B,et al. Modified acoustic velocity model for basal cemented loose sandstone based on contact cement theory[J]. Journal of China University of Petroleum,2013,37(4):76-82.
|
19 |
尤丽,招湛杰,代龙,等. 莺—琼盆地中新统高温超压储层特征及形成机制[J]. 地球科学,2019,44(8):2654-2664.
YOU L, ZHAO Z J, DAI L, et al. Reservoirs characteristics and formation mechanism of high temperature and overpressure reservoirs from miocene in Ying⁃Qiong Basin[J].Earth Science,2019,44(8):2654-2664.
|
20 |
段威,罗程飞,刘建章,等. 莺歌海盆地LD区块地层超压对储层成岩作用的影响及其地质意义[J].地球科学,2015,40(9):1517-1528.
DUAN W,LUO C F,LIU J Z,et al. Effect of overpressure formation on reservoir diagenesis and its geological significance to LD block of Yinggehai Basin[J].Earth Science,2015,40(9):1517-1528.
|
/
〈 |
|
〉 |