Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin: Case study of the eighth member of the Yanchang Formation in Honghe Oilfield

  • Wen-ya LÜ , 1, 2 ,
  • Lian-bo ZENG , 1, 2 ,
  • Si-bin ZHOU 3 ,
  • Yuan-yuan JI 4 ,
  • Feng LIANG 2 ,
  • Chen HUI 2 ,
  • Jia-sheng WEI 5
Expand
  • 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
  • 2. College of Geosciences, China University of Petroleum, Beijing 102249, China
  • 3. Exploration and Development Research Institute of North China Company, Sinopec, Zhengzhou 450006, China
  • 4. The First Oil Production Plant of North China Company, Sinopec, Qingyang 745000, China
  • 5. The Sixth Gas Production Plant of PetroChina Changqing Oilfield Company, Xi’an 710016, China

Received date: 2019-04-22

  Revised date: 2019-08-18

  Online published: 2020-01-09

Supported by

The National Science & Technology Major Projects of China(2017ZX05009001-002)

The Science Foundation of China University of Petroleum, Beijing(2462017YJRC057)

Highlights

Based on the analysis of thin sections and scanning electron microscope, in combination with cores and well logs, microfracture characteristics and its controlling factors were systematicly analyzed in the tight sandstone reservoir of the eighth member of the Yanchang Formation in the Honghe Oilfield in the southwest Ordos Basin. Then, the distribution characteristics of microfractures in the typical Q1 well area were analyzed. The results show that from the perspective of geologic origins, microfractures can be divided into four types in the study area, i.e., tectonic origin, diagenetic origin, tectonic-diagenetic origin and overpressure origin. Among these microfractures, tectonic origin and tectonic-diagenetic origin microfractures are the most abundant. Most microfractures are effective, while some micorfractures are filled with calcite, quartz, mud and so on. Microfracture development degree is influenced by sedimentation, diagenesis, tectonism and overpressure. With the increase of matrix content and plastic element content such as mica debris, and the decrease of grain size, microfracture intensities decrease. The stronger the compaction is, the more abundant intragranular and grain edge fractures are developed, which are tectonic-diagenetic origins. Intragranular and grain-edge fracture intensities decrease as the cementing strength increases, thus being favorable for the development of tectonic origin microfractures. In the typical Q1 well area, microfractures are most developed in the fine sandstones with strong compaction and strong calcite cementation; next being fine sandstones with strong compaction and medium-fine sandstone with moderate calcite cementation. Microfractures are relatively weakly developed in fine sandstone with kaolinite compaction and fine sandstone with chlorite cementation and moderate dissolution. The development of microfractures is the weakest in mudstones.

Cite this article

Wen-ya LÜ , Lian-bo ZENG , Si-bin ZHOU , Yuan-yuan JI , Feng LIANG , Chen HUI , Jia-sheng WEI . Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin: Case study of the eighth member of the Yanchang Formation in Honghe Oilfield[J]. Natural Gas Geoscience, 2020 , 31(1) : 37 -46 . DOI: 10.11764/j.issn.1672-1926.2019.08.006

0 引言

致密储层通常指孔隙度小于10%,覆压基质渗透率小于0.1×10-3μm2的储集层[1,2]。随着常规油气资源被不断勘探开发,致密砂岩油气成为主要的增储上产的接替资源。致密储层非均质性强,物性差,在强烈的后期成岩作用及构造作用下,天然裂缝发育[3,4,5]。天然裂缝是致密储层重要的储集空间及渗透通道,影响着致密油气的成藏、富集、单井产能及其开发效果[6,7,8]
按规模,致密储层天然裂缝可以分为宏观裂缝与微观裂缝2种类型。宏观裂缝指可以在岩心、野外露头及测井响应特征上直接观察和描述的裂缝,其张开度一般大于50 μm[9];微观裂缝指需借助显微镜进行放大来观察与描述的裂缝,其张开度一般小于50 μm[10,11]。天然裂缝的发育具有自相似性,微观裂缝是宏观裂缝的缩影,由于观察条件的限制通常难以观察描述宏观裂缝的全貌,而通过对微观裂缝的研究可以间接反映宏观裂缝的特征及分布[12]。同时,针对致密砂岩储层而言,微观裂缝的开度与孔喉直径相当,微观裂缝的存在极大改善了致密储层的结构及整体性能,对致密砂岩储层的储渗具有重要作用[3]。因此,开展对微观裂缝的特征及其控制因素的研究,对致密砂岩储层评价及宏观裂缝发育特征的认识具有重要指导作用。
国内外学者对微观裂缝特征、分布、参数计算、形成机理及其对储层的贡献以及微观裂缝充填特征及演化开展了一些研究工作[9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]。这些研究工作主要集中在页岩、低渗透砂岩等储层,而对于致密储层,微小尺度裂缝更发育,所占的比例更大,对致密储层的贡献更大,目前对这类裂缝成因及其主控因素尚缺少认识,因而需要加强对微小尺度裂缝的深入系统研究。同时前人[31,32,33,34,35,36,37,38]对鄂尔多斯盆地西南部红河油田致密砂岩储层天然裂缝的研究为宏观裂缝的研究,目前为止尚未开展微观裂缝的研究工作。本文通过对红河油田致密砂岩储层的铸体薄片及扫描电镜分析,结合岩心资料,在系统研究红河油田致密砂岩储层微观裂缝特征的基础上,划分微观裂缝的成因类型,阐明控制微观裂缝发育的因素,分析典型区块微观裂缝的分布规律,对深入认识宏观裂缝的发育规律及指导致密油气勘探开发具有重要意义。

1 地质概况

鄂尔多斯盆地位于中国中部,为一个叠合的克拉通坳陷盆地,即中生代发育的盆地叠加在古生代盆地之上。盆地内部地形相对平缓,表现为西倾的单斜构造,倾角不足1°[39,40]。现今表现出的总体构造为东部宽缓、西部相对陡窄的不对称矩形盆地。盆地由北部的伊盟隆起,南部的渭北隆起,中部的伊陕斜坡,西部的天环坳陷、西缘冲断带,以及分布在东部的晋西挠褶带6个一级构造单元包围组成。红河油田位于鄂尔多斯盆地西南边缘的天环坳陷南段(图1),延长组长8油层组为主力油层,处于自西南向北东向展布的辫状河三角洲沉积体系的三角洲前缘亚相,主要发育水下分流河道、水下分流间湾、河口砂坝、远砂坝微相[41,42,43],岩性主要为细砂岩、粉砂岩及泥岩。根据测试分析资料,石英含量为39.01%,长石为32.08%,岩屑为23.83%,填隙物为5.08%,砂岩主要为长石岩屑砂岩及岩屑长石砂岩。储集空间主要为原生残余粒间孔、次生溶孔、晶间微孔隙及微裂缝[44],平均孔隙度为8.6%,平均渗透率为0.2×10-3 μm2(空气渗透率),是典型的致密砂岩油储层。对于这种非均质性强、低孔低渗的砂岩储层,裂缝发育,裂缝是其主要渗流通道和储集空间。
图1 鄂尔多斯盆地构造单元及研究区位置

Fig.1 Map of tectonic units of the Ordos Basin and location of study area

2 微观裂缝成因类型

根据岩心、铸体薄片和扫描电镜分析显示的微裂缝分布特征,从地质成因上可以将红河油田长8致密砂岩储层微裂缝分为构造成因的微裂缝、成岩成因的微裂缝、构造—成岩成因的微裂缝以及异常高压相关的微裂缝4种类型。根据微裂缝的规模及微裂缝与颗粒之间的关系可以分为穿粒缝、粒内缝与粒缘缝3种类型,穿粒缝不受矿物颗粒限制,粒内缝与粒缘缝分别在矿物颗粒内部及边缘发育。
构造成因的微裂缝为微观裂缝的一种主要类型,广泛分布在长8储层细砂岩和粉砂岩等各种岩性中。构造成因的微裂缝[图2(a)],表现为一般切穿石英、长石等矿物颗粒,不受石英、长石等矿物颗粒限制,规模较大,延伸较长,方向性明显,多为有效裂缝,少数被方解石、石英及炭质等充填。
图2 微观裂缝成因类型及其分布特征

(a)Q3井,2 268.92 m,构造成因裂缝(箭头所指),未被充填为有效裂缝;(b)Q9井,2 108.7 m,层理缝(箭头所指),沿矿物定向排列方向分布,被石油充填;(c)Q7井,2 243.51 m,粒内缝(箭头所指),未被充填为有效裂缝;(d)Q10井,2 195.9 m,异常高压相关的微裂缝(箭头所指),呈透镜状,被沥青质充填

Fig.2 Microfracture origin types and distribution characteristics

成岩成因的微裂缝主要表现为层理缝[图2(b)],通常发生在岩性界面上,一般顺层面发育或沿矿物定向排列方向分布,规模较大,并具有弯曲、断续、分枝、尖灭等分布特征,通常被石油等有机质充填。
构造—成岩成因的微裂缝包括粒缘缝、粒内缝,在致密砂岩储层中普遍发育,为微观裂缝的一种主要类型。粒缘缝又称为粒间缝或贴粒缝[45],主要分布在矿物的颗粒之间,沿着矿物颗粒边缘分布,规模小,延伸短。粒内缝主要表现为石英的裂纹缝[图2(c)]和长石的解理缝,它们在石英或方解石矿物颗粒内发育,从矿物颗粒边缘向颗粒内延伸,可连通颗粒间的孔隙和喉道,大部分为有效裂缝,没有被充填,少数被方解石充填,是强烈的机械压实和压溶作用、溶蚀作用和后期构造挤压作用共同作用的结果。
异常高压相关的微裂缝表现为中间宽,向两侧尖灭的透镜状,延伸短,通常被沥青质或炭质充填[图2(d)]。裂缝的这种几何学特征表明为典型的拉张裂缝,形成该类裂缝时,其最小主应力为张应力。根据研究区地质条件分析,其张应力主要由异常高压流体造成,因而该类微裂缝可称之为异常高压相关的微裂缝[24]
综上所述,穿粒缝的成因类型包括构造成因的微裂缝、成岩成因的微裂缝及异常高压相关的微裂缝[9]。粒内缝、粒缘缝的成因类型为构造—成岩成因的微裂缝。

3 微观裂缝分布特征

根据190块薄片资料统计分析,不同井位不同深度段均有穿粒缝、粒内缝与粒缘缝发育,其分布具有较强的非均质性。由于异常高压相关的微裂缝虽然开度相对较大,但通常被沥青质或炭质充填,故本文中统计的穿粒缝的参数指构造成因及成岩成因的微裂缝的参数。
穿粒缝的面密度一般小于1.0 mm/mm2,主要分布在0.2~0.4 mm/mm2之间,平均面密度为0.42 mm/mm2[图3(a)],粒内缝、粒缘缝的面密度一般小于1.0 mm/mm2,部分井面密度可达1.0 mm/mm2,峰值为0.2~0.4 mm/mm2,平均面密度为0.52 mm/mm2[图3(b)],说明在致密砂岩储层中,粒内缝、粒缘缝较穿粒缝更发育。穿粒缝的长度分布在几毫米至数厘米之间[图4(a)],粒内缝、粒缘缝的长度一般小于1 mm,主要集中在0.2~0.3 mm之间[图4(b)],表明穿粒缝的延伸长度一般大于粒内缝和粒缘缝的长度,穿粒缝与粒内缝、粒缘缝为不同尺度的微裂缝。在地层围压下,穿粒缝开度一般小于50 μm,主要为10~30 μm[图5(a)],粒内缝、粒缘缝的开度主要分布在10 μm以内,少数可达20 μm[图5(b)],表明穿粒缝的开度一般大于粒内缝、粒缘缝的开度。
图3 微观裂缝面密度分布频率

(a)穿粒缝面密度分布频率图 (b)粒内缝和粒缘缝面密度分布频率图

Fig.3 The distribution frequency diagram of microfracture areal intensities

图4 微观裂缝长度分布频率

(a)穿粒缝长度分布频率图 (b)粒内缝和粒缘缝长度分布频率图

Fig.4 The distribution frequency diagram of microfracture lengths

图5 微观裂缝开度分布频率

(a)穿粒缝开度分布频率图 (b)粒内缝和粒缘缝开度分布频率图

Fig.5 The distribution frequency diagram of microfracture apertures

根据微观裂缝镜下分析,红河油田致密砂岩储层微裂缝有效性好,被充填的微裂缝小于10%,充填物主要为方解石、石英及炭质等,大部分裂缝未被充填,或被有机质、沥青等充填。利用Monte Carlo法[46]对红河油田致密砂岩储层微裂缝的孔隙度和渗透率计算表明,穿粒缝孔隙度一般小于0.63%,平均孔隙度为0.34%,平均渗透率为1.06×10-3 μm2,部分开度大的微裂缝渗透率可达n×10-3 μm2;粒内缝、粒缘缝的孔隙度一般小于0.58%,平均孔隙度为0.23%,平均渗透率为0.12×10-3 μm2,渗透率一般小于0.24×10-3 μm2。与致密砂岩储层基质储层物性相比,穿粒缝提高了致密砂岩储层的渗流能力,粒内缝和粒缘缝是沟通粒间孔或粒内孔的重要通道,对改善致密储层的连通性具有重要意义。

4 微观裂缝影响因素

红河油田致密砂岩储层微观裂缝发育主要受沉积作用、成岩作用、构造作用和异常高压流体作用的影响,其中沉积作用是致密砂岩储层微裂缝形成的基础,构造—成岩强度是致密砂岩储层微裂缝发育的关键因素。

4.1 沉积作用

沉积作用对微裂缝的控制作用表现为碎屑矿物成分、岩屑含量、杂基含量、胶结物含量及粒度对微裂缝发育的影响。红河油田致密砂岩储层岩性主要为长石岩屑砂岩及岩屑长石砂岩,云母、岩屑、杂基等塑性成分含量相对较高,而随着云母、岩屑含量增高,岩石塑性增强,在上覆地层压力作用下,越容易压实发生塑性变形,矿物定向排列,不利于微裂缝的形成[图6(a)]。杂基含量越多,岩石塑性增强,微裂缝越不发育[22],方解石等胶结物含量越高,岩石脆性增强,在相同应力条件下,越有利于构造剪切微裂缝形成。
图6 长8储层微观照片

(a) Q10井,2 426.4 m,强压实,矿物颗粒定向排列,云母发生塑性形变呈条带状;(b) Q1井,2 101.03 m,强压实,颗粒整体破碎,粒内缝发育

Fig. 6 Thin section photos of the eighth member of Yanchang Formation

此外,粒度粗细亦影响微裂缝发育,通过对研究区薄片观察统计发现在相同组分的岩石中,岩石颗粒越细,越有利于微裂缝的发育。这是由于随着岩石颗粒和孔隙体积减小,在上覆地层压力下,更容易变得致密,在经过弹性变形后,在较小的应变时表现为破裂变形,形成微裂缝[47]
根据研究区岩心观察及测井资料,在对单井沉积微相划分的基础上,分析和统计了不同微相下的裂缝发育情况(图7)。结果表明,不同微相裂缝发育程度差异较大,其中河口坝微观裂缝最发育,微观裂缝的面密度为0.8 mm/mm2,其次水下分流河道与远砂坝微相微观裂缝较发育,水下分流间湾微观裂缝发育程度较差。
图7 不同沉积微相微观裂缝面密度分布

Fig.7 The distribution diagram of microfracture areal intensities in different microfacies

4.2 成岩作用

成岩作用对微裂缝的影响一方面表现为通过压实作用、压溶作用、胶结作用及溶解作用控制微裂缝的形成,另一方面与构造作用耦合,共同控制构造—成岩微裂缝(粒内缝、粒缘缝)的形成。通过镜下观察发现,红河油田致密砂层储层普遍强压实,局部强胶结,且压实作用相对弱时胶结作用强,局部可见长石内溶蚀现象。随着压实强度增强,岩石颗粒接触关系依次为点接触、线接触、凹凸接触,微裂缝发育强度依次增强(图8)。随着胶结强度增强,粒内缝、粒缘缝发育强度降低,而构造成因微裂缝相对发育。在成岩过程中,在压实和压溶作用下,形成顺微层面或矿物定向排列方向的层理缝。同时在强压实及区域构造挤压共同作用下,岩石颗粒整体破碎形成构造—成岩成因的粒内缝[图6(b)]。此外,在溶蚀作用及区域构造挤压共同作用下,沿长石颗粒解理溶蚀形成微裂缝。
图8 不同颗粒接触关系的微观裂缝分布频率

Fig.8 Microfracture frequency distribution of different grain contacts

4.3 构造作用

构造作用是控制致密砂岩储层微裂缝发育的关键因素。一方面在区域构造挤压应力作用下,岩石发生剪切破裂或沿最小主应力方向发生扩张,形成构造成因的微裂缝[图2(a)]。通过镜下观察微裂缝间的切割关系,发现红河油田致密砂岩储层发育2期构造成因的微裂缝。另一方面构造作用与成岩作用耦合,控制构造—成岩微裂缝(粒内缝、粒缘缝)[图2(c)]的发育。

4.4 异常高压作用

已有研究表明研究区及周边地区早白垩世中期—末期存在异常高压,压力系数可达1.65,这种异常高压的形成与鄂尔多斯盆地中生界埋藏演化与生烃史一致[48]。在生烃排烃过程中,排除的烃类流体可以使孔隙流体压力增大,形成异常流体高压。异常流体高压的作用主要表现在两方面,一是导致岩石颗粒所受的有效应力降低,使岩石的弹性屈服极限降低,易于岩石发生破裂形成微裂缝;二是可以造成应力莫尔圆的向左移动,改变某一部位的应力状态,当异常流体压力达到一定程度时,可以使最小主应力由压应力变为张应力,从而形成拉张裂缝,即异常高压相关的微裂缝[图2(d)]。

5 典型区块微观裂缝分布规律

以研究区Q1井区为例,在Q1井区相对小的范围内认为异常应力值差异不大,地层平缓,构造起伏不大,微观裂缝的发育主要受沉积和成岩作用的影响。在对该井区的岩性、岩石组分、胶结强度和压实强度分析的基础上,Q1井区主要发育水下分流河道和分流间湾微相,岩石相可以分为中—细砂岩相、细砂岩相;成岩相可以分为强压实方解石强胶结相、强压实相、方解石中胶结相和高岭石胶结相和绿泥石胶结中溶解相。通过薄片观察获得单井微观裂缝的相对发育程度,根据岩石组分、胶结强度和压实强度对微观裂缝发育的影响,将微观裂缝的发育程度分为强、较强、中等、较弱和弱5个级别,得到微观裂缝发育程度平面分布图(图9)。结果表明,在细砂岩强压实方解石强胶结相中,微观裂缝发育程度最强;其次在细砂岩强压实相和中—细砂岩方解石中胶结相中,微观裂缝发育程度中等;在细砂岩高岭石胶结相和绿泥石胶结中溶解相中,微观裂缝发育程度较弱;在泥岩中微观裂缝发育程度最弱。
图9 Q1井区微尺度裂缝发育程度分布特征

Fig.9 The development degree distribution of micro-scale fractures in the Q1 wellblock

6 结论

(1)红河油田致密砂岩储层微观裂缝可以分为构造、成岩、构造—成岩及异常高压成因4种成因类型,其中以构造成因的微裂缝及构造—成岩成因的微裂缝为主。根据微裂缝的规模及微裂缝与颗粒之间的关系可以分为穿粒缝、粒内缝与粒缘缝3种类型,其中粒内缝和粒缘缝较穿粒缝发育,粒内缝和粒缘缝规模小于穿粒缝。粒内缝和粒缘缝的长度一般小于1 mm,开度主要小于10 μm;穿粒缝的长度分布在几毫米至数厘米之间,开度一般小于50 μm,主要为10~30 μm;穿粒缝的渗透性能好于粒内缝和粒缘缝。
(2)致密砂岩储层微裂缝受沉积作用、成岩作用、构造作用及异常高压作用的影响。其中沉积作用是致密砂岩储层微裂缝形成的基础,构造—成岩强度是致密砂岩储层微裂缝发育的关键因素,异常高压作用主要影响异常高压相关裂缝的形成。随着云母、岩屑和杂基等塑性矿物含量越低,方解石等脆性矿物含量越高,岩石颗粒越细,越有利于微裂缝的发育;压实作用增强,微裂缝越发育;随着胶结强度增强,粒内缝、粒缘缝发育强度降低,构造成因微裂缝相对发育。
(3)研究区Q1井区,微观裂缝的发育主要受沉积和成岩作用的影响,在细砂岩强压实方解石强胶结相中,微观裂缝发育程度最强;其次为细砂岩强压实相和中—细砂岩方解石中胶结相;在细砂岩高岭石胶结相和绿泥石胶结中溶解相中,微观裂缝发育程度较弱;在泥岩中微观裂缝发育程度最弱。
1
贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报2012, 33(3): 343-349.

JIA C Z, ZOU C N, LI J Z, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3):343-349.

2
邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报201233(2): 173-187.

ZOU C N, ZHU R K, WU S T, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187.

3
NELSON R A. Geologic Analysis of Naturally Fractured Reservoirs[M]. Houston: Gulf Publish Company,1985.

4
LORENZ J C, STERLING J L, SCHECHTER D S, et al. Natural fractures in the Spraberry Formation, Midland Basin, Texas: The effects of mechanical stratigraphy on fracture variability and reservoir behavior[J]. AAPG Bulletin, 2002, 86(3):505-524.

5
ZENG L B, LI X Y. Fractures in sandstone reservoirs with ultra-low permeability: A case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China[J]. AAPG Bulletin, 2009, 93(4): 461-477.

6
PETER C, JOHN C. Prediction of fracture-induced permeability and fluid flow in the crust using experimental stress data [J]. AAPG Bulletin, 1999, 83:757-777.

7
NELSON R A, MOLDOVANYI E P, MATCEK C C, et al. Production characteristics of the fractured reservoirs of the La Paz Field, Maracaibo Basin, Venezuela[J]. AAPG Bulletin, 2000, 84(11): 1791-1809.

8
MULLEN M J, PITCHER J L, HINZ D, et al. Does the Presence of Natural Fractures Have an Impact on Production: A Case Study from the Middle Bakken Dolomite, North Dakota[C]. SPE135319. SPE Annual Technical Conference and Exhibition, 2010:1-15.

9
曾联波,李跃纲,王正国,等.邛西构造须二段特低渗透砂岩储层微观裂缝的分布特征[J]. 天然气工业200727(6): 45-47.

ZENG L B, LI Y G, WANG Z G, et al. Distribution of microfractures in ultralow permeability sandstone reservoirs of the second member of Xujiahe Formation in Qiongxi structure[J]. Natural Gas Industry, 2007, 27(6):45-47.

10
LAUBACH S E. A method to detect natural fracture strike in sandstones[J]. AAPG Bulletin, 1997, 81(4): 604-623.

11
ANDERS M H, LAUBACH S E, SCHOLZ C H. Microfractures: A review[J]. Journal of Structural Geology, 2014, 69: 377-394.

12
LAUBACH S E, MARRETT R, OLSON J. New directions in fracture characterization[J]. The Leading Egde,2000,19(7): 704-711.

13
PALCIAUSKAS V V, DOMENICO P A. Microfracture development in compacting sediments: relation to hydrocarbon-maturation kinetics[J]. AAPG Bulletin, 1980, 64(6): 927-937.

14
MARQUEZ X M, MOUNTJOY E W. Microfractures due to overpressures caused by thermal cracking in well-sealed Upper Devonian reservoirs, deep Alberta Basin[J]. AAPG Bulletin, 1996, 80(4): 570-588.

15
BERG R R, GANGI A F. Primary migration by oil-generation microfracturing in low-permeability source rocks: application to the Austin Chalk, Texas[J]. AAPG Bulletin, 1999, 83(5): 727-756.

16
LAUBACH S E. Practical approaches to identifying sealed and open fractures[J]. AAPG Bulletin, 2003, 87(4):561-579.

17
王景,凌升阶,南中虎.特低渗透砂岩微裂缝分布研究方法探索[J]. 石油勘探与开发2003, 30(2): 51-53.

WANG J, LING S J, NAN Z H. Microfracture distribution in extremely lower permeable sandstone reservoirs of Yanchang Formation and its geologic significance, Ordos Basin, Northwest China[J]. Petroleum Exploration and Development, 2003, 30(2):51-53.

18
FLOTTMANN T, CAMPAGNA D J, HILLIS R, et al. ,Horizontal microfractures and core discing in sandstone reservoirs,Basin Cooper Australia[C]∥Eastern Australasian Basins Sym-posium II. Petroleum Exploration Society of Australia Special Publication, 2004: 689-694.

19
南珺祥,王素荣,姚卫华,等.鄂尔多斯盆地陇东地区延长组长6—8特低渗透储层微裂缝研究[J]. 岩性油气藏2007, 19(4): 40-44.

NAN J X, WANG S R, YAO W H, et al. Microfractures in ultra-low permeability reservoir of the sixth-eighth member of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4):40-44.

20
王瑞飞,陈明强,孙卫. 特低渗透砂岩储层微裂缝特征及微裂缝参数的定量研究——以鄂尔多斯盆地沿25区块、庄40区块为例[J]. 矿物学报2008, 28(2): 215-220.

WANG R F, CHEN M Q, SUN W.Quantitative research on the characteristics of and parameters for micro cracks in ultra-low permeability sandstone reservoirs: Taking Yan 25 and Zhuang 40 areas in the Ordos Basin for example[J]. Acta Mineralogica Sinica, 2008, 28(2):215-220.

21
徐波,孙卫,韩宗元,等.姬塬油田长4+5砂岩储层微裂缝与水驱油特征[J]. 西北大学学报: 自然科学版200838(6): 971-976.

XU B, SUN W, HAN Z Y, et al. Characteristics of microfracture and waterflooding in Chang 4+5 sandstone reservoir of Jiyuan Oilfield[J]. Journal of Northwest University :Natural Science Edition, 2008, 38(6):971-976.

22
王瑞飞,孙卫.鄂尔多斯盆地姬塬油田上三叠统延长组超低渗透砂岩储层微裂缝研究[J]. 地质论评2009, 55(3): 444-448.

WANG R F, SUN W. A study on micro cracks in ultra-low permeability sandstone reservoir of the Upper Triassic Yanchang Formation in the Ordos Basin[J]. Geological Review, 2009, 55(3):444-448.

23
万永平,李园园,梁晓.基于流体包裹体的储层微裂缝研究——以陕北斜坡上古生界为例[J]. 地质与勘探2010, 46(4): 711-715.

WAN Y P, LI Y Y, LIANG X. Fractures of reservoirs inferred from fluid inclusions: A case study of the Upper Paleozoic of Northern Shaanxi Slope[J]. Geology and Exploration, 2010, 46(4):711-715.

24
ZENG L B. Microfracturing in the Upper Triassic Sichuan Basin tight-gas sandstones: Tectonic, overpressure, and diagenetic origins[J]. AAPG Bulletin, 2010, 94(12): 1811-1825.

25
臧士宾,崔俊,郑永仙,等.柴达木盆地南翼山油田新近系油砂山组低渗微裂缝储集层特征及成因分析[J]. 古地理学报201214(1): 133-141.

ZANG S B, CUI J, ZHENG Y X, et al. Analysis of characteristics of low-permeable reservoir with microfracture and their origins of the Neogene Youshashan Formation in Nanyishan Oilfield, Qaidam Basin[J]. Journal of Palaeogeography, 2012, 14(1):133-141.

26
LANDER R H, LAUBACH S E. Insights into rates of fracture growth and sealing from a model for quartz cementation in fractured sandstones[J]. GSA Bulletin, 2015, 127(3-4): 516-538.

27
LIU G Y, HUANG C J, ZHOU X G, et al. Quantitative evaluation of fracture development in Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(4): 486-496.

28
ZHU P, LIN C Y, REN H Q, et al. Micro-fracture characteristics of tight sandstone reservoirs and its evaluation by capillary pressure curves: A case study of Permian sandstones in Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 90-97.

29
ZHANG W Z, XIE L Q, YANG W W, et al. Micro fractures and pores in lacustrine shales of the Upper Triassic Yanchang Chang7 member, Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 156: 194-201.

30
TANG S L, TANG D Z, LI S, et al. Fracture system identification of coal reservoir and the productivity differences of CBM wells with different coal structures: A case in the Yanchuannan block, Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2018, 161: 175-189.

31
周文,林家善,张银德,等.镇泾地区曙光油田延长组构造裂缝分布评价[J]. 石油天然气学报2008, 30(5): 1-4.

ZHOU W, LIN J S, ZHANG Y D, et al. Evaluation on distribution of structural fractures of Yanchang Formation of Shuguang Oilfield of Zhenjing Region[J]. Journal of Oil and Gas Technology, 2008, 30(5):1-4.

32
张娟.镇泾地区长8段裂缝发育特征及其与开发关系[D]. 成都:成都理工大学,2010.

ZHANG J. Development of Fractures of Chang 8 Formation in Zhenjing and Its Relationship with the Exploitation[D]. Chengdu:Chengdu University of Technology,2010.

33
张世懋,丁晓琪,易超.镇泾地区延长组8段致密储层裂缝识别与预测[J]. 测井技术201135(1): 36-40.

ZHANG S M, DING X Q, YI C. Recognition and prediction of tight reservoir fracture in the Chang 8 section in Zhenjing area [J]. Well Logging Technology, 2011, 35(1):36-40.

34
颜冠山,李建明,唐民安.红河油田长8储层裂缝发育特征与油气渗流规律研究[J]. 长江大学学报:自然科学版2013, 10(11): 16-19.

YAN G S, LI J M, TANG M A. Study on fracture development characteristics and oil and gas seepage law of the eighth member of Yanchang Formation in Honghe Oilfield[J]. Journal of Yangtze University:Natural Science Edition, 2013, 10(11):16-19.

35
王翠丽,周文,李红波,等.镇泾地区延长组多期次裂缝发育特征及分布[J]. 成都理工大学学报:自然科学版2014, 41(5): 596-603.

WANG C L, ZHOU W, LI H B, et al. Characteristics and distribution of multiphase fractures in Yanchang Fomation of Zhenjing block in Ordos Basin, China[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2014, 41(5):596-603.

36
赵向原,曾联波,刘忠群,等.致密砂岩储层中钙质夹层特征及与天然裂缝分布的关系[J]. 地质论评2015, 61(1): 163-171.

ZHAO X Y, ZENG L B, LIU Z Q, et al. Characteristics of calcareous interbeds and their impact on distribution of natural fractures in tight sandstone reservoirs[J]. Geologica Review, 2015, 61(1):163-171.

37
LYU W Y, ZENG L B, LIU Z Q, et al. Fracture responses of conventional logs in tight-oil sandstones: A case study of the Upper Triassic Yanchang Formation in southwest Ordos Basin, China[J]. AAPG Bulletin, 2016, 100(9): 1399-1417.

38
LYU W Y, ZENG L B, ZHOU S B, et al. Natural fractures in tight-oil sandstones: A case study of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin, China[J]. AAPG Bulletin, 2019, 103(10): 2343–2367.

39
何自新.鄂尔多斯盆地构造演化与油气[D]. 北京:石油工业出版社, 2002.

HE Z X. Tectonic Evolution and Oil and Gas in Ordos Basin [D]. Beijing: Petroleum Industry Press,2002.

40
吴松涛,邹才能,朱如凯,等.鄂尔多斯盆地上三叠统长7段泥页岩储集性能[J]. 地球科学: 中国地质大学学报2015, 40 (11): 1810-1823.

WU S T, ZOU C N, ZHU R K, et al. Reservoir quality characterization of Upper Triassic Chang 7 shale in Ordos Basin[J]. Earth Science:Journal of China University of Geoscience, 2015, 40(11):1810-1823.

41
丁晓琪.鄂尔多斯盆地镇原—泾川地区延长组长8—长6沉积体系、层序地层与储层评价[D].成都:成都理工大学,2006.

DING X Q. Research on Sedimentary System, Sequence Stratigraphy, Reservoir Evaluation for Chang 8-6 oil beds of the Yanchang Formation[D].Chengdu:Chengdu University of Te-chnology, 2006.

42
张迪.鄂尔多斯盆地红河油田长8油层组储层流动单元研究[D]. 武汉:长江大学, 2015.

ZHANG D. Research on the Flow Units of Chang-8 Member of the Yanchang Formation in Honghe Oilfield[D]. Wuhan:Yangtze University, 2015.

43
吉伟平.红河油田HH105井区长8段致密砂岩优质储层预测[D]. 北京:中国石油大学(北京), 2016.

JI W P. Prediction of High Quality Tight Sandstone Reservoir of Chang-8 Member of the Yanchang Formation at HH105 well block in Honghe Oilfield[D]. Beijing: China University of Petroleum (Beijing), 2016.

44
徐梦龙,何治亮,尹伟,等.鄂尔多斯盆地镇泾地区延长组8段致密砂岩储层特征及主控因素[J]. 石油与天然气地质2015, 36(2): 240-247.

XU M L, HE Z L, YIN W, et al. Characteristics and main controlling factors of tight sandstones reservoirs in the 8th member of the Yanchang Formation in Zhenjing area[J]. Ordos Basin. Oil & Gas Geology, 2015, 36(2):240-247.

45
曾联波,高春宇,漆家福,等.鄂尔多斯盆地陇东地区特低渗透砂岩储层裂缝分布规律及其渗流作用[J]. 中国科学: D辑2008, 38(S1): 41-47.

ZENG L B, GAO C Y, QI J F, et al. Fracture distribution and its effect on seepage in the ultra low-permeability sandstone reservoirs in Longdong area, Ordos Basin[J]. Science in China:Series D, 2008, 38(S1):41-47.

46
HOWARD J H, HOEKSEMA R C N. Description of natural fracture systems for quantitative use in petroleum geology[J]. AAPG Bulletin, 1990, 74(2):151-162.

47
曾联波.低渗透砂岩储层裂缝的形成与分布[D]. 北京:科学出版社, 2008.

ZENG L B. Formation and Distribution of Fractures in Low-Permeability Sandstone Reservoirs[D]. Beijing:Science Press House, 2008.

48
姚泾利,段毅,徐丽,等.鄂尔多斯盆地陇东地区中生界古地层压力演化与油气运聚[J].天然气地球科学2014, 25(5):649-656.

YAO J L, DUAN Y, XU L, et al. Pressure evolution and oil-gas migration and accumulation in Mesozoic Palaeo-strata in Longdong area of the Ordos Basin[J]. Natural Gas Geoscience, 2014, 25(5):649-656.

Outlines

/