The time-dependent shape factor study for tight sandstone with fracture

Expand
  • 1.School of Petroleum Engineering,China University of Petroleum (East China),Qingdao 266580,China;
    2.Chuanqing Drilling Compamy Down-hole Service Corporation,CNPC,Chengdu 610052,China;
    3.Department of Chemical and Petroleum Engineering,University of Calgary,Calgary T2N 1N4,Canada

Received date: 2016-09-08

  Revised date: 2017-04-09

  Online published: 2017-05-10

Abstract

The matrix-fracture transfer shape factor is an important parameter of the modeling of fluidflow in fractured porous media,researches on it mainly focus on the conventionaloil and gasreservoirs,and it hasnt been developed in the tight gas reservoirs.Numerical method and experiments were conducted to study thematrix-fracture transfer shape factor and test the model.This paper mainly improves the Ehsan Model and obtainsthe time-dependent shape factors of the radial matrix-fracture model by numerical method.Moreover,the effect of the permeability,porosity,media size on the time-dependent shape factor were studied,and then the improved Ehsan Model was verified through the experiment.The results show: The pressure transmission is slow in the ultra-low permeability matrix(k<10-8μm2),so the time-dependent shape factors of tight gas reservoirs can be divided into three stages,including pressure drop stage of the matrix outer boundary,pressure drop stage of the matrix inner boundary and theshape factor transit to stabilization stage.The duration of the first and second stage increases with the decrease of the permeability and porosity,the gas production time increases at the same time.The time of shape factor transit to stabilization increases with the increase of media size,while the relationship between the relative duration doesnt change.It can be found in this paper that we can predict the production of the tight gas reservoirs better with the time-dependent shape factor.It can provide more accurate theory and methods for production forecastinultra-lowpermeability tight sandstone reservoir,and it also can provide suitable shape factor and calculate reasonable interporosityf low coefficient for well test interpretation.

Cite this article

Zhu Chao-fan,Li Ya-jun,Sang Qian,Gong Hou-jian,Li Yan-chao,Dong Ming-zhe . The time-dependent shape factor study for tight sandstone with fracture[J]. Natural Gas Geoscience, 2017 , 28(5) : 792 -800 . DOI: 10.11764/j.issn.1672-1926.2017.04.005

References

[1]Lu Tao,Liu Yanxia,Wu Lichao,et al.Challenges to and countermeasures for the production stabilization of tight sandstone gas reservoires of the Sulige Gasfield,Ordos Basin[J].Natural Gas Industry,2015,35(6):43-52.[卢涛,刘艳侠,武力超,等.鄂尔多斯盆地苏里格气田致密砂岩气藏稳产难点与对策[J].天然气工业,2015,35(6):43-52.]
[2]Tang Ruijiang.Optimization of fracturing trchnology for low-permeability tight sandstone gas reservoirs in the Yuanba Gasfield,Sichuan Basin[J].Natural Gas Industry,2015,35(7):55-59.[唐瑞江.元坝气田低渗透致密砂岩气藏压裂优化技术[J].天然气工业,2015,35(7):55-59.]
[3]Beckner J B.Improved Modeling of Imbibition Matrix/Fracture Fluid Transfer in Double Porosity Simulators[D].California,US:Stanford University,1990.
[4]Warren J E,Root P J.The behavior of naturally fractured reservoirs[J].Society of Petroleum Engineers Journal,1963,6(3):245-255.
[5]Sarma P,Aziz K.New transfer functions for simulation of naturally fractured reservoirs with dual-porosity models[J].Society of Petroleum Engineers Journal,2006,11(3):328-340.
[6]Barenblatt G E,Zheltov I P,Kochina I N.Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata)[J].Journal of Applied Mathematics and Mechanics,1960,20(8):52-64.
[7]Kazemi H,Merrill L S,Porterfield K L,et al.Numerical simulation ofwater-oil flow in naturally fractured reservoirs[J].Society of Petroleum Engineers Journal,1976,16(6):26-35.
[8]Coats K H.Implicit compositional simulation of single-porosity and dualporosity reservoirs[J].Paper Spe,1989.
[9]Zimmerman R W,Chen G,Hadgu T,et al.A numerical dual-porosity model with semi-analytical treatment of fracture/matrix flow[J].Water Resources Research,1993,29(7):27-37.
[10]Kazemi H,Gilman J R.Multiphase flow in fractured petroleum reservoirs[J].Flow and Contaminant Transport in Fractured Rock,1993,56(10):267-323.
[11]Lim K T,Aziz K.Matrix-fracture transfer shape factors for dual-porosity simulators[J].Journal of Petroleum Science & Engineering,1995,13(1):69-78.
[12]Chang M M.Analytical solution to single and two-phase flow problems of naturally fractured reservoirs:theoretical shape factor and transfer functions[D].Johor,Malaysia:Universiti Teknologi Malaysia,1995.
[13]Hassanzadeh H,Pooladi-Darvish M,Atabay S.Shape factor in the drawdown solution for well testing of dual-porosity systems[J].Advances in Water Resources,2009,32(11):1652-1663.
[14]Quintard M,Whitaker S.Transport in chemically and mechanically heterogeneous porous media.I:Theoretical development of region-averaged equations for slightly compressible single-phase flow[J].Advances in Water Resources,1996,19(1):29-47.
[15]Yang Zehao,Dong Mingzhe,Zhang Shaojie,et al.A method for determining transverse permeability of tight reservoir cores by radial pressure-pulse decay measurement[J].Journal of Geophysical Research Solid Earth,2016,121(10):7054-7070.
[16]He Y.The Shape Factor Study and Application for Fractured Reservoir[D].Chengdu:Chengdu University of Technology,2007.[何勇明.裂缝性油藏形状因子研究及应用[D].成都:成都理工大学,2007.]
[17]Ranjbar E,Hassanzadeh H.Matrix-fracture transfer shape factor for modeling flow of a compressible fluid in dual-porosity media[J].Advances in Water Resources,2011,34(5):627-639.
[18]Hassanzadeh H,Pooladi-Darvish M.Effects of fracture boundary conditions on matrix-fracture transfer shape factor[J].Transport Porous Media,2006,64(1):51-71.
[19]Bourbiaux B,Granet S,Landereau P,et al.Scaling up matrix-fracture transfers in dual-porosity models:Theory and application[C]//SPE annual technical conference at Houston.Tesas:Society of Petroleum Engineers,1999.
[20]Sarda S,Jeannin L,Bourbiaux B.Hydraulic characterization of fractured reservoirs: simulation on discrete fracture models[C]//SPE Reservoir Simulation Symposium at Houston.Tesas:Society of Petroleum Engineers,2001.
[21]Helmy M W,Wattenbarger R A.New shape factor for wells producted at constant pressure[J].Gas Field,1998:131-138.
[22]Edgar R,Anthony R,Kovscek.Time-dependent matrix-fracture shape-factor for partially and completely immersed fractures[J].Journal of Petroleum Science and Engineering,2003,54(3):149-163.
[23]Aditya N,Edgar R,Anthony R.Experimental determination of time-dependent matrix-fracture shape factors for different geometries and fracture filling regimes[J].Tetrahedron,2004,61(49):11672-11678.
[24]Ranjbar E,Hassanzadeh H,Chen Z X.Effect of fracture pressure depletion regimes on the dual-porosity shape factor for flow of compressible fluids in fractured porous media[J].Advances in Water Resources,2011,34(12):1681-1693.
[25]Sun Hedong,Mao Xiaoping,Kang Bo.Dynamic production performance prediction and decline laws of rectangular gas reservoirs[J].Natural Gas Industry,2011,31(7):40-42.[孙贺东,毛小平,康博.矩形气藏的产量递减规律及动态预测方法[J].天然气工业,2011,31(7):40-42.]
[26]Huyakorn P S.Finite element techniques for modeling groundwater flow in fractured aquifers[J].Water Resources Research,1983,19(4):1019-1035.
[27]Streltsova T D.Hydrodynamics of groundwater flow in a fractured formation[J].Water Resources Research,1977,12(3):405-414.
[28]Flynn G P,Hanks R V,Lemaire N A,et al.Viscosity of Nitrogen,Helium,Neon,and Argon from -78.5℃ to 100℃ below 200 Atmospheres[J].The Journal of Chemical Physics,1963,38(1):154-162.

Outlines

/