[1]Schmoker J W.Determination of organic-matter content of appalachian devonian shales from gamma-ray logs[J].AAPG Bulletin,1981,65(7):1285-1298.
[2]Passey Q R,Moretti F J,Kulla J B,et al.Practical model for organic richness from porosity and resistivity logs[J].AAPG Bulletin,1990,74(12):1777-1794.
[3]Liu Chao,Lu Shuangfang,Xue Haitao.Variable-coefficient ΔLogR method and its application in shale organic evaluation[J].Progress in Geophysics,2014,29(1):312-317.
刘超,卢双舫,薛海涛.变系数ΔLogR方法及其在泥页岩有机质评价中的应用[J].地球物理学进展,2014,29(1):312-317.
[4]Huo Qiuli,Zeng Huasen,Fu Li,et al.The advance of ΔLogR method and it’s application in Songliao Basin[J].Journal of Jilin University:Earth Science Edition,2011,41(2):586-591.
霍秋立,曾花森,付丽,等.ΔLogR测井源岩评价方法的改进及其在松辽盆地的应用[J].吉林大学学报:地球科学版,2011,41(2):586-591.
[5]He Cong,Su Ao,Zhang Mingzhen,et al.Optimal selection and application of prediction means for organic carbon content of source rocks based on logging data in Yanchang Formation,Ordos Basin[J].Natural Gas Geoscience,2016,27(4):754-764.
贺聪,苏奥,张明震,等.鄂尔多斯盆地延长组烃源岩有机碳含量测井预测方法优选及应用[J].天然气地球科学,2016,27(4):754-764.
[6]Wang Qinghui,Feng Jin.The TOC logging evaluation methods and application of source rock:A case study of Wenchang Formation in Pearl River Mouth Basin[J].Natural Gas Geoscience,2018,29(2):251-258.
王清辉,冯进.烃源岩TOC测井评价方法及应用——以珠江口盆地文昌组为例[J].天然气地球科学,2018,29(2):251-258.
[7]Zhu Zhenyu,Wang Guiwen,Zhu Guangyu.The application of artificial neural network to the source rock’s evaluation[J].Progress in Geophysics,2002,17(1):137-140.
朱振宇,王贵文,朱广宇.人工神经网络法在烃源岩测井评价中的应用[J].地球物理学进展,2002,17(1):137-140.
[8]Xiong Lei,Zhang Chaomo,Zhang Chong,et al.Research on logging evaluation method of TOC content of shale gas reservoir in A area[J].Lithologic Reservoirs,2014,26(3):74-78,83.
熊镭,张超谟,张冲,等.A地区页岩气储层总有机碳含量测井评价方法研究[J].岩性油气藏,2014,26(3):74-78,83.
[9]Zhang Han,Lu Shuangfang,Li Wenhao,et al.Application of ΔLogR technology and BP neural network in organic evaluation in the complex lithology tight stratum[J].Progress in Geophysics,2017,32(3):1308-1313.
张晗,卢双舫,李文浩,等.ΔLogR技术与BP神经网络在复杂岩性致密层有机质评价中的应用[J].地球物理学进展,2017,32(3):1308-1313.
[10]Deng Xiuqin,Fu Jinhua,Yao Jingli,et al.Sedimentary facies of the Middle-Upper Triassic Yanchang Formation in Ordos Basin and breakthrough in petroleum exploration[J].Journal of Palaeogeography,2011,13(4):443-455.
邓秀芹,付金华,姚泾利,等.鄂尔多斯盆地中及上三叠统延长组沉积相与油气勘探的突破[J].古地理学报,2011,13(4):443-455.
[11]Yuan Xuanjun,Lin Senhu,Liu Qun,et al.Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern:A case study of Chang 7 member of Triassic Yanchang Formation in Ordos Basin,NW China[J].Petroleum Exploration and Development,2015,42(1):34-43.
袁选俊,林森虎,刘群,等.湖盆细粒沉积特征与富有机质页岩分布模式——以鄂尔多斯盆地延长组长7油层组为例[J].石油勘探与开发,2015,42(1):34-43.
[12]Zhang Wenzheng,Yang Hua,Li Jianfeng,et al.Leading effect of high-class source rock of Chang 7 in Ordos Basin on enrichment of low permeability oil-gas accumulation:Hydrocarbon generation and expulsion mechanism[J].Petroleum Exploration and Development,2006,33(3):289-293.
张文正,杨华,李剑锋,等.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用——强生排烃特征及机理分析[J].石油勘探与开发,2006,33(3):289-293.
[13]Yang Hua,Zhang Wenzheng.Leading effect of the seventh member of high-quality source rock of Yanchang Formation Ordos Basin during the enrichment of low-penetrating oil-gas accumalation:Geology and Geochemistry[J].Geochimica,2005,34(2):147-154.
杨华,张文正.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用:地质地球化学特征[J].地球化学,2005,34(2):147-154.
[14]Yang Zhi,Hou Lianhua,Tao Shizhen,et al.Formation conditions and “sweet spot
” evaluation of tight oil and shale oil[J].Petroleum Exploration and Development,2015,42(5):555-565.
杨智,侯连华,陶士振,等.致密油与页岩油形成条件与“甜点区”评价[J].石油勘探与开发,2015,42(5):555-565.
[15]Yang Bin,Kuang Lichun,Sun Zhongchun,et al.On support vector machines method to identify oil & gas zone with logging and mudlog information[J].Well Logging Technology,2005,29(6):511-514,571.
杨斌,匡立春,孙中春,等.一种用于测井油气层综合识别的支持向量机方法[J].测井技术,2005,29(6):511-514,571.
[16]Li Xinhu.Lithology identification methods contrast based on support vector machines at different well logging parameter[J].Coal Geology & Exploration,2007,35(3):72-76,80.
李新虎.基于不同测井曲线参数集的支持向量机岩性识别对比[J].煤田地质与勘探,2007,35(3):72-76,80.
[17]Mou Dan,Wang Zhuwen,Huang Yulong,et al.Lithological identification of volcanic rocks from SVM well logging data:A case study in the eastern depression of Liaohe Basin[J].Chinese Journal of Geophysics,2015,58(5):1785-1793.
牟丹,王祝文,黄玉龙,等.基于SVM测井数据的火山岩岩性识别——以辽河盆地东部坳陷为例[J].地球物理学报,2015,58(5):1785-1793.
[18]Burges Christopher J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,22(2):121-167.
[19]Cui Shasha.Evaluation of Hydrocarbon Source Rock by Logging Method:A Case Study from the Nanniwan Oilfiled[D].Xi’an:Xi’an Shiyou University,2016:21-23.
崔莎莎.烃源岩测井评价方法——以南泥湾油田为例[D].西安:西安石油大学,2016:21-23.