Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin: Case study of the eighth member of the Yanchang Formation in Honghe Oilfield

  • Wen-ya LÜ , 1, 2 ,
  • Lian-bo ZENG , 1, 2 ,
  • Si-bin ZHOU 3 ,
  • Yuan-yuan JI 4 ,
  • Feng LIANG 2 ,
  • Chen HUI 2 ,
  • Jia-sheng WEI 5
Expand
  • 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
  • 2. College of Geosciences, China University of Petroleum, Beijing 102249, China
  • 3. Exploration and Development Research Institute of North China Company, Sinopec, Zhengzhou 450006, China
  • 4. The First Oil Production Plant of North China Company, Sinopec, Qingyang 745000, China
  • 5. The Sixth Gas Production Plant of PetroChina Changqing Oilfield Company, Xi’an 710016, China

Received date: 2019-04-22

  Revised date: 2019-08-18

  Online published: 2020-01-09

Supported by

The National Science & Technology Major Projects of China(2017ZX05009001-002)

The Science Foundation of China University of Petroleum, Beijing(2462017YJRC057)

Highlights

Based on the analysis of thin sections and scanning electron microscope, in combination with cores and well logs, microfracture characteristics and its controlling factors were systematicly analyzed in the tight sandstone reservoir of the eighth member of the Yanchang Formation in the Honghe Oilfield in the southwest Ordos Basin. Then, the distribution characteristics of microfractures in the typical Q1 well area were analyzed. The results show that from the perspective of geologic origins, microfractures can be divided into four types in the study area, i.e., tectonic origin, diagenetic origin, tectonic-diagenetic origin and overpressure origin. Among these microfractures, tectonic origin and tectonic-diagenetic origin microfractures are the most abundant. Most microfractures are effective, while some micorfractures are filled with calcite, quartz, mud and so on. Microfracture development degree is influenced by sedimentation, diagenesis, tectonism and overpressure. With the increase of matrix content and plastic element content such as mica debris, and the decrease of grain size, microfracture intensities decrease. The stronger the compaction is, the more abundant intragranular and grain edge fractures are developed, which are tectonic-diagenetic origins. Intragranular and grain-edge fracture intensities decrease as the cementing strength increases, thus being favorable for the development of tectonic origin microfractures. In the typical Q1 well area, microfractures are most developed in the fine sandstones with strong compaction and strong calcite cementation; next being fine sandstones with strong compaction and medium-fine sandstone with moderate calcite cementation. Microfractures are relatively weakly developed in fine sandstone with kaolinite compaction and fine sandstone with chlorite cementation and moderate dissolution. The development of microfractures is the weakest in mudstones.

Cite this article

Wen-ya LÜ , Lian-bo ZENG , Si-bin ZHOU , Yuan-yuan JI , Feng LIANG , Chen HUI , Jia-sheng WEI . Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin: Case study of the eighth member of the Yanchang Formation in Honghe Oilfield[J]. Natural Gas Geoscience, 2020 , 31(1) : 37 -46 . DOI: 10.11764/j.issn.1672-1926.2019.08.006

1
贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报2012, 33(3): 343-349.

JIA C Z, ZOU C N, LI J Z, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3):343-349.

2
邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报201233(2): 173-187.

ZOU C N, ZHU R K, WU S T, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187.

3
NELSON R A. Geologic Analysis of Naturally Fractured Reservoirs[M]. Houston: Gulf Publish Company,1985.

4
LORENZ J C, STERLING J L, SCHECHTER D S, et al. Natural fractures in the Spraberry Formation, Midland Basin, Texas: The effects of mechanical stratigraphy on fracture variability and reservoir behavior[J]. AAPG Bulletin, 2002, 86(3):505-524.

5
ZENG L B, LI X Y. Fractures in sandstone reservoirs with ultra-low permeability: A case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China[J]. AAPG Bulletin, 2009, 93(4): 461-477.

6
PETER C, JOHN C. Prediction of fracture-induced permeability and fluid flow in the crust using experimental stress data [J]. AAPG Bulletin, 1999, 83:757-777.

7
NELSON R A, MOLDOVANYI E P, MATCEK C C, et al. Production characteristics of the fractured reservoirs of the La Paz Field, Maracaibo Basin, Venezuela[J]. AAPG Bulletin, 2000, 84(11): 1791-1809.

8
MULLEN M J, PITCHER J L, HINZ D, et al. Does the Presence of Natural Fractures Have an Impact on Production: A Case Study from the Middle Bakken Dolomite, North Dakota[C]. SPE135319. SPE Annual Technical Conference and Exhibition, 2010:1-15.

9
曾联波,李跃纲,王正国,等.邛西构造须二段特低渗透砂岩储层微观裂缝的分布特征[J]. 天然气工业200727(6): 45-47.

ZENG L B, LI Y G, WANG Z G, et al. Distribution of microfractures in ultralow permeability sandstone reservoirs of the second member of Xujiahe Formation in Qiongxi structure[J]. Natural Gas Industry, 2007, 27(6):45-47.

10
LAUBACH S E. A method to detect natural fracture strike in sandstones[J]. AAPG Bulletin, 1997, 81(4): 604-623.

11
ANDERS M H, LAUBACH S E, SCHOLZ C H. Microfractures: A review[J]. Journal of Structural Geology, 2014, 69: 377-394.

12
LAUBACH S E, MARRETT R, OLSON J. New directions in fracture characterization[J]. The Leading Egde,2000,19(7): 704-711.

13
PALCIAUSKAS V V, DOMENICO P A. Microfracture development in compacting sediments: relation to hydrocarbon-maturation kinetics[J]. AAPG Bulletin, 1980, 64(6): 927-937.

14
MARQUEZ X M, MOUNTJOY E W. Microfractures due to overpressures caused by thermal cracking in well-sealed Upper Devonian reservoirs, deep Alberta Basin[J]. AAPG Bulletin, 1996, 80(4): 570-588.

15
BERG R R, GANGI A F. Primary migration by oil-generation microfracturing in low-permeability source rocks: application to the Austin Chalk, Texas[J]. AAPG Bulletin, 1999, 83(5): 727-756.

16
LAUBACH S E. Practical approaches to identifying sealed and open fractures[J]. AAPG Bulletin, 2003, 87(4):561-579.

17
王景,凌升阶,南中虎.特低渗透砂岩微裂缝分布研究方法探索[J]. 石油勘探与开发2003, 30(2): 51-53.

WANG J, LING S J, NAN Z H. Microfracture distribution in extremely lower permeable sandstone reservoirs of Yanchang Formation and its geologic significance, Ordos Basin, Northwest China[J]. Petroleum Exploration and Development, 2003, 30(2):51-53.

18
FLOTTMANN T, CAMPAGNA D J, HILLIS R, et al. ,Horizontal microfractures and core discing in sandstone reservoirs,Basin Cooper Australia[C]∥Eastern Australasian Basins Sym-posium II. Petroleum Exploration Society of Australia Special Publication, 2004: 689-694.

19
南珺祥,王素荣,姚卫华,等.鄂尔多斯盆地陇东地区延长组长6—8特低渗透储层微裂缝研究[J]. 岩性油气藏2007, 19(4): 40-44.

NAN J X, WANG S R, YAO W H, et al. Microfractures in ultra-low permeability reservoir of the sixth-eighth member of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4):40-44.

20
王瑞飞,陈明强,孙卫. 特低渗透砂岩储层微裂缝特征及微裂缝参数的定量研究——以鄂尔多斯盆地沿25区块、庄40区块为例[J]. 矿物学报2008, 28(2): 215-220.

WANG R F, CHEN M Q, SUN W.Quantitative research on the characteristics of and parameters for micro cracks in ultra-low permeability sandstone reservoirs: Taking Yan 25 and Zhuang 40 areas in the Ordos Basin for example[J]. Acta Mineralogica Sinica, 2008, 28(2):215-220.

21
徐波,孙卫,韩宗元,等.姬塬油田长4+5砂岩储层微裂缝与水驱油特征[J]. 西北大学学报: 自然科学版200838(6): 971-976.

XU B, SUN W, HAN Z Y, et al. Characteristics of microfracture and waterflooding in Chang 4+5 sandstone reservoir of Jiyuan Oilfield[J]. Journal of Northwest University :Natural Science Edition, 2008, 38(6):971-976.

22
王瑞飞,孙卫.鄂尔多斯盆地姬塬油田上三叠统延长组超低渗透砂岩储层微裂缝研究[J]. 地质论评2009, 55(3): 444-448.

WANG R F, SUN W. A study on micro cracks in ultra-low permeability sandstone reservoir of the Upper Triassic Yanchang Formation in the Ordos Basin[J]. Geological Review, 2009, 55(3):444-448.

23
万永平,李园园,梁晓.基于流体包裹体的储层微裂缝研究——以陕北斜坡上古生界为例[J]. 地质与勘探2010, 46(4): 711-715.

WAN Y P, LI Y Y, LIANG X. Fractures of reservoirs inferred from fluid inclusions: A case study of the Upper Paleozoic of Northern Shaanxi Slope[J]. Geology and Exploration, 2010, 46(4):711-715.

24
ZENG L B. Microfracturing in the Upper Triassic Sichuan Basin tight-gas sandstones: Tectonic, overpressure, and diagenetic origins[J]. AAPG Bulletin, 2010, 94(12): 1811-1825.

25
臧士宾,崔俊,郑永仙,等.柴达木盆地南翼山油田新近系油砂山组低渗微裂缝储集层特征及成因分析[J]. 古地理学报201214(1): 133-141.

ZANG S B, CUI J, ZHENG Y X, et al. Analysis of characteristics of low-permeable reservoir with microfracture and their origins of the Neogene Youshashan Formation in Nanyishan Oilfield, Qaidam Basin[J]. Journal of Palaeogeography, 2012, 14(1):133-141.

26
LANDER R H, LAUBACH S E. Insights into rates of fracture growth and sealing from a model for quartz cementation in fractured sandstones[J]. GSA Bulletin, 2015, 127(3-4): 516-538.

27
LIU G Y, HUANG C J, ZHOU X G, et al. Quantitative evaluation of fracture development in Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(4): 486-496.

28
ZHU P, LIN C Y, REN H Q, et al. Micro-fracture characteristics of tight sandstone reservoirs and its evaluation by capillary pressure curves: A case study of Permian sandstones in Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 90-97.

29
ZHANG W Z, XIE L Q, YANG W W, et al. Micro fractures and pores in lacustrine shales of the Upper Triassic Yanchang Chang7 member, Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 156: 194-201.

30
TANG S L, TANG D Z, LI S, et al. Fracture system identification of coal reservoir and the productivity differences of CBM wells with different coal structures: A case in the Yanchuannan block, Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2018, 161: 175-189.

31
周文,林家善,张银德,等.镇泾地区曙光油田延长组构造裂缝分布评价[J]. 石油天然气学报2008, 30(5): 1-4.

ZHOU W, LIN J S, ZHANG Y D, et al. Evaluation on distribution of structural fractures of Yanchang Formation of Shuguang Oilfield of Zhenjing Region[J]. Journal of Oil and Gas Technology, 2008, 30(5):1-4.

32
张娟.镇泾地区长8段裂缝发育特征及其与开发关系[D]. 成都:成都理工大学,2010.

ZHANG J. Development of Fractures of Chang 8 Formation in Zhenjing and Its Relationship with the Exploitation[D]. Chengdu:Chengdu University of Technology,2010.

33
张世懋,丁晓琪,易超.镇泾地区延长组8段致密储层裂缝识别与预测[J]. 测井技术201135(1): 36-40.

ZHANG S M, DING X Q, YI C. Recognition and prediction of tight reservoir fracture in the Chang 8 section in Zhenjing area [J]. Well Logging Technology, 2011, 35(1):36-40.

34
颜冠山,李建明,唐民安.红河油田长8储层裂缝发育特征与油气渗流规律研究[J]. 长江大学学报:自然科学版2013, 10(11): 16-19.

YAN G S, LI J M, TANG M A. Study on fracture development characteristics and oil and gas seepage law of the eighth member of Yanchang Formation in Honghe Oilfield[J]. Journal of Yangtze University:Natural Science Edition, 2013, 10(11):16-19.

35
王翠丽,周文,李红波,等.镇泾地区延长组多期次裂缝发育特征及分布[J]. 成都理工大学学报:自然科学版2014, 41(5): 596-603.

WANG C L, ZHOU W, LI H B, et al. Characteristics and distribution of multiphase fractures in Yanchang Fomation of Zhenjing block in Ordos Basin, China[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2014, 41(5):596-603.

36
赵向原,曾联波,刘忠群,等.致密砂岩储层中钙质夹层特征及与天然裂缝分布的关系[J]. 地质论评2015, 61(1): 163-171.

ZHAO X Y, ZENG L B, LIU Z Q, et al. Characteristics of calcareous interbeds and their impact on distribution of natural fractures in tight sandstone reservoirs[J]. Geologica Review, 2015, 61(1):163-171.

37
LYU W Y, ZENG L B, LIU Z Q, et al. Fracture responses of conventional logs in tight-oil sandstones: A case study of the Upper Triassic Yanchang Formation in southwest Ordos Basin, China[J]. AAPG Bulletin, 2016, 100(9): 1399-1417.

38
LYU W Y, ZENG L B, ZHOU S B, et al. Natural fractures in tight-oil sandstones: A case study of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin, China[J]. AAPG Bulletin, 2019, 103(10): 2343–2367.

39
何自新.鄂尔多斯盆地构造演化与油气[D]. 北京:石油工业出版社, 2002.

HE Z X. Tectonic Evolution and Oil and Gas in Ordos Basin [D]. Beijing: Petroleum Industry Press,2002.

40
吴松涛,邹才能,朱如凯,等.鄂尔多斯盆地上三叠统长7段泥页岩储集性能[J]. 地球科学: 中国地质大学学报2015, 40 (11): 1810-1823.

WU S T, ZOU C N, ZHU R K, et al. Reservoir quality characterization of Upper Triassic Chang 7 shale in Ordos Basin[J]. Earth Science:Journal of China University of Geoscience, 2015, 40(11):1810-1823.

41
丁晓琪.鄂尔多斯盆地镇原—泾川地区延长组长8—长6沉积体系、层序地层与储层评价[D].成都:成都理工大学,2006.

DING X Q. Research on Sedimentary System, Sequence Stratigraphy, Reservoir Evaluation for Chang 8-6 oil beds of the Yanchang Formation[D].Chengdu:Chengdu University of Te-chnology, 2006.

42
张迪.鄂尔多斯盆地红河油田长8油层组储层流动单元研究[D]. 武汉:长江大学, 2015.

ZHANG D. Research on the Flow Units of Chang-8 Member of the Yanchang Formation in Honghe Oilfield[D]. Wuhan:Yangtze University, 2015.

43
吉伟平.红河油田HH105井区长8段致密砂岩优质储层预测[D]. 北京:中国石油大学(北京), 2016.

JI W P. Prediction of High Quality Tight Sandstone Reservoir of Chang-8 Member of the Yanchang Formation at HH105 well block in Honghe Oilfield[D]. Beijing: China University of Petroleum (Beijing), 2016.

44
徐梦龙,何治亮,尹伟,等.鄂尔多斯盆地镇泾地区延长组8段致密砂岩储层特征及主控因素[J]. 石油与天然气地质2015, 36(2): 240-247.

XU M L, HE Z L, YIN W, et al. Characteristics and main controlling factors of tight sandstones reservoirs in the 8th member of the Yanchang Formation in Zhenjing area[J]. Ordos Basin. Oil & Gas Geology, 2015, 36(2):240-247.

45
曾联波,高春宇,漆家福,等.鄂尔多斯盆地陇东地区特低渗透砂岩储层裂缝分布规律及其渗流作用[J]. 中国科学: D辑2008, 38(S1): 41-47.

ZENG L B, GAO C Y, QI J F, et al. Fracture distribution and its effect on seepage in the ultra low-permeability sandstone reservoirs in Longdong area, Ordos Basin[J]. Science in China:Series D, 2008, 38(S1):41-47.

46
HOWARD J H, HOEKSEMA R C N. Description of natural fracture systems for quantitative use in petroleum geology[J]. AAPG Bulletin, 1990, 74(2):151-162.

47
曾联波.低渗透砂岩储层裂缝的形成与分布[D]. 北京:科学出版社, 2008.

ZENG L B. Formation and Distribution of Fractures in Low-Permeability Sandstone Reservoirs[D]. Beijing:Science Press House, 2008.

48
姚泾利,段毅,徐丽,等.鄂尔多斯盆地陇东地区中生界古地层压力演化与油气运聚[J].天然气地球科学2014, 25(5):649-656.

YAO J L, DUAN Y, XU L, et al. Pressure evolution and oil-gas migration and accumulation in Mesozoic Palaeo-strata in Longdong area of the Ordos Basin[J]. Natural Gas Geoscience, 2014, 25(5):649-656.

Outlines

/