Study on the shale reservoirs characteristics in the Lower Cretaceous Hengtongshan Formation, Tonghua Basin

  • Dan-dan Wang , 1, 2 ,
  • Xin-gui Zhou 1 ,
  • Li-hong Liu , 1 ,
  • Shi-zhen Li 1 ,
  • Jiao-dong Zhang 1 ,
  • Wen-hao Zhang 1 ,
  • Wei-bin Liu 1 ,
  • Xu-feng Liu 1 ,
  • Qiu-nan Zeng 1
Expand
  • 1. Oil & Gas Survey, China Geological Survey, Beijing 100083, China
  • 2. Key Laboratory of Unconventional Oil & Gas Geology, Beijing 100083,China

Received date: 2019-09-11

  Revised date: 2019-10-08

  Online published: 2020-03-25

Highlights

Good hydrocarbon shows have been found in the Lower Cretaceous Hengtongshan Formation of the Tonghua Basin, and it has good prospects for conventional and unconventional oil and gas exploration. However, currently no systematic summary, especially the study on the characteristics of shale reservoirs in Low Cretaceous Hengtongshan Formation in the Tonghua Basin has been carried out. In this study, we took the core of Tongdi No.1 drilling well with oil and gas shows as the study object, and used the methods of organic geochemistry, X-ray diffraction, scanning electron microscopy, liquid nitrogen adsorption and other analytical methods to study the mineral composition and pore types of shale. The results show that: the brittle mineral content of shale from Hengtongshan Formation in the Tonghua Basin is 58.2%, and the quartz brittleness is 35.4%, which is conducive to fracturing; the main pore types include organic pores, microcracks, intragranular pores and intergranular pores. Among them, intragranular dissolution pores are most developed, while intergranular pores are second; the pore size distribution of shale is complex, mainly distributed between 2nm and 60nm, mainly in mesopores, followed by micropores and macropores; the mesopores provide a volume of 90.87% and a specific surface area of 85.74%, and this is the main carrier of the shale gas. In addition, this paper also discusses the factors affecting the pore structure of Hengtongshan Formation shale, It is found that the abundance of organic matter and the microscopic composition have obvious influence on the pores in the study area.

Cite this article

Dan-dan Wang , Xin-gui Zhou , Li-hong Liu , Shi-zhen Li , Jiao-dong Zhang , Wen-hao Zhang , Wei-bin Liu , Xu-feng Liu , Qiu-nan Zeng . Study on the shale reservoirs characteristics in the Lower Cretaceous Hengtongshan Formation, Tonghua Basin[J]. Natural Gas Geoscience, 2019 , 30(12) : 1771 -1781 . DOI: 10.11764/j.issn.1672-1926.2019.10.014

0 引言

随着北美Fort Worth盆地和Barnett盆地[1]、威利斯顿(Wilinston)盆地[2]及Eagle Ford盆地页岩气[3]的成功开发,页岩油气成为全球非常规油气开发的亮点[4,5,6]。中国也已成为北美以外地区率先实现页岩气工业突破和工业先导试验的国家[4],先后在四川盆地涪陵、威远及长宁区块取得突破,这标志着我国也进入页岩油气勘探开发的初级阶段[7]。通化地区作为油气勘探的新区,已有研究成果揭示该地区下白垩统亨通山组、下桦皮甸子组具有一定的常规油气和非常规页岩油气的资源潜力[8,9],研究区亨通山组分布广泛,厚度较大,但将亨通山组泥页岩作为储层而言,其矿物组成、岩石物性、孔隙特征等均未知,特别是缺乏对泥页岩储层微观孔隙结构的精细研究。本文选取通化盆地下白垩统亨通山组钻井岩心为研究对象,开展X⁃射线衍射、氮气吸附及扫描电镜等测试,结合有机地球化学数据,综合研究通化盆地下白垩统亨通山组泥页岩储层的微观孔隙特征,以期为通化盆地乃至整个松辽盆地东部外围地区的油气勘探评价提供理论依据。

1 区域地质背景

通化盆地位于松辽盆地外围东南部,面积为1 417.5km2[10]。在大地构造上,通化盆地位于华北板块北缘的铁岭—靖宇台拱,横跨2个次级构造单元,分别为样子哨凹陷断束和龙岗断块[11]。早期经历了二叠纪末期兴蒙海槽的南北向闭合碰撞作用及古太平洋板块向欧亚大陆的俯冲作用,白垩纪演变成北东向展布的断陷盆地(图1[12]。该盆地白垩系自下而上发育果松组火山岩、鹰嘴砬子组暗色泥岩和粉砂岩、林子头组火山碎屑岩、下桦皮甸子组和亨通山组暗色泥页岩以及三棵榆树组中基性火山岩。亨通山组主要分布在通化盆地三棵榆树坳陷,通地1井钻遇亨通山组暗色泥岩累计厚度194m,油气显示34层[13]。 前期研究主要把亨通山组作为烃源岩和常规储层进行评价和研究[8,9,14,15,16,17],但作为非常规储层的研究甚少。如:韩欣澎等[14]认为亨通山组是较好的烃源岩层;陈延哲[15]指出亨通山组发育湖泊相、辫状河三角洲相和喷出相;何奕言等[16]认为水下扇相和火山机构相是亨通山组储层发育的有利沉积相。近年来,有学者认为下白垩统亨通山组烃源岩具有常规油气和非常规页岩油气的勘探潜力[8,9,17]。例如孟元林等[8]、周新桂等[17]认为通化盆地下白垩统泥页岩地球化学特征和储层性能较好,具有页岩气勘探前景。亨通山组泥页岩的石英平均含量为55.5%,孔隙类型包括有机质孔和裂缝,泥页岩孔径较小,以微孔—中孔为主;王丹丹等[9]认为通化盆地下白垩统泥页岩脆性矿物含量主体分布在54%~74%之间,微裂缝发育,可压裂性好。
图1 通化盆地构造特征及采样位置(据文献[9]修改)

Fig.1 Structural feature and sampling position in theTonghua Basin (modified by Ref. [9])

2 泥页岩矿物组成及脆度分析

2.1 泥页岩矿物组成

研究区亨通山组岩性组合主要为黑色泥页岩、粉砂质泥岩等。 X⁃射线衍射结果显示,黏土矿物含量分布在24%~53%之间,平均值为41%。脆性矿物含量分布在44%~76%之间,平均值为58.2%(图2),主要成分为石英和方解石,相对含量分别为12%~44%和2%~55%,平均值分别为31%和17%;其次是斜长石和钾长石,相对含量分别为6%~16%和1%~5%,平均值分别为10%和3%。碳酸盐矿物含量分布在0~57%之间,平均值为16%。黄铁矿含量较低,为2%~3%,但在一定程度上表明了该地区下白垩统亨通山组泥页岩发育的沉积环境为还原环境,使得有机质可以保存,有利于生烃[17]。岩石热解、镜质体反射率等测试分析数据也表明亨通山组泥页岩处于成熟—高成熟阶段(表1[9],具备形成页岩油气储集空间的条件。
图2 通化盆地下白垩统亨通山组泥页岩矿物成分组成(偶数号样品引自文献[9])

Fig.2 Mineral composition of the shale in the Hengtongshan Formation, Lower Cretaceous, Tonghua Basin (even samples are quoted from Ref. [9])

表1 通化盆地亨通山组泥页岩微观孔隙结构参数及有机地球化学参数

Table 1 Micro-pore structure parameters of shale in Hengtongshan Formation, Tonghua Basin

样品号 TD1 TD5 TD7 TD11 TD15 TD19
深度/m 216 293.3 326.6 425.7 584.1 587.8
岩性 泥岩 泥岩 泥岩 泥岩 泥岩 泥岩
TOC/% 0.70 1.49 1.77 1.21 1.26 1.66
T max/℃ 441 459 455 462 466 458
R O/% 1.54 1.08 1.06 1.09 1.16 1.31
BJH总孔容/(cm3/g) 0.019 0.008 0.003 0.017 0.008 0.010
BET比表面积/(m2/g) 17.523 5.741 2.677 17.374 7.447 11.029
平均孔径/(nm) 5.435 7.868 5.877 4.881 5.771 5.385
微孔/(<2nm) 孔容/(cm3/g) 0.019 0.008 0.003 0.016 0.008 0.010
比表面积/(m2/g) 13.709 4.282 1.999 13.497 5.700 7.304
中孔/(2~50nm) 孔容/(cm3/g) 0.210 0.107 0.033 0.172 0.089 0.101
比表面积/(m2/g) 81.711 30.561 12.117 76.627 35.113 41.466
大孔/(>50nm) 孔容/(cm3/g) 0.002 0.002 0.000 0.001 0.001 0.001
比表面积/(m2/g) 0.121 0.100 0.026 0.080 0.055 0.060
各孔段体积比/% <2nm 8.07 7.20 8.11 8.68 8.40 8.77
2~50nm 91.12 91.47 90.81 90.67 90.74 90.42
>50nm 0.81 1.33 1.08 0.65 0.86 0.81
各孔段比表面积比/% <2nm 14.35 12.26 14.14 14.96 13.95 14.96
2~50nm 85.52 87.46 85.68 84.95 85.92 84.92
>50nm 0.13 0.29 0.18 0.09 0.13 0.12

2.2 脆度分析

研究区泥页岩的脆性研究采用李锯源[18]所使用的石英脆度、碳酸盐脆度和总脆度的线性关系研究方法。有研究认为泥页岩裂缝发育程度取决于页岩脆度,石英脆度高有利于压裂改造,碳酸盐脆度高有利于溶蚀产生溶孔,进而促进裂缝发育,提高页岩气的产量[18,19]。研究区13块亨通山组泥页岩岩心样品的X-射线衍射实验结果表明,亨通山组泥页岩的石英脆度、碳酸盐脆度和总脆度的平均值分别为35.4%、17.5%和52.9%,碳酸盐脆度与总脆度的正相关性比较好,石英脆度与总脆度的相关性较差(图3),表明碳酸盐的含量是影响该地区泥页岩总脆度的主要因素。该认识与东营凹陷E s 4 s 和E s 3 x 泥页岩脆度的影响因素类似[18]
图3 通化盆地亨通山组泥页岩石英脆度、碳酸盐脆度与总脆度关系

Fig.3 Relationship between total brittleness and quartz brittleness, carbonate brittleness of mud shale in the Hengtongshan Formation, Tonghua Basin

此外,通过对比发现研究区泥岩的石英—碳酸盐矿物—黏土矿物三角图与北美地区中生界的Haynesville和Eagle Ford含气页岩落在同一个区域,表明它们具有较好的可比性(图4), 易于压裂改造,有利于非常规页岩油气的开发,与密西西比的Barnett、Woodford页岩具有一定的差异。
图4 通化盆地亨通山组泥页岩与北美页岩矿物含量对比图(底图据文献[17]修改)

Fig.4 Comparison of mineral content between shale in Hengtongshan Formation and North American shale (the base map is modified by Ref.[17])

3 泥页岩微观孔隙分布及类型

为了揭示泥页岩中孔隙的分布、形态、孔径及类型等特征,本文研究开展了扫描电镜测试分析,结合前人对泥页岩孔隙的分类方案[20,21,22,23],本文将通化盆地亨通山组泥页岩储层孔隙划分为有机质孔、微裂缝、粒间孔和粒内孔。

3.1 有机质孔

研究区通地1井亨通山组泥页岩中该类孔隙未见大量发育。目前通过扫描电镜观测到亨通山组泥页岩中有机质孔的孔径主要集中在50~350nm之间,少数达到微米级,主要发育在有机质内部,呈凹坑状或片麻状[图5(a)—图5(c)]。图5(a)、图5(b)中可见纳米级有机质孔,主要形成于有机质热演化过程中,孔喉狭小,连通性较差;图5(c)中偶见微米级有机质孔,孔径在1μm左右,呈坑凹状,比较独立。总体而言,通化盆地亨通山组泥页岩有机质孔相对独立,连通性较差,在泥页岩中还见到致密有机质[图5(d)]。
图5 通化盆地亨通山组泥页岩主要孔隙类型及分布

(a)有机质孔,425.7m,0.055~0.354μm;(b)有机质孔,216m,0.052~0.225μm;(c)有机质孔,587.8m,0.090~0.980μm;(d)有机质与矿物颗粒间微裂缝,326.6m,0.160~0.706μm;(e)有机质内微裂隙,425.7m,0.027~0.169μm;(f)矿物溶蚀孔隙、粒间孔,216m,0.335~5.364μm;(g)矿物溶蚀孔隙,584.1m, 0.107~0.509μm;(h)黄铁矿晶间孔、铸模孔,293.3m ,0.081~1.530μm;(i)矿物粒间孔隙、溶蚀孔隙,293.3m ,0.122~1.213μm

Fig.5 The pore types and distribution features of shale in the Hengtongshan Formation, Tonghua Basin

3.2 微裂缝

镜下观察到研究区亨通山组泥页岩发育2种微裂缝:一种是成岩收缩裂缝[图5(d)],多发生在石英或者碳酸盐矿物颗粒的边缘,是矿物颗粒在成岩过程中经历压实或脱水作用产生的;另一种是构造裂缝[图5(e)],该裂缝主要发育在矿物基质中,尺度一般较大。规模较大的裂缝可以为页岩油气运移提供重要的渗流通道,微裂缝发育区对应于页岩气高产区已被北美地区页岩气勘探开发实践所证实[24]

3.3 粒内孔

粒内孔主要是泥页岩在生烃过程中,生成的有机酸或者二氧化碳与石英、长石、碳酸盐反应,使其全部或部分溶解而形成的铸模孔、黏土矿物与云母矿物颗粒内的解理面孔、长石、方解石等易溶矿物的溶蚀孔等[25,26]。镜下观察到研究区亨通山组泥页岩中发育粒内溶蚀孔、黏土矿物与碎屑颗粒粒间溶蚀孔和黄铁矿铸模孔。
矿物颗粒内溶蚀孔普遍较发育,是亨通山组泥页岩中常见的孔隙类型,多呈蜂窝状或分散状、近圆形,孔径多分布在100~500nm之间[图5(g)],少数粒径可达1~5μm[图5(f)];黏土矿物与碎屑颗粒粒间溶蚀孔,粒径在300~5 000nm之间,多为不规则状[图5(g)];黄铁矿铸模孔,粒径在80~1 000nm之间,呈蜂窝状和近圆状[图5(h)]。

3.4 粒间孔

研究区亨通山组泥页岩残余粒间孔隙较多,形态多呈不规则状、狭缝状,在刚性矿物和软塑性矿物的边界处分布较多[图5(f),图5(i)];在黄铁矿晶粒之间也形成一定量的粒间孔[图5(h)],该孔隙往往充填黏土矿物。

4 泥页岩储层孔喉结构特征

4.1 氮气吸附—脱附曲线

为精细刻画通化盆地下白垩统亨通山组泥页岩的孔隙结构特征,重点选取了6件泥页岩样品进行液氮吸附和解吸实验,实验数据见表1
氮气吸附实验结果(图6)表明,通化盆地亨通山组岩心样品的氮气吸附曲线总体变化趋势基本一致,整体呈反“S”型,由于吸附—脱附的不完全可逆性,发生了吸附—脱附曲线不重合的迟滞效应。具体特征为:在相对压力(P/P 0)值小于0.10时,以单分子层吸附为主,吸附曲线略上凸,吸附量小;在P/P 0值介于0.10~0.45之间时,氮气在储层表面为多层吸附,吸附曲线呈线性,吸附量逐渐增加,在P/P 0值达到0.45~1.0时,呈现迟滞环,氮气在储层表面发生毛细凝聚现象,氮气吸附量快速上升,曲线呈现下凹状,在P/P 0值达到1.0左右时,最大孔被凝聚液充满,吸附量不再增加。与国际纯粹与应用化学联合协会(IUPAC)定义Ⅳ型曲线中H2型曲线类似[7,27]
图6 通化盆地亨通山组泥页岩氮气吸附曲线

(a)TD1,黑色泥岩,216.0m;(b)TD5,黑色泥岩,293.3m;(c)TD7,黑色泥岩,326.7m;(d)TD11,黑色泥岩,425.7m;(e)TD51,灰黑色粉砂质泥岩,558.4m;(f)TD19,黑色粉砂质泥岩,587.8m

Fig.6 Nitrogen adsorption curve of shale from Hengtongshan Formation, Tonghua Basin

4.2 孔径分布

采用BJH法得到的孔径分布曲线显示(图7),亨通山组泥页岩孔径主要分布在2~60nm之间,以中孔为主[图7(a)],并且中孔对孔体积的贡献比较大;随着孔径的增大,曲线开始下降[图7(b)],说明泥页岩的孔径以中孔为主导。
图7 通化盆地亨通山组泥页岩孔径分布曲线

Fig.7 Pore size distribution curves of shale in Hengtongshan Formation, Tonghua Basin

4.3 孔隙结构参数

基于BJH法得出的亨通山组泥页岩的总孔容分布范围在0.008 2~0.018 6cm3/g之间,平均值为0.010 7cm3/g。微孔体积占总孔隙体积的7.20%~8.77%,平均值为8.21%;中孔体积占总孔隙体积的90.42%~91.47%,平均值为90.87%;大孔体积占总孔隙体积的0.65%~1.33%,平均值为0.92%(表1)。因此,通化盆地亨通山组泥页岩孔隙类型以中孔为主,微孔次之,大孔最少,表明游离态页岩油气主要赋存载体为中孔。从比表面数据来看,微孔贡献了12.25%~14.96%的比表面积,平均值为14.10%;中孔贡献了84.92%~87.46%的比表面积,平均值为85.74%;大孔贡献的比表面积最少,为0.09%~0.29%的比表面积,平均值为0.16%,因此中孔和微孔是吸附态页岩油气的主要储集空间。与澳大利亚Eromanga盆地Toolebuc组泥页岩的孔隙结构特征相似[23]

5 储层孔隙结构主要影响因素

前人研究认为矿物组成、泥页岩性质、成岩作用和保存条件是泥页岩储层孔隙的影响因素[28,29]。本文主要从矿物成分、有机碳含量、有机质成熟度对孔隙结构特征的影响方面进行探讨。

5.1 矿物成分

脆性矿物是评价储层孔隙发育程度及后期可压裂性的主要参数[29,30,31,32,33,34],黏土矿物对储层孔隙的演化和保存起到非常重要的作用[29,35]
研究区亨通山组泥页岩脆性矿物含量与孔隙度呈弱正相关性[图8(a)],黏土矿物含量与孔隙度具有弱负相关性[图8(b)]。其原因在于亨通山组泥页岩中脆性矿物含量较高(44%~76%,平均值为58.2%),石英抗压实能力较强,有利于粒间孔保存。而有机质和脆性矿物形成的孔隙也可能会被细粒黏土矿物充填,导致孔隙度降低,物性变差。
图8 亨通山组泥页岩矿物成分含量与孔隙度、比表面和孔容的关系

Fig.8 Relationship between mineral content and porosity,specific surface,pore volume of shale in the Hengtongshan Formation

随着脆性矿物和黏土矿物含量的增加,研究区亨通山组泥页岩比表面积和总孔容都有降低的趋势[图8(c)—图8(f)],表明石英等脆性矿物不具备内部微孔,而具有很低的比表面积,这与前人的观点一致[36,37]。结合成岩作用,该层位已进入中成岩阶段B期[17],有机质已达到成熟—高成熟阶段[9],生气的同时会消耗自身物质产生孔隙[38]。同时,石英等脆性矿物形成的溶蚀孔可能被黏土矿物充填,导致泥页岩物性变差。

5.2 有机质丰度和类型

有机质丰度直接决定了泥页岩生烃潜力[38,39],也是决定泥页岩含气量的最关键因素[38],所以探讨有机质丰度对泥页岩中有机质孔的发育程度至关重要。刘虎等[40]和Jarvie等[41]认为有机质生气时不断被消耗排烃后,孔隙会增多,并且孔隙体积随有机碳含量增加而增幅越大;另一方面,由于有机质内部存在大的比表面积表现出极强的甲烷吸附能力,故比表面积大的有机质孔隙是吸附气最主要的储存空间[38]。相关分析表明,通化盆地下白垩统亨通山组泥页岩的比表面积和总孔容随着TOC含量增加而降低[图9(a),图9(b)],与Jarvie等[41]的认识结果不同,表明目的层段不发育有机质孔隙,并且矿物间孔隙被有机质挤占,减少了孔隙空间。已有大量研究成果表明,在有机质孔不发育的泥页岩中,随着TOC含量的增高有机质体积变大,更多的矿物间孔隙被挤占,导致比表面积和孔体积的减小[42,43,44]
图9 通化盆地亨通山组TOCR O与比表面积和总孔容的关系

Fig.9 Relationship between TOC,R O and specfic surface area,pore volume of Hengtongshan Formation in Tonghua Basin

有机质类型也是影响有机质孔隙发育的重要因素[38]。通化盆地下白垩统亨通山组32个岩心样品的有机质类型绝大多数为Ⅰ型干酪根,少数Ⅱ1[9],非常规页岩气的生烃潜力和发育有机质孔的潜力较好。

5.3 有机质成熟度

研究结果表明,研究区亨通山组泥页岩比表面积、孔容随着R O值的增大而增大[图9(c),图9(d)],表现出一定的正相关性。研究区亨通山组泥页岩的成熟度R O值分布在0.97%~1.54%之间,处于成熟—高成熟阶段[9],前人认为该成熟度已达到有机质孔大量发育的范围[45],但扫描电镜结果显示,亨通山组只发育少量的有机质孔,原因是亨通山组泥页岩中镜质组和惰质组含量较高[17],多呈独立状态分布,随着成熟度的增加,基本上不发育孔隙,并占据一定的矿物孔隙,降低了泥页岩的比表面积和孔体积。类似现象还出现在四川盆地华蓥山地区龙潭组、贵州地区龙潭组、延长地区山西组及太康凹陷太原组泥页岩中[44,46],这些地区泥页岩镜质体反射率都较高,几乎不发育有机质孔,普遍认为有机显微组分是高成熟泥页岩中是否发育有机质孔的关键因素[40,47,48,49]

6 结论

(1)通化盆地下白垩统亨通山组泥岩脆性矿物含量高,平均值为58.2%,石英脆度较大,平均值为35.4%,易于压裂改造,有利于非常规页岩油气的勘探开发。
(2)通化盆地亨通山组泥页岩储层孔隙划分为有机质孔、微裂缝、粒内孔和粒间孔。其中粒内溶蚀孔最为发育,粒间孔次之,有机质孔发育较少,主要发育在有机质内部,边缘发育少量微裂缝。通化盆地亨通山组泥页岩孔隙结构受有机质丰度和显微组分影响明显。
(3)研究区亨通山组泥页岩孔径主要分布在2~60nm之间,主要孔径为中孔,其次是微孔和大孔。中孔占孔隙总体积的90.87%,占比表面积的85.74%,是页岩气赋存的主要载体。
1
Hill R J Zhang E Katz B J ,et al . Modeling of gas generation from the Barnett shale, Fort Worth Basin,Texas[J].AAPG Bulletin,2007,91(4):501-521.

2
Miller B Paneitz J Mullen M . The Successful Application of a Compartmental Completion Technique Used to Isolate Multiple Hydraulic Fracture Treatments in Horizontal Bakken Shale Wells in North Dakota[R].SPE Annual Technical Conference and Exhibition,21-24 September,Denver,Colorado,USA,SPF116469, 2008.

3
Mullen J . Petrophysical Characterization of the Eagle Ford shale in South Texas[R].Canadian Unconventional Resources and International Petroleum Conference,19-21 October,Calgary,Alberta,Canada. SPE1381452010.

4
Zou Caineng Tao Shizhen Hou Lianhua ,et al . Unconventional Petroleum Geology[M].Beijing: China Geological Publishing House,2013.

邹才能,陶士振,侯连华,等 .非常规油气地质[M].北京:中国地质出版社,2013.

5
Cao Zhe Liu Guangdi Liu Zhuangxiaoxue ,et al . Research status and prospect of dense oil geology[J]. Natural Gas Geoscience,201425(10):1499-1508.

曹喆,柳广弟,柳庄小雪,等 .致密油地质研究现状及展望[J].天然气地球科学201425(10):1499-1508.

6
Zhang Junfeng Bi Haibin Xu Hao ,et al . New progress and reference significance of overseas tight oil exploration and development[J]. Acta Petrolei Sinica,201536(2):127-137.

张君峰,毕海滨,许浩,等 .国外致密油勘探开发新进展及借鉴意义[J].石油学报201536(2):127-137.

7
Li Xianqing Wang Yuan Guo Man ,et al . Pore characteristics of shale gas reservoirs from the Lower Paleozoic in the south of Sichuan Basin[J].Natural Gas Geoscience,201526(8):1464-1471.

李贤庆,王元,郭曼,等 .川南地区下古生界页岩气储层孔隙特征研究[J].天然气地球科学201526(8):1464-1471.

8
Meng Yuanlin Shen Wanqi Zhou Xingui ,et al . Characteristics of the Lower Cretaceous source rocks and shale gas exploration potential of eastern basin group,NE China[J]. Natural Gas Geoscience,201637(6):893-902.

孟元林,申婉琪,周新桂,等 .东部盆地群下白垩统烃源岩特征与页岩气勘探潜力[J].石油与天然气地质201637(6):893-902.

9
Wang Dandan Zhou Xingui Li Shizhen ,et al . Petroleum geologic features and generation potential of the Lower Cretaceous hydrocarbon source rocks in the Tonghua Basin[J].Acta Geologica Sinica,201791(9):2119-2130.

王丹丹,周新桂,李世臻,等 .通化盆地下白垩统烃源岩石油地质特征及生烃潜力研究[J].地质学报201791(9):2119-2130.

10
Qiao Dewu Ren Shoumai Qiu Haijun ,et al . The present situation of oil and gas resources exploration and strategic selection of potential area in China[J]. Geological Bulletin of China,201130(2-3):187-196.

乔德武,任收麦,邱海峻,等 . 中国油气资源勘探现状与战略选区[J]. 地质通报201130(2-3):187-196.

11
Zhang Hang . Hydrocarbon Exploration Prospect Analysis of Lower Cretaceous in Sankeyushu Fault Depression Tonghua Basin[D].Changchun: Jilin University,2018:9.

张航 .通化盆地三棵榆树断陷下白垩统油气勘探前景分析[D].长春:吉林大学,2018:9.

12
Bureau of Geology and Mineral Resources of Jilin Province Regional Geology in Jinlin Province[M]. Beijing: Geological Publishing House,1988:208-209.

吉林省地质矿产局 .吉林省区域地质志[M].北京:地质出版社,1988:208-209.

13
Wang Dandan . Study on Oil and Gas Geological Conditions in Tonghua Area,Peripheral Region of Songliao Basin[D]. Beijing: China University of Geosciences (Beijing),2018:83.

王丹丹 .松辽盆地外围通化地区油气地质研究[D].北京:中国地质大学(北京),2018:83.

14
Han Xinpeng Hao Guoli Liu Chao ,et al . Petroleum geologic features and petroleum resources potential in Tonghua Basin[J]. Global Geology,201332(2): 337-343.

韩欣澎,郝国丽,刘超,等 .通化盆地石油地质特征及油气资源潜力[J].世界地质201332(2): 337-343.

15
Chen Yanzhe . Sedimentary facies and reservoir features of the Mesozoic in Tonghua Basin[J]. Jilin Geology,201534(2): 24-32.

陈延哲 . 通化盆地中生界露头沉积相及储层特征研究[J].吉林地质201534(2): 24-32.

16
He Yiyan Cheng Rihui Song Libin . Sedimentary characteristics and reservoir development of Hengtongshan Formation in Tonghua Basin[J]. Global Geology,201837(3):861-872.

何奕言,程日辉,宋立斌 . 通化盆地亨通山组沉积特征及储层发育规律[J]. 世界地质201837(3):861-872.

17
Zhou Xingui , Meng Yuanlin , Li Shizhen , et al . Meso-Cenozoic Petroleum Geology of the Eastern Basin Groups in Northeast China[M].Beijing: Geological Publishing House,2017:73.

周新桂,孟元林,李世臻.等 .东北地区东部盆地群中新生代油气地质[M].北京:地质出版社,2017:73.

18
Li Juyuan . Analysis on mineral components and frangibility of shales in Dongying Depression[J]. Acta Sedimentologica Sinica,201331(4):616-620.

李锯源 . 东营凹陷泥页岩矿物组成及脆度分析[J].沉积学报201331(4):616-620.

19
Zhang Mingyang Li Xianqing , Dong Zeliang , et al . Analyses on mineral compositions and brittleness of the Lower Cambrian Hetang Formation shale in south Anhui Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 201534(1):177-183.

张明扬,李贤庆,董泽亮,等 .皖南地区下寒武统荷塘组岩气矿物组成及脆度分析[J].矿物岩石地球化学通报201534(1):177-183.

20
Xiong Wei Guo Wei Liu Honglin ,et al . Shale reservoir characteristics and isothermal adsorption properties[J].Natural Gas Industry,201232(1):113-116.

熊伟,郭为,刘洪林,等 .页岩的储层特征以及等温吸附特征[J].天然气工业201232(1):113-116.

21
Yang Feng Ning Zhengfu Hu Changpeng ,et al . Characterization of microscopic pore structures in shale reservoirs [J]. Acta Petrolei Sinica,201334(2):301-311.

杨峰,宁正福,胡昌蓬,等 .页岩储层微观孔隙结构特征[J].石油学报201334(2):301-311.

22
Wang Jie Qin Jianzhong Rao Dan ,et al . Microstructure and simulation experiments of extracted gas capability in different types of shale[J]. Natural Gas Geoscience, 201324(4): 652-658.

王杰,秦建中,饶丹,等 .不同类型页岩富集烃类气能力模拟实验及微观结构特征研究[J].天然气地球科学201324(4):652-658.

23
Ge Yan Xie Yinggang Hu Yunting ,et al . Characterization of microscopic pore structures in shale reservoirs of Toolebuc Formation in the E Basin,Australia[J]. Natural Gas Industry,201526(5):979-985.

葛岩,谢英刚,胡云亭,等 . 澳大利亚E盆地Toolebuc组页岩微观孔隙结构特征[J]. 天然气地球科学201526(5):979-985.

24
Chen Bintao , Pan Shuxin , Fang Lehua , et al . Reservoir characteristics of mudstone(shale) interval in the Qingshankou Formation,Qijia-Gulong Sag,Songliao Basin,northeast China[J]. Natural Gas Geoscience, 2016, 27(2):298-308.

陈彬滔,潘树新,方乐华,等 .松辽盆地齐家—古龙凹陷青山口组泥页岩层段储层特征[J].天然气地球科学,2016,27(2):298-308.

25
Wang Yuman Dong Dazhong Li Jianzhong ,et al . Reservoir characteristics of shale gas in Longmaxi of the Lower Silurian,southern Sichuan[J].Acta Petrolei Sinica,201233(4):551-561.

王玉满,董大忠,李建忠,等 . 川南下志留统龙马溪组页岩气储层特征[J]. 石油学报201233(4):551-561.

26
Bai Minggang Zhang Cong Yang Yuru ,et al . The characteristics of shale reservoir from Qiongzhusi Formation in Lower Cambrian in Qujing area,eastern Yunnan Province[J]. Journal of Geomechanics,201723(6):838-845.

白名岗,张聪,杨玉茹,等 . 滇东曲靖地区下寒武统筇竹寺组泥页岩储层特征研究[J]. 地质力学学报201723(6):838-845.

27
Xin Qin Luo Mengfei . Modern Catalytic Research Methods[M].Beijing: Science Press,2009:10-43.

辛勤,罗孟飞 .现代催化研究方法[M].北京:科学出版社,2009:10-43.

28
Zhao Pei Li Xianqing Tian Xingwang ,et al . Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J]. Natural Gas Geoscience,201425(6):947-956.

赵佩,李贤庆,田兴旺,等 .川南地区龙马溪组页岩气储层微孔隙结构特征[J].天然气地球科学201425(6):947-956.

29
Zhang Jizhen Li Xianqing Guo Man ,et al . Microscopic pore characteristics and its influence factors of the Permian Longtan Formation shales in the southern Sichuan Basin[J]. Natural Gas Geoscience,201526(8):1571-1578.

张吉振,李贤庆,郭曼,等 . 川南地区二叠系龙潭组页岩微观孔隙特征及其影响因素[J]. 天然气地球科学201526(8):1571-1578.

30
Luo Rui Zha Ming He Hao ,et al . Characteristics of pore structures in Paleogene shales in Nanpu Sag[J]. Journal of China University of Petroleum:Natural Science Edition, 2016,40(2):23-33.

罗瑞,查明,何皓,等 . 南堡凹陷古近系泥页岩孔隙结构特征[J]. 中国石油大学学报:自然科学版201640(2):23-33.

31
Bowker K A . Barnett shale gas production,Fort Worth Basin; Issues and discussion[J].AAPG Bulletin200791(4):523-533.

32
Dong Dazhong Zou Caineng Li Jianzhong ,et al . Resource potential,exploration and development prospect oil shale gas in the whole world[J].Geological Bulletin of China,201130(2/3):324-336.

董大忠,邹才能,李建忠,等 .页岩气资源潜力与勘探开发前景[J].地质通报201130(2/3):324-336.

33
Long Pengyu Zhang Jinchuan Tang Xuan ,et al . Feature of muddy shale fissure and its effect for shale gas exploration and development[J].Natural Gas Geoscience,201122(3):525-531.

龙鹏宇,张金川,唐玄,等 .泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J].天然气地球科学201122(3):525-531.

34
Tian Hua Zhang Shuichang Liu Shaobo ,et al . Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica,201233(3):419-427.

田华,张水昌,柳少波,等 .压求法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报201233(3):419-427.

35
Nelson Philip H . Pore-throat sizes in sandstones,tight sandstones,and shales[J].AAPG Bulletin200993(3):329-340.

36
Ross D J K Bustin R M . Shale gas potential of the Lower Jurassic Gordondale Member,northeastern British Columbia,Canada[J].Bulletin of Canadian Petroleum Geology200755(1):51-75.

37
Cao Taotao Song Zhiguang Wang Sibo ,et al . Micro pore characteristics and their controlling factors of Permian shale reservoir in southern Anhui[J]. Journal of Earth Sciences and Environment,201638(5):668-684.

曹涛涛,宋之光,王思波,等 . 皖南地区二叠系页岩储层微观孔隙特征及影响因素[J].地球科学与环境学报201638(5):668-684.

38
Wang Liang Chen Yunyan Liu Yuxia . Shale porous structural characteristics of Longmaxi Formation in Pengshui area of southeast Sichuan Basin[J].China Petroleum Exploration,201419(5):80-88.

王亮,陈云燕,刘玉霞 .川东南彭水地区龙马溪组页岩孔隙结构特征.中国石油勘探201419(5):80-88.

39
Zheng Min Li Jianzhong Wu Xiaozhi ,et al . High temperature pyrolysis gas-sourcing potential of organic matter in marine shale source rock system[J].China Petroleum Exploration,201419(3):1-11.

郑民,李建忠,吴晓智,等 .海相页岩烃源岩系中有机质的高温裂解生气潜力[[J].中国石油勘探201419(3):1-11.

40
Liu Hu Cao Taotao Qi Minghui ,et al . Reservoir characteristics of Longtan Formation shale gas in Huayingshan area,eastern Sichuan Basin[J]. Natural Gas Geoscience. 201930(1):11-26.

刘虎,曹涛涛,戚明辉,等 . 四川盆地东部华蓥山地区龙潭组页岩气储层特征[J]. 天然气地球科学201930(1):11-26.

41
Jarvie D M Hill R J Ruble T E ,et al . Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin.2007.91(4):475-499.

42
Milliken K L Rudnicki M Awwiller D N ,et al .Organic matter-hosted pore system. Marcellus Formation(Devonian),Pennsylvania[J].AAPG Bulletin.2013.97(2):177-200.

43
Xu Hongjie , Hu Baolin , Liu Huihu , et al . Reservoir characteristics and its physical origin of shale gas in coal measure in the Lower Permian Shanxi Formation in Huainan Coal Field [J].Natural Gas Geoscience. 201526(6):1200-1210.

徐宏杰,胡宝林,刘会虎,等 .淮南煤田下二叠统山西组煤系页岩气储层特征及物性成因[J].天然气地球科学201526(6):1200-1210.

44
Yang C Zhang J C Tang X ,et al . Comparative study on micro-pore structure of marine,terrestrial,and transitional shales in key areas,China[J].International Journal of Coal Geology2017171(2):76-92.

45
Curbs M E , Cardott B J , Sondergeld C H , et al . Development of organic porosity in the Woodford shale with increasing thermal maturity[J].International Journal of Coal Geology2012,103(23):26-31.

46
Liang Q S , Zhang X , Tian J C ,et al . Geological and geochemical characteristics of marine-continental transitional shale from the Lower Permian Taiyuan Formation,Taikang Uplift,southern north China Basin[J].Marine and Petroleum Geology,2018,98(12):229-242.

47
Yuan Ye , Zhao Jingzhou , Chuang Er ,et al . Study on characteristics and pore types in Mesozoic and Upper Paleozoic shales in Ordos Basin[J].Journal of Xi’an Shiyou University: Natural Science Edition,2014.29(2):14-19.

袁野,赵靖舟,耳闯,等 . 鄂尔多斯盆地中生界及上古生界页岩孔隙类型及特征研究[J]. 西安石油大学学报:自然科学版201429(2):14-19.

48
Wang Zhongpeng Zhang Jinchuan Sun Rui ,et al . The gas-bearing characteristics analysis of the Longtan Formation transitional shale in Well Xiye1[J].Earth Science Frontiers,201522(2):243-250.

王中鹏,张金川,孙睿,等 . 西页1井龙潭组海陆过渡相页岩含气性分析[J]. 地学前缘201522(2):243-250.

49
Cao Taotao Liu Guangxiang Cao Qinggu ,et al . Influence of maceral composition on organic pore development in shale: A case study of transitional Longtan Formation shale in eastern Sichuan Basin[J].Oil and Gas Geology.2018.39(1):40-53.

曹涛涛,刘光祥,曹清古,等 . 有机显微组成对泥页岩有机孔发育的影响——以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质201839(1):40-53.

Outlines

/